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Abstract 

Mendelian randomization (MR) is a widely-used method for causal inference using genetic data. 

Mendelian randomization studies of unrelated individuals may be susceptible to bias from 

family structure, for example, through dynastic effects which occur when parental genotypes 

directly affect offspring phenotypes. Here we describe methods for within-family Mendelian 

randomization and through simulations show that family-based methods can overcome bias 

due to dynastic effects. We illustrate these issues empirically using data from 61,008 siblings 

from the UK Biobank and Nord-Trøndelag Health Study. Both within-family and population-

based Mendelian randomization analyses reproduced established effects of lower BMI reducing 

risk of diabetes and high blood pressure. However, while MR estimates from population-based 

samples of unrelated individuals suggested that taller height and lower BMI increase 

educational attainment, these effects largely disappeared in within-family MR analyses. We 

found differences between population-based and within-family based estimates, indicating the 

importance of controlling for family effects and population structure in Mendelian 

randomization studies. 
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Mendelian randomization is an approach that uses genetic variants as instrumental variables to 

investigate the causal effects of one trait (the ‘exposure’) on another (the ‘outcome’).1–5  It has 

gained popularity due to the recent expansion in the scale of genome wide association studies 

(GWAS) and because it can ameliorate bias due to processes of residual confounding and 

reverse causation that affect most other observational approaches. In order for Mendelian 

randomization estimates to be valid, the genetic instrument must meet three assumptions: 1) 

relevance, it must associate with the exposure, 2) independence, there must be nothing that 

causes both the instrument and the outcome, and 3) exclusion, the association of the 

instrument and the outcome must be entirely mediated via the exposure. Methodologists have 

focused on developing methods to overcome bias in Mendelian randomization studies due to 

horizontal pleiotropy,6–11 which would violate the exclusion assumption. However, in this paper 

our attention is focused on the second assumption: independence. We demonstrate how 

population and family structures can lead to violations in the second assumption, and that 

traditional family-based methods are well placed to rectify this problem.  

 

Mendel’s laws of genetic inheritance provide a rationale for why much genetic variation will be 

independent of the environment and genetic variation for other traits.1,12 However, 

environmental and social factors such as assortative mating, dynastic effects, and population 

structure may affect the distribution of genetic variants for specific traits within populations 

(see Box 1 in supplement for definitions).13–16 Figure 1 illustrates the impact of these processes 

in the context of Mendelian randomization, the commonality amongst all three processes being 

that they induce a spurious association between the instrumenting variant and the outcome 

through confounding. Assortative mating can occur when individuals select a partner based on 

a selected phenotype.6,17 For example, couples tend to have more similar age, education, and 

body mass index than would be expected by chance.18,19 If assortative mating arises due to 

individuals with a particular genetic predisposition selecting mates who have a particular 

genetically influenced phenotype, this can induce spurious genetic associations which can result 

in biased estimates from Mendelian randomization studies.6 In addition, social homogamy may 

lead to people selecting partners who are similar to themselves,20 which can compound across 
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generations.6 Dynastic effects can occur when the expression of parental genotype in the 

parental phenotype directly affects the offspring phenotype. For example, higher educated 

parents might support their children’s education by providing a stimulating environment, being 

able to afford tutoring for their child, buying homes in better school districts, or paying for 

private schools. Finally, residual population structure occurs when there are geographic or 

regional differences in allele frequency relating to a trait of interest that cannot necessarily be 

controlled for via principal components.13 Confounding by population stratification,1  in which 

ancestry is correlated with both phenotypes and genotypes, was a major concern during early 

development of Mendelian randomization.1 However, this fear was gradually assuaged by a 

decade of GWAS results that were apparently reliable in the face of population structure.21 

GWAS are now performed on a huge scale; as a consequence the problem of population 

stratification is again of potential concern because the high statistical power of large studies 

renders them susceptible to bias from very subtle population structure.13,22  

 

Confounding in genetic association estimates, as induced by assortative mating, dynastic effects 

and population stratification, can and has been resolved by using family-based study 

designs.6,23,24 For example, in sibling pair studies, genetic associations at loci can be partitioned 

into between pair and within pair components.23 Because genetic differences within sibling 

pairs reflect random independent meiotic events, within pair effects are unrelated to 

population stratification and most potential confounders that might influence the phenotype. 

Similarly, other family-based designs and within-family tests to adjust for or exploit parental 

genotypes exist, such as estimating maternal and offspring genetic effects using structural 

equation modelling,25 quantitative transmission/disequilibrium tests,26,27 or mother-father-

offspring trios to adjust for parental genotypes.28 Such within-family designs have been used to 

validate results from genome wide association studies,29,30 obtain unbiased heritability 

estimates,31 and assess causation in the classical twin design.32,33 Yet, despite the initial 

extended proposal of Mendelian randomization advising that the only way to ensure true 

randomization was through a within-family design1, to-date contemporary implementations 

using modern genomic methods have rarely been performed. The principal reason for this has 
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been a lack of genomic data collected from families at a scale sufficient to be suitably powered. 

However, as we enter the age of national scale biobanks and very large twin studies, this 

essential extension of Mendelian randomization is becoming feasible. 

 

This paper presents theory and simulations that demonstrate how within-family designs can be 

coupled with genomic data to perform unbiased Mendelian randomization analyses. We 

integrate these approaches in a modular fashion alongside other methods that have been 

developed for pleiotropy-robust inference (i.e. to be resilient to violations of the third 

assumption of Mendelian randomization).7–9,34 Using 28,777 siblings from HUNT and 32,231 

siblings from the UK Biobank, we illustrate these methods empirically. First, we analyