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Abstract

Episodic memory is believed to be intimately related to our experience of
the passage of time. Indeed, neurons in the hippocampus and other brain
regions critical to episodic memory code for the passage of time at a range
of time scales. The origin of this temporal signal, however, remains unclear.
Here, we examined temporal responses in the entorhinal cortex of macaque
monkeys as they viewed complex images. Many neurons in the entorhinal
cortex were responsive to image onset, showing large deviations from base-
line firing shortly after image onset but relaxing back to baseline at different
rates. This range of relaxation rates allowed for the time since image on-
set to be decoded on the scale of seconds. Further, the ensemble carried
information about image content suggesting that neurons in the entorhinal
cortex carry information not only about when an event took place but also
the identity of that event. Taken together, these findings suggest that the
primate entorhinal cortex uses a spectrum of time constants to construct a
temporal record of the past in support of episodic memory.

Episodic memory, the vivid recollection of an event situated in a specific time and
place (Tulving, 1983), depends critically on medial temporal lobe (MTL) structures, includ-
ing the hippocampus and entorhinal cortex (EC) (Milner, 1959; Eichenbaum, Yonelinas, &
Ranganath, 2007; Dede, Frascino, Wixted, & Squire, 2016; Squire, Stark, & Clark, 2004).
Building on pioneering work demonstrating a spatial code in the hippocampus and entorhi-
nal cortex (O’Keefe & Dostrovsky, 1971; Fyhn, Molden, Witter, Moser, & Moser, 2004),
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recent research has shown that hippocampal representations also carry information about
the time at which past events took place (Pastalkova, Itskov, Amarasingham, & Buzsaki,
2008; MacDonald, Lepage, Eden, & Eichenbaum, 2011, see Eichenbaum, 2017 for a recent
review), suggesting that the MTL maintains a representation of spatiotemporal context in
support of episodic memory. Although a great deal is known about the temporal coding
properties of neurons in the hippocampus, the temporal code in the entorhinal cortex, which
provides the majority of the cortical input to the hippocampus is less understood (but see
Naya & Suzuki, 2011; Kraus et al., 2015; Tsao et al., 2018).

Hippocampal time cells provide a record of recent events including explicit informa-
tion about when an event occurred. Analogous to hippocampal place cells that fire when
an animal is in a circumscribed region of physical space (e.g., Wilson & McNaughton, 1993;
O’Keefe & Dostrovsky, 1971), hippocampal time cells fire during a circumscribed period of
time within unfilled delays (MacDonald et al., 2011; Kraus, Robinson, White, Eichenbaum,
& Hasselmo, 2013). Across studies, there is a remarkable consistency in the properties of
hippocampal time cells. Hippocampal time cells peak at a range of times during the delay
interval and typically code time with decreasing accuracy as the delay unfolds, as manifest
by fewer neurons with peak firing late in the delay and wider time fields later in the delay
(e.g., Kraus et al., 2015; Salz et al., 2016; Mau et al., 2018). Hippocampal time cells have
been observed in a wide range of tasks, including tasks with and without explicit memory
demands during the delay (e.g., Salz et al., 2016), experiments where the animal is fixed in
space (MacDonald, Carrow, Place, & Eichenbaum, 2013; Terada, Sakurai, Nakahara, & Fu-
jisawa, 2017), and different stimuli trigger different time cell sequences (Terada et al., 2017;
MacDonald et al., 2013). Taken together, time cells provide an explicit record of how far in
the past an event, e.g., for instance the beginning of a delay period or a to-be-remembered
stimulus, took place. By examining which time cells are active at a particular time, we can
easily determine not only what event took place, but how far in the past that event is.

Many of the properties of hippocampal time cells have been observed in other brain
regions including prefrontal cortex (Bolkan et al., 2017; Tiganj, Kim, Jung, & Howard, 2017;
Tiganj, Cromer, Roy, Miller, & Howard, 2018; Jin, Fujii, & Graybiel, 2009) and striatum
(Jin et al., 2009; Mello, Soares, & Paton, 2015; Akhlaghpour et al., 2016) suggesting that
the hippocampus is part of a widespread network that carries information about what
happened when in the past. A recent report from the rat lateral EC adds important data
to this growing body of literature regarding the representation of time in the brain. Tsao
et al. (2018) observed a population of neurons that changed slowly and reliably enough to
decode time within the experiment over a range of time scales. Unlike time cells, which
respond a characteristic time since the event that triggers their firing, lateral EC neurons
responded immediately upon entry into a new environment, and then relaxed slowly. The
relaxation times across individual neurons were very different, ranging from tens of seconds
up to thousands of seconds. To distinguish this population from time cells we will refer
to neurons that are activated by an event and then relax their firing gradually as temporal
context cells. Because these temporal context cells code for time, but with very different
properties than time cells, they provide a potentially important clue about the nature of
temporal coding in the brain, and thus memory function as well.

Here, we identified temporal context cells in monkey EC (Meister & Buffalo, 2018).
We examined EC neuron responses in a five-second period after presentation of an image.
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In the time after presentation of the image, a representation of what happened when should
carry both time-varying information about when the image was presented, as well as in-
formation that also discriminates the identity of the image. To anticipate results, the data
demonstrate that neurons in monkey EC are activated shortly after a visual stimulus and
then decay with a variety of rates, enabling reconstruction of when the image was presented.
This form of temporal coding is similar to temporal context cells observed in rat lateral EC
(Tsao et al., 2018), but unlike time cells that have been observed in the hippocampus and
other regions. Because different images were each shown twice over the course of the ex-
periment, we were able to assess whether the pattern of activation over neurons depends on
the content of the image presented. The results of this series of analysis suggest that these
temporal context cells also separately carry information about what happened in addition
to when it happened.

Results

A total of 349 neurons were recorded from the entorhinal cortex (EC) in two macaque
monkeys during performance of a visual free-viewing task. Each trial began with a required
fixation on a small cross, followed by presentation of a large, complex image that remained
on the screen for five seconds of free viewing (Figure 1a). Unlike canonical hippocampal
time cells, which are activated at a variety of points within a time interval (e.g., Figure 1c),
most entorhinal neurons changed their firing shortly after the presentation of the image.
Figure 2a shows three representative neurons that responded to the image presentation
(more examples in Supplementary Figure S2). While most of the responsive neurons in-
creased their firing rate after the image was presented, some neurons decreased their firing
rate in response to image presentation. Although behavior was not controlled during the
five second free-viewing period, the response of these neurons was consistent across trials
(this can be seen by examination of the trial rasters).

Although the image-responsive neurons in EC responded at about the same time
post-stimulus, they relaxed back to their baseline firing at different rates. Whereas some
neurons relaxed back to baseline quickly (Figure 2a, top), some relaxed much more slowly.
For instance the neuron shown in the bottom of Figure 2a did not return to baseline even
after five seconds.

Responses begin at a similar time point and decay at different rates across neurons

Each neuron’s temporal response was quantified relative to the onset of the image
using a model-based approach in which the shape of the firing field was described with
parameters that corresponded to the latency and decay of the response for each neuron
(Figure S1) and were assessed for goodness-of-fit using maximum likelihood. This approach
builds on previous work using maximum likelihood methods to estimate time cell activity as
a Gaussian firing field (Tiganj, Kim, et al., 2017; Salz et al., 2016; Tiganj et al., 2018). The
method for estimating parameters is described in detail in the methods. We can conclude
that a neuron’s response was time-locked to the image presentation to the extent a model
with a temporal response field fit the neuron’s data better than a model with only constant
background firing.

In order to minimize the noise and get the most accurate distribution of response pa-
rameters across neurons, we used a conservative criterion to identify neurons that responded
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Figure 1. : a-b: Summary of experimental procedures. a, Trial schematic for three
trials. On each trial, the monkey freely viewed an image. After the monkey viewed an image
for 5 seconds, the image disappeared. Between image presentations (not shown), the monkey
received a fruit slurry reward for performing gaze calibration trials (see Methods for details).
Images were presented twice during an experimental session. Between 20-40 minutes passed
before an image was repeated. b, Estimated position of recording channels in the entorhinal
cortex in one recording session is shown in red on a coronal MRI. c-e: Two hypotheses
for neural representations of time. c-d, Heat plot (top) and tuning curves (bottom)
for two hypotheses for how a time interval of image viewing could be coded in neural
populations. In the heat plots, cooler colors correspond to low activity while warmer colors
correspond to higher activity. c, Hypothetical activity is shown for sequentially activated
time cells like those observed in the hippocampus. In this population, different neurons
exhibit peak responses at different times indicating different firing fields. Because the time
of peak response across neurons covaries with the spread of the firing field, neurons with later
firing fields display wider firing fields. d, Monotonically decaying temporal context cells.
Neurons in this population exhibit peak firing at about the same time. However, different
neurons decay at different rates. e, Properties of neurons representing time passage by the
hypothesis shown in c (red) or the hypothesis shown in d (gray). A population of time
cells (red) should exhibit peak responses that occur at different times across a time interval,
and these neruons should show a robust correlation between when peak response occurs
and the time it takes the response to relax back to baseline. Conversely, a population of
exponentially-decaying temporal context cells (gray) should exhibit peak responses that
occur in a more restricted time range shortly after the start of a time interval, and these
neurons should show no correlation between when peak response occurs and the time it
takes the response to relax back to baseline.
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Figure 2. : Temporal context cells in entorhinal cortex respond to the presentation
of an image, then relax with a variety of rates, carrying information about time
since the image was presented. a, Three representative entorhinal neurons that
respond to image onset and decay at different rates. (Figure S2 shows more examples).
Each rectangle indicates the activity of one neuron relative to image onset in a raster plot
(top) and PSTH (bottom). In the raster, a tick mark indicates when the neuron fired an
action potential. In the PSTH, the solid black line indicates the firing rate, and the pink
line indicates the model estimate of firing rate. Baseline firing rate is indicated by the black
dotted line. b, The majority of neurons responded shortly after image presentation, relaxing
back to baseline with a spectrum of decay rates; some neurons relaxed back to baseline much
sooner than other neurons that relaxed more slowly. The heat plot shows normalized firing
rates of all entorhinal neurons relative to image onset, sorted by Relaxation Time (duration
between response peak and when response returns 63% of the way to baseline). Color scheme
is the same as the heat plots in Figure 1c, d. c, Joint distribution across neurons shows that
the time point the neurons started responding (Response Latency) were clustered within
a few hundred ms, whereas Relaxation Times spanned the full 5 s of image presentation.
Across neurons, Response Latency was not correlated with Relaxation Time. d and e, Time
since presentation of the image could be decoded from the population of entorhinal neurons.
A linear discriminant analysis (LDA) decoder was trained to decode time and then tested
on excluded trials. d, Decoding error increases with the passage of time, indicated by the
increasing values of absolute error between decoded time and actual time as a function of
actual time since image onset. The heavy black line is a fitted regression line. The asterisks
mark time bins for which a conservative estimate showed above-chance decoding accuracy at
that time bin taken in isolation (see Methods and Results for details). e, Decoding precision
decreases with passage of time, as shown by the wider spread of probability across decoded
time estimates as more time passes. The x-axis indicates the actual time bin which the LDA
attempted to decode, the y-axis indicates the decoded time, and the shading indicates the
log of the posterior probability, with darker shading signaling lower probabilities. Decoding
is better than chance and decreases in precision with the passage of time.
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to image presentation. This method identified 128/349 neurons as responsive. Of those 128
responsive neurons, 100 neurons showed an increase in their firing rate in response to image
onset, whereas 28 showed a decrease in their firing rate.

Figure 2b summarizes the temporal response properties of these 128 neurons. Each
row of the figure shows the response of one neuron over the course of a trial. The data
demonstrate that almost all of the neurons reached their maximum deviation from baseline
within a few hundred milliseconds of the image presentation. This can be appreciated
from the vertical red strip along the left edge of the heat map. These results are in striking
contrast to analogous plots of hippocampal time cells, a neural population in which different
neurons fire in sequence, tiling a time interval (e.g., Figure 1c) and resulting in a curved ridge
extending from the upper left to the lower right. In constrast, the variability across neurons
in this entorhinal population is not in the time point at which the neurons reach their
maximum deviation from baseline, but rather in the time course over which each neuron
relaxes. This can be appreciated in the progressive widening of the ridge in Figure 2b from
top to bottom.

We modeled temporal responses as a convolution of a Gaussian (latency in neuronal
response) and an exponential decay (Figure S1). In this model, we were able to quan-
tify apparent response properties using two key parameters: 1) the parameter µ, which
describes the mean of the Gaussian, estimates the time at which each neuron begins to
respond (Response Latency) and 2) the parameter τ , which describes the time constant of
the exponential term, estimates how long each neuron takes to relax back to 63% of its
maximum deviation (Relaation Time) (Figure 1e). We refer to these two parameters as re-
sponse latency and relaxation time respectively. A third parameter σ controls the standard
deviation of the Gaussian term.

Figure 2c shows the Response Latency and Relaxation Time for each neuron that
was categorized as visually responsive. Response Latency values were clustered tightly at
small values (median = 0.16 s, interquartile range = 0.13 s to 0.26 s), and did not span
the entirety of the 5 s free viewing period. For 90% of neurons, the Response Latency
Value was less than 0.46 s. In contrast, neuron Relaxation Time values showed a much
wider distribution (median = 0.54 s, interquartile range = 0.22 s to 2.02 s, 90th percentile
= 8.50 s), and even included values longer than the 5 s duration of the viewing period.
Lastly, the third parameter, which controlled the standard deviation of the Gaussian, was
small and tightly clustered across neurons (median = 0.02 s, interquartile range of 0.001 s
to 0.06 s, 90th percentile = 0.27 s).

Across neurons, Response Latency and Relaxation Time were not significantly cor-
related with one another, Kendall’s τ = 0.05, p = 0.40. To assess whether this null effect
was reliable, we computed the Bayes factor, a measure of the likelihood of the null hypoth-
esis. This analysis yielded a Bayes factor of BF01 = 6.09, providing support that neuron
Response Latency and Relaxation Time values are uncorrelated. Across neurons Response
Latency and σ were not correlated with one another, Kendall’s τ = −0.075, p = 0.22,
BF01 = 3.97. Unlike hippocampal time cells, there was no evidence that temporal context
cells that peaked later in the time interval showed broader firing fields. In contrast to hip-
pocampal time cells, which show a systematic relationship between the peak time of firing
and the width of the temporal firing field (Kraus et al., 2013; Howard et al., 2014; Salz et
al., 2016), the overarching conclusion from these analyses is that the firing of entorhinal
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neurons deviated from background firing shortly after the presentation of the stimulus and
then relaxed exponentially with a variety of time constants, with the time constant of a
neuron independent of its peak time.

Decoding time after image presentation from neuron responses

It is well-understood that sequentially activated time cells can be used to decode
the time since the beginning of a delay (e.g., Mau et al., 2018, see also Supplementary
Figure S3). To assess the temporal information present in the population of entorhinal
neurons we trained a linear discriminant analysis (LDA) decoder to estimate time (in 0.25 s
bins, for a total of 20 bins) following presentation of an image. To the extent the predicted
time bin for out-of-sample data is close to the actual time bin, one can conclude that the
population response carried information about time.

Time was decoded better than chance. Figure 2d-e shows the results of the LDA
on the neurons from monkey EC. Our first question was whether or not the population
contains information about time. For each time bin in Figure 2e, the confidence of the
decoder (the posterior distribution) is shown across the range of possible time estimates.
Perfect prediction would correspond to a bright diagonal; random uniform decoding would
correspond to a gray square. Qualitatively, the non-uniformity of Figure 2e suggests that
elapsed time can be decoded from the population of EC neurons. To quantitatively assess
this, we found that the posterior distribution from the test data was reliably different from
a uniform distribution using a chi-squared goodness of fit test, χ2(380) = 522.17, p < 0.001.

Supporting this result, the mean absolute value of decoding error from the cross-
validated LDA was reliably lower than the decoding error from training with a permuted
data set. In each of 1000 permutations we randomly reassigned the time bin labels of
the training events used to train the classifier. The absolute value of the decoding error
for the original data was 1.35 s, which is more accurate than the mean absolute value of
the decoding error for all 1000 permutations. As shown in Figure S4, the values for the
permuted data were approximately normal with mean 1.66 s and standard deviation 0.04 s,
resulting in a z-score of more than seven (z = 7.75). These analyses show that time can be
decoded from monkey EC.

The precision of the time estimate decreased as the interval unfolded. Although the
population response in entorhinal cortex could be used to reconstruct time, inspection of
Figure 2e suggests that the precision of this reconstruction was not constant throughout the
interval. Figure 2d shows the average absolute value of the decoding error at each time bin.
These data suggest that this error increased as a function of time. A linear regression of
decoding error as a function of time showed a reliable slope, 0.18±0.04, as well as intercept
0.5 ± 0.1, both p < 0.001, R2 = 0.56, df = 18. Thus the temporal information in the
population of entorhinal cortex neurons decreases as time elapses.

Time can be decoded well past the peak firing of temporal context cells. To assess how
far into the interval time could be reconstructed, we repeated the LDA analysis excluding
progressively more time bins starting from zero. If the LDA can reconstruct time using
only bins corresponding to times ≥ t, then we can conservatively conclude that time can be
reconstructed at least time t into the interval. To assess this quantitatively, the actual data
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were compared with permuted data for each repetition of the LDA using absolute error to
assess performance (see Methods for details). This analysis showed that time can be reliably
decoded even if the first 1.75 s were excluded. Thus the population of temporal context
cells contains information about time at least 1.75 s after image onset. This conservative
estimate is an order of magnitude longer than the median value of the peak time (0.160 s),
suggesting that the gradual decay of temporal context cells could be used to reconstruct
information about time.

Activity of individual EC neurons was similar for presentations of the same image

In this experiment, each image was presented twice. Although it is not practical to
assess image coding using a classifier, it is possible to exploit the repetition of images to
determine if EC neurons contained information about image identity. To assess this we
assembled, for each neuron, an array giving the firing rate during the first presentation of
each image (5 s) and asked whether this array was correlated with the firing rate of second
presentations of the same images. If the firing rate of a neuron depends on the identity of the
image, we would expect to see a positive correlation using this measure. Note that because
this analysis compares the correlation between first and second presentations across stimuli
it is not sensitive to repetition effects (e.g., Xiang & Brown, 1998; Meyer & Rust, 2018;
Jutras & Buffalo, 2010). For this analysis we restricted our attention to neurons (n = 270)
that were recorded long enough to be observed for both first and second presentations of a
block of stimuli (repetitions were separated by 20-40 minutes).

The mean correlation coefficient (Kendall’s τ) across neurons was significantly greater
than zero, τ = 0.06± 0.02, t(269) = 7.69, p < 0.001, Cohen’s d = 0.47, indicating that the
spiking activity of many neurons depended on image identity (Fig. S5c). This comparison
was confirmed by a Wilcoxon signed rank test on the values of Kendall’s τ , V = 27577,
p < 0.001. This finding was also observed for the subset of visually-responsive neurons
(N = 104) that we describe as temporal context cells. Taken in isolation, the temporal
context neurons showed a mean significantly greater than zero, as measured by t-test,
0.09± 0.02, t(103) = 7.70, p < 0.001,Cohen’s d = 0.76 and Wilcoxon signed rank test, V =
4696, p < 0.001. Neurons that were not temporal context cells (n = 166) also had a mean
correlation coefficient different from zero 0.04± 0.02, t(165) = 4.18, p < 0.001, Cohen’s d =
0.32, V = 9525, p < 0.001. Taken together, this suggests that EC neuron spike activity
contains information about stimulus identity.

The population of EC neurons distinguished image identity

The preceding analyses show that the firing of many EC neurons distinguished im-
age identity above chance. If the response of the entire population contained information
about stimulus identity, we would expect, all things equal, that pairs of population vectors
corresponding to presentations of the same image would be more similar to one another
than pairs of population vectors corresponding to presentations of different images. To con-
trol for any potential repetition effect, these analyses compared the similarity between the
repetition of an image with its original presentation to the similarity between the second
presentation of an image with the presentation of the images adjacent to original presenta-
tion. To be more concrete, if we label a sequence of images initially presented in sequence
as A, B, and C, we would separately compare the population response to the repetition of
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B to the response to the initial presentation of A, B, and C. To the extent that the response
to the second presentation of B is more similar to the initial response to B (lag 0) than
to the response to A (lag - 1) or C (lag + 1), we can conclude that the population vector
distinguishes image identity.

Figure S5d shows the results of this population analysis. The similarity for lag 0 pairs
(comparing an image with itself) was greater than the similarity for lags ±1 (comparing
a repeated image to the neighbors of its original presentation). Statistical comparisons to
lags ±1 each showed a reliable difference. A paired t-test comparing population similarity
at the block level showed that similarity at lag 0 was reliably larger than both lag +1,
0.012± 0.005, t(63) = 5.11, p < 0.001, Cohen’s d = 0.64, and lag −1, 0.014± 0.006, t(63) =
5.02, p < 0.001, Cohen’s d = 0.63. To evaluate the same hypothesis using a non-parametric
method, we performed a permutation analysis by randomly swapping within-session pairs
of lag 0 and lag ±1 and calculating the mean difference between the pairs 100,000 times.
The observed value exceeded the value of 100,000/100,000 permuted values for both lags
+1 and −1. We conclude that the population response was more similar for presentations
of the same image than for presentations of different images. This analysis controlled for
repetition and recency.

Discussion

Episodic memory requires information about both the content of an event as well
as its temporal context (Tulving, 1983; Eichenbaum et al., 2007; Eichenbaum, 2017). In
this study, many EC neurons changed their firing in response to the onset of the image.
These temporal context cells changed their firing at about the same time, within a couple
hundred milliseconds after the image was presented. However, different temporal context
cells showed variable rates of relaxation back to baseline (Figure 2). Information about
time since the image was presented could be decoded due to gradually decaying firing
rates over a few seconds (Figure 2d-e). Notably, the relaxation rate was not constant
across neurons, but rather showed a spectrum of time constants. The population vectors
following repeated presentations of the same image were more similar to one another than
to presentations of different images. This, coupled with several control analyses, show
that the firing of entorhinal neurons also distinguished stimulus identity. Taken together
the results demonstrate that in the time after image presentation, the population of EC
neurons contained information about what happened when; temporal information could be
distinguished due to gradually-decaying firing rates.

Sequentially activated time cells, such as have been observed in the hippocampus
(Pastalkova et al., 2008; MacDonald et al., 2011; Salz et al., 2016), medial entorhinal cortex
(Kraus et al., 2015) and many other brain regions (Jin et al., 2009; Mello et al., 2015; Tiganj
et al., 2018; Tiganj, Shankar, & Howard, 2017) also contain temporal information about
the past. Entorhinal temporal context cells provide a temporal record of recent events, but
with different firing properties than canonical hippocampal time cells. As a population,
time cells convey the passed time since the occurrence of an event by firing at different
temporal delays after the triggering event. In contrast, EC temporal context cells here all
responded at about the same time but relaxed at different rates. The range of relaxation
times enables the population to convey temporal information at different time scales. For
instance, a temporal context cell that decays back to baseline firing within 1 second cannot
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be used to distinguish a 5 second delay from a 10 second delay. In contrast, a cell that only
decays back to baseline after 7 seconds can be used to distinguish this longer delay. In this
way, a range of decay rates enables the population of temporal context cells to decode time
over a wide range of time scales.

The pattern of results observed here aligns well with a recent report from rodent
lateral EC by Tsao et al. (2018). In the Tsao et al. study, lateral EC neurons responded
to a salient event, i.e., the animal entering a new environment, and then changed their
firing monotonically. Notably, Tsao et al. observed that different neurons responded at
different rates from the scale of tens of seconds to many minutes. However, despite the many
methodological differences between the Tsao et al. study and this one—rats moving through
a series of open enclosures vs seated monkeys observing a series of images—the response
properties shared striking similarities, suggesting a common computational function for EC
across species.

Our results are also consistent with studies that have shown long-lasting responses
in EC neurons in different preparations in rodents. For example, sustained responses have
been observed in both slice (Egorov, Hamam, Fransén, Hasselmo, & Alonso, 2002) and
anesthetized (Leitner et al., 2016) EC preparations. Similarly, slow changes in firing rate
have been observed in EC during classical conditioning (Pilkiw et al., 2017). Coupled with
studies of navigating rodents demonstrating that EC neurons can code body position relative
to parts of the environment (e.g., Deshmukh & Knierim, 2011; Wang et al., 2018), these
findings suggest that EC neurons code for stimuli in both temporal and spatial domains.

Exponentially-decaying neurons with a spectrum of time constants is the Laplace transform
of time

This study in primates and the rodent study by Tsao et al. (2018) both observed en-
torhinal neurons that code time by gradually changing firing rate; different neurons changed
at different rates. Time cells in the hippocampus and other brain regions also carry infor-
mation about time, but with neurons with very different response properties. Why would
the brain use two distinct coding schemes to represent the same kind of information? It
has been proposed (Shankar & Howard, 2012, 2013; Howard et al., 2014) that the brain
estimates a temporal record of the past—a function over passed time—by first computing
the real Laplace transform of that function. The real Laplace transform is just a set of
exponentially-decaying kernel functions with a spectrum of rate constants convolved with
the input signal. In this study, if the input signal were the onset of the image, the real
Laplace transform of the time in the past at which the image was presented would manifest
as a set of exponentially-decaying cells with a spectrum of time constants (Howard et al.,
2014). This is very much like the results observed here in entorhinal neurons (Figure 2).
The slowly-relaxing cells observed in rats by Tsao et al. (2018) also resemble the Laplace
transform of the past in response to a new spatial environment.

Although it may seem inefficient to estimate the Laplace transform of a function and
then invert the transform rather than estimating the function directly, there are several
computational advantages to this approach. For instance, in much the same way that the
Fourier transform has useful computational properties that make it widely used in sig-
nal processing and manipulation, many computations can be more efficiently calculated in
the Laplace domain (Howard, Shankar, & Tiganj, 2015). The inverse transform, which
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takes a set of exponentially-decaying temporal context cells into a set of sequentially ac-
tivated time cells, can be implemented using simple center-surround receptive fields in a
feedforward circuit (Shankar & Howard, 2013; Liu, Tiganj, Hasselmo, & Howard, 2019).
Notably, one can use the same computational framework to compute the Laplace transform
of functions other than time, including spatial variables (Howard et al., 2014), accumulated
evidence (Howard, Luzardo, & Tiganj, 2019) and temporal distance to expected outcomes
(Momennejad & Howard, 2018). For instance, neurons that fire along an environmental
border in rodent and monkey EC (Solstad, Boccara, Kropff, Moser, & Moser, 2008; Kil-
lian, Jutras, & Buffalo, 2012; Hardcastle, Ganguli, & Giocomo, 2015), have properties like
one would expect for the Laplace transform of distance to an environmental boundary. In
the spatial case, the inverse transform of distance to a boundary would appear as one-
dimensional place cells (Gothard, Skaggs, Moore, & McNaughton, 1996; Lever, Burton,
Jeewajee, O’Keefe, & Burgess, 2009; Burgess & O’Keefe, 1996). Perhaps temporal context
cells and time cells—the Laplace transform and inverse transform of functions of time—are
a special case of a more general principle of computational cognitive neuroscience in which
abstract continuous variables are coded using a continuous spectrum of rate constants in
the Laplace domain.
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Methods

Subjects, training, and surgery

Two, male rhesus macaques (Macaca mulatta), 10 and 11 years old, and weighing 13.8
and 16.7 kg respectively, were trained to sit in a primate chair (Crist Instrument Company,
Inc., Hagerstown, MD) and to release a touch-bar for fruit slurry reward delivered through a
tube. The monkeys were trained to perform various tasks by releasing the touch-bar at ap-
propriate times relative to visual stimuli presented on a screen. Magnetic resonance images
of each monkey’s head were made both before and after surgery to plan and confirm implant
placement. Separate surgeries were performed to implant a head post, then months later,
a recording chamber, and finally a craniotomy within the chamber. All experiments were
performed in accordance with protocols approved by the Emory University and University
of Washington Institutional Animal Care and Use Committees.

Electrophysiology

Each recording session, a laminar electrode array (AXIAL array with 13 channels,
FHC, Inc.) mounted on a microdrive (FHC, Inc.) was slowly lowered into the brain through
the craniotomy. Magnetic resonant images along with the neural signal were used to guide
the penetration. Spikes and local field potentials were recorded using hardware and software
from Blackrock, Inc., and neural data were sampled at 30 kHz. A 500 Hz high-pass filter
was applied, as well as an electric line cancellation at 60 Hz. In some recording sessions, a
channel without any spiking activity was used as a reference electrode in order to subtract
artifact noise (e.g., reward delivery, movement of the monkey). Spikes were sorted offline
into distinct clusters using principal components analysis (Offline Sorter, Plexon, Inc.).
Sorted clusters were then processed further by custom code in MATLAB to eliminate any
data where minimum inter-spike interval was less than 0.001 s, and to identify any missed
changes in signal (e.g., decreased amplitude in the waveform of interest, a new waveform
appearing), using a raster and plots of waveforms across the session for each neuron. When
change in signal was identified, appropriate cuts were made to exclude compromised spike
data from before or after a change point. 455 potential single neurons originally isolated
in Offline Sorter were reduced to 357 single neurons. To further ensure recording location
within the entorhinal cortex and identify from which cortical layers neurons were recorded,
we examined each session’s data for the stereotypical, electrophysiological signature pro-
duced across entorhinal cortical layers at the onset of saccadic eye movement (Killian et
al., 2012; Killian, Potter, & Buffalo, 2015; Meister & Buffalo, 2018). One recording session,
which other electrode placement metrics suggest was conducted above the entorhinal cortex
within the hippocampus, lacked this electrophysiological signature and was excluded from
further analysis (8 single neurons were excluded from being categorized as entorhinal cells).
No recording sessions showed the current source density electrophysiological signature of
adjacent perirhinal cortex (Takeuchi, Hirabayashi, Tamura, & Miyashita, 2011) at stimulus
onset.

Experimental design and behavioral task

For all recordings, the monkey was seated in a dark room, head fixed and positioned
so that the center of the screen (54.1 cm × 29.9 cm LCD screen, 120 Hz refresh rate, 1280
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× 720 pixels, BenQ America Corp., Costa Mesa, CA) was aligned with his neutral gaze
position and 60 cm away from the plane of the his eyes (equating to 25 screen pixels per
degree of visual angle, or 1◦/cm). Stimulus presentation was controlled by a PC running
Cortex software (National Institute of Mental Health, Bethedsa, MD). Gaze location was
monitored at 240 Hz with an infrared eye-tracking system (I-SCAN, Inc., Woburn, MA).
Gaze location was calibrated before and during each recording session with calibration trials
in which the monkey held a touch-sensitive bar while fixating a small (0.5◦) gray square
presented at various locations on the screen. The square turned yellow after a brief delay
chosen uniformly from the interval from 0.40 s to 0.75 s. The monkey was required to release
the bar in response to the color change for delivery of the fruit slurry reward. The subtlety
of the color change forced the monkey to fixate the location of the small square to correctly
perform those trials, therefore allowing calibration of gaze position to the displayed stimuli.
Specifically, the gain and offset of the recorded gaze position were adjusted so that gaze
position matched the position of the fixated stimulus. Throughout the session, intermittent
calibration trials enabled continual monitoring of the quality of gaze position data and
correction of any drift.

Before each image presentation, a crosshair (0.3◦× 0.3◦) appeared in one of eighteen
possible screen locations. Once gaze position registered within a 3◦× 3◦ window around the
crosshair and was maintained within that spatial window for between 0.50 and 0.75 s (chosen
uniformly), the image was presented. Images were large, complex images downloaded from
the public photo-sharing website, Flickr (www.flickr.com). If necessary, images were re-
sized by the experimenter for stimulus presentation (sized 30◦× 15◦ for Monkey WR and
30◦× 25◦ for Monkey MP). Monkeys freely viewed the image, and then the image vanished
after gaze position had registered within the image frame for a cumulative 5 seconds. No
food reward was given during image viewing trials. Each image presentation was followed
by three calibration trials.

Image stimuli were unique to each session, and each image was presented twice within
a session about 20 to 40 minutes apart. Images were presented in a block design so that novel
and previously-seen images were presented throughout the session. Within a trial block,
novel images (30 or 60) would first be shown, and then presented again in pseudorandom
order. After completing a block of trials, a new block of trials would begin. In the first
16 sessions, a three-block design of 60 image presentations (30 novel) per block was used,
with a total maximum of 180 image presentations per session. In the rest of the sessions
(n = 41), there were a total maximum of 240 image presentations across two trial blocks
(120 image presentations of which 60 were novel within each trial block).

Analysis of Neural Firing Fields

In order to determine temporal firing fields, spikes were analyzed using a custom
maximum likelihood estimation script run in MATLAB 2016a. We calculated model fits
across all trials available for each particular neuron. Fits of nested models were compared
using a likelihood ratio test. In the present paper, we considered three models: a constant
firing model, a model adding a Gaussian time term, and an ex-Gaussian model for which
the time term was given by the convolution of a Gaussian and an exponential time term.
The constant model,

Mconst(t; ao) = ao (1)
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consisted of a single parameter ao that predicted the constant probability of a spike at each
time t.

The ex-Gaussian model describes the temporally-modulation of the firing field as the
convolution of a Gaussian function with an exponentially decaying function:

Mex-gauss(t; ao, a1, σ, µ, τ) = ao + a1

∫ ∞
−∞

e−
(t−µ)2

2σ2 e−
t
τ dt (2)

The ex-Gaussian distribution has been used extensively in studies of human response
time data for many years (e.g., Ratcliff & Murdock, 1976). Here we can see that in the
limit as τ → 0 the exponential function becomes a delta function and the convolution in
Eq. 2 reduces to a Gaussian function. Similarly, in the limit as σ → 0 the Gaussian function
becomes a delta function and the convolution becomes an exponential function starting at
µ. As such, this model is able to describe a range of peak firing times as well as varying
degrees of skew (Fig. 1).

Two terms, ao and a1 describe the contributions of the constant and time-modulated
terms. Three parameters describing the shape of the temporally-modulated term (Fig-
ure S1). µ and σ describe the mean and standard deviation of the Gaussian distribution,
which estimates the time that a neuron’s response maximally deviates from baseline, and
the variability in that response time respectively. τ measures the time constant of the ex-
ponential decay, and captures the time that a neuron has returned 63% of the way back to
baseline.

To estimate parameters of Eq. 2 numerically we used an explicit form for the solution
of the convolution in Eq. 2:

Mex-gauss(t; ao, a1, σ, µ, τ) = ao +
a1
2
e

1
2τ

(
2µ+σ2

τ
−2t

)
erfc

(
µ+ σ2

τ − t√
2σ

)
(3)

where erfc is the complementary error function. µ was allowed to take values between 0
and 5 s. τ was allowed to take values between 0 and 20 s. σ was allowed to take values
between 0 and 1 s. Likelihood was estimated in a 5.5 s long window, that included the 0.5 s
prior to presentation of the image and the 5 s after presentation of the image. Kendall’s τ
correlation coefficients and Bayes Factors were calculated using JASP statistical software.

To validate the three time-varying parameters of the ex-Gaussian model, we compared
the fits of this model to a simpler Gaussian model with only two time-varying parameters,
µ and σ.

Mgauss(t; ao, a1, σ, µ) = ao + a1e
− (t−µ)2

2σ2 (4)

Note that the Gaussian model is nested within the ex-Gaussian model Eq. 2, with τ = 0. We
evaluated these models for each neuron via a likelihood ratio test and counted the number
of neurons that were better fit by the ex-Gaussian model at the 0.05 level, Bonferonni-
corrected by the total number of 349 neurons (this is arguably conservative), changed their
firing by at least 1 Hz, and reached a firing rate of at least 3 Hz. Of the 128 neurons that
were better fit by the ex-Gaussian time-varying model, 49 showed a reliably better fit from
the three-parameter ex-Gaussian than the two-parameter Gaussian temporal term. This is
very different from chance and we conclude that the population was better described by the
ex-Gaussian model.
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Linear Discriminant Analysis (LDA)

An LDA classifier was used to decode time since onset of the image from the popu-
lation using information from all neurons (subject to the restrictions described below).

LDA Implementation. Even and odd trials were used for training and testing respec-
tively. The number of available trials varied for each neuron. To mitigate any problems
from this, several steps were taken. First, four neurons with less than 30 trials each were
entirely excluded from this analysis. Neurons with less than 200 trials were bootstrapped
to 200 trials, while neurons with more than 200 trials were randomly down-sampled. Time
was discretized into 0.25 s bins. For each bin of each trial, the firing rate was calculated
across neurons. To avoid errors due to a singular covariance matrix, a small amount of
uniform random noise (between 0 and 0.25 × 10−13 Hz) was added to the firing rate in
each time bin. The averaged firing rate of each time bin for each training trial across all
neurons made up an element of the training data. The averaged firing rate of each time bin
for each testing trial across all neurons made up an element of the testing data. LDA was
implemented using the MATLAB function “classify.” This function takes in the training
data, testing data, labels for the training data, and a selection of the method of estimation
for the covariance matrix (the option “linear” was used) and returns a posterior distribution
across bins for each test trial.

Estimating the duration of temporal coding. To verify that the temporal information
could be decoded across the time interval, the LDA was repeated for successively fewer
bins, removing the earliest time bin with each repetition. If time since presentation of
the image can be decoded above chance using only information after time T , one can
conclude that the population contained temporal information about time at least a time
T after presentation of the image. For each repetition the decoder was tested by training
it on permuted data set generated by randomly permuting the time labels of the time
bins. We compared the absolute error of the actual data to the distribution generated from
1,000 permutations. The classifier’s performance was considered better than chance if fewer
than 10/1,000 permutations gave a better result than the unpermuted data. The decoder
stopped performing better than chance when time bins below 2 s were omitted. Thus, we
can conservatively conclude that entorhinal neurons carried information about the time of
image presentation for at least 1.75 s.

Population similarity

We constructed population vectors to evaluate the degree to which the population
of entorhinal neurons was sensitive to the identity of the visual image. For each repeated
image, we created two population vectors, one corresponding to the first presentation and
one corresponding to the second presentation. Each vector was created from the mean firing
activity of all the available neurons during the 5 s of free viewing. Mean firing rates were
normalized by each neuron’s maximum average firing rate so that firing rates ranged from
0 to 1. Only blocks where all images were presented twice were considered. In order to
control for different block lengths between sessions, only the first 30 images presented in
each block were used. Similarity was measured by the cosine similarity of the two population
vectors. We compared the cosine similarity of two presentations of the same image to the
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first presentation of one image and the second presentation of a different image. As a control
we instead compared the population vector from the repetition of an image to the adjacent
near-neighbors of the original image presentation. Within session error bars were calculated
using the method outlined in Morey (2008).
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Supplementary Information

To illustrate how the analyses in this paper illustrate properties of different temporal
coding schemes, Figures 1 and S3 include predictions from two different schemes for coding
temporal information. One coding scheme is given by a population of ideal exponentially-
decaying temporal context cells. The other coding scheme is given by a population of ideal
sequentially activated time cells. These ideal populations are based on theoretical work
(e.g., Shankar & Howard, 2013).

The firing rate of the ith ideal temporal context cells a time t after the presentation
of the image is given by

Fi(t > 0) = e−sit (S1)

The rate constants si controls how fast ideal cell i decays. It can be shown that at time
t after the image, the population codes the Laplace transform of the time in the past at
which the image was presented (Shankar & Howard, 2012). The values of si were chosen
such that si/si+1 was constant for all i. Equation S1 was used to generate the populations
in Figure 1d and on the right of Figure S3.

The population of ideal sequentially activated time cells can each be described by
values of s that correspond to those of the ideal temporal context cells. However, rather
than rising immediately at time t = 0 and then decaying exponentially, the firing rate of
these ideal time cells are given by

f̃(t > 0) ∝ si(sit)ke−sit (S2)

where k is a constant that was set to 4 in these figures. The properties of this population

can be better understood by considering their activity as a function of
∗
τ i ≡ k/si, which has

the units of time rather than rate. Then,

f̃(t > 0) ∝ 1
∗
τ i

(
t
∗
τ i

)k
e
− kt∗
τi (S3)

Here we can see the firing rate of cell i is peaked a characteristic time after the image is
presented. The time-dependence of the firing rate in Eq. S3 is the product of a growing

polynomial term,
(
t
∗
τ i

)k
and a decaying exponential term, e

− t
∗
τi . This product is zero at time

zero (because of the polynomial term) and zero at times much bigger than
∗
τ (because of

the exponentially-decaying term). The product peaks somewhere in between that depends

on the value of
∗
τ i (it can be shown that this expression peaks precisely at

∗
τ i Shankar &

Howard, 2012).
The choice of si was chosen as in the ideal temporal context cells. One can understand

these two populations as encoding the Laplace transform of the delta function describing
the time since the onset of the stimulus and an scale-invariant estimate of that function,
respectively (Shankar & Howard, 2012).

Relationship of µ to τ for ideal temporal context cells and for time cells. Ideal cells
generated by these two coding schemes, Eq. S1 and Eq. S3, will show different properties
in their relationship between parameters µ, σ and τ estimated from the ex-Gaussian model
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(see Methods, Eq. 2). It is easy to convince oneself from Eq. S1 that cells generated from the
exponentially-decaying term will have systematic changes in their value of τi (τi is just 1/si)
but there should not be a relationship between τi and µi or between τi and σi. We would
expect µ and σ to result from the delay associated with the time it takes for the image to
cause activation in the population of ideal temporal context cells. That is, ideal temporal
context cells would be expected to have about the same value of µ that is independent of τ
and small values of σ. In contrast, for a population of ideal sequentially activated time cells
because there are a range of peak times, we would expect to see a range of µi. Moreover,

because all of the cells have the same shape only rescaled with the peak time
∗
τ i we would

expect to see that µi correlates with both τi and σi.

Decoding of time from ideal temporal context cells and ideal time cells is possible and results
in similar properties

To illustrate the ability of both temporal decoding schemes to carry information about
time, we applied the LDA used on the data to two populations of simulated spiking data
generated using the ideal equations shown above.

To generate the simulated spiking data the following procedure was used. The ideal
equation was treated as a normalized firing rate, were the maximum value (across all time
constants) of the equation was normalized to 1. For each simulated millisecond, the prob-
ability of firing was set using this normalized simulated firing rate, a maximum firing rate
selected for consistency with empirical spiking data, and a constant background firing rate.
The probability of a spike within each millisecond is equal to the maximum firing rate mul-
tiplied by the normalized simulated firing rate plus a constant background firing rate. 1000
trials were simulated, 500 trials were used for training and 500 trials for testing.

Exponentially-decaying temporal context cells can be used to decode temporal infor-
mation. The scale over which each neuron contributes maximally to decoding should be on
the order of its time constant. The simulated exponentially decaying cells were constructed

using Eq. S1 with a spectrum of
∗
τ , ranging from 0.05 s to 40 s spaced geometrically with

a ratio of approximately 1.1 between successive time constants (for a total of 70 simulated

cells). For exponentially decaying cells, their time constant is equal to
∗
τ/k and k is equal

to 4, so these cells have time constants ranging from 0.0125 s to 10 s. The simulated spik-
ing data was then generated from this using a max firing rate of 20 Hz and a constant
background firing rate of 20 Hz This range of time constants means that the smallest time
constant is less than 1/10 the duration of the bin size, and that the largest time constant is
over twice the total duration being decoded. This reduces the possibility of any edge effects.
Because there are fewer cells with slow time constants (because of the geometric spacing)
decoding accuracy should go down with the passage of time. Figure S3 b and d shows
results of the same LDA decoder used on the empirical data when applied to this simulated
population of temporal context cells. As can be seen from the figure, temporal information
decreased and error increased as a function of time. A linear regression of decoding error
as a function of time showed a reliable slope, 0.13± 0.02 with p < 0.001, R2 = 0.73, as well
as intercept 0.12 ± 0.05 with p < 0.05; df = 16. Thus the temporal information decreased
as time elapsed.

We also applied the LDA to a population of ideal time cells. These time cells were
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Figure S1. : Modeling neuron responses using an ex-Gaussian distribution. a,
The ex-Gaussian model of a neuron’s response (bottom) is formed by convolving a Gaussian
distribution (with parameters µ and σ) with an exponential distribution (with parameter
τ) (top). b, In the ex-Gaussian model, an increase in µ shifts the distribution to the right,
an increase in σ widens the central peak of the distribution, and an increase in τ lengthens
its decay rate. The gray and red arrows correspond to the parameter changes expected in
the process of fitting the response of temporal context cells and sequentially activated time
cells respectively.

constructed using Eq. S2, with values of
∗
τ ranging from 0.05 s to 40 s, spaced geometrically

with a ratio of approximately 1.1 (for a total of 70 simulated cells). In the case of time

cells, their peak time is precisely equal to
∗
τ , so their peaks range from 0.05 s to 40 s. The

simulated spiking data was then generated from this using a max firing rate of 40 Hz and
a constant background firing rate of 1 Hz. The width of the receptive fields expands with
the peak time and because there are fewer neurons with peak times later in the delay, the
decoding accuracy of this population of time cells should also go down with the passage
of time. Figure S3a and c shows the results of the LDA applied to this set of simulated
time cells. As can be seen from the figure, error increased as a function of time. A linear
regression of decoding error as a function of time showed a reliable slope, 0.14 ± .03 with
p < 0.001, R2 = 0.57, as well as intercept 0.22 ± 0.08 with p < 0.05; df = 16. Thus the
temporal information decreases as time elapses.

Despite the fact that these two populations have different forms of temporal respon-
siveness, they both code information about time with similar properties. This is a natural
consequence of the fact that the time cell population is just a linear transformation of the
temporal context cell population (Shankar & Howard, 2012, 2013).
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Figure S2. : Additional examples of temporal context cells. Format is as in Figure 2a.
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Figure S3. : Time can be decoded from both ideal time cells and ideal expo-
nentially decaying temporal context cells. Simulated noisy time cells (a, c) and
exponentially decaying temporal context cells (b, d). Time is binned in 0.25 s bins. A lin-
ear decoder was trained on odd trials and tested on even trials. a, b The log of the average
posterior probabilities of the classify function are averaged across trials for each time bin.
Perfect decoding would manifest as a bright white diagonal. The posterior distribution of
the classifier shows increasing uncertainty in the decoded time for both populations. c, d
Averaged absolute value of decoding error. The decoding error goes up with time for both
populations, as shown by the fitted regression line (black line).
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Figure S4. : Time decoded from entorhinal firing showed a much lower decoding
error than time decoded from permuted data. The histogram shows the distribution
of mean absolute value of decoding error for the permuted data. In this analysis, the training
data were the same as the data used in the actual decoder, except the true time labels were
randomly permuted. The mean absolute value of decoding error for the original data (1.35 s)
is marked by a vertical line. This value is more than seven standard deviations from the
mean of decoding error of the permuted data.
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Figure S5. : The entorhinal ensemble carries information about stimulus identity.
a, We measured the firing rate of each unit to first and second presentations of each image.
For each neuron that was recorded for an entire block of images (n = 270), we measured the
correlation in firing rate across images using Kendall’s τ . b, The distribution of Kendall’s
τ for all entorhinal neurons is shown. This distribution is reliably different from zero
(p < 0.001, see text for details) indicating that entorhinal firing was sensitive to image
identity. c, Schematic of a population similarity analysis. We measured the similarity of
population response to the second presentation of each image to the first presentation of the
same image (lag 0). As controls we also computed the similarity between the population
response to the second presentation of an image and the responses to the images neighboring
the first presentation of that image. Lag −1 refers to the similarity to the immediate
predecessor of the image; lag +1 refers to the similarity to the immediate successor of
the image. d, Cosine similarity of the population response to the second presentation of an
image to the original presentation of an image (lag 0) and the images neighboring the original
presentation of the image (lags −1 and +1) over 64 blocks of first and second presentations.
The similarity to lag 0 is greater than the similarity to either of the neighboring images. ***
indicates significance at the p < 0.001 level. Error bars correspond to the 95 % confidence
interval of mean cosine similarity calculated across sessions.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2019. ; https://doi.org/10.1101/688341doi: bioRxiv preprint 

https://doi.org/10.1101/688341

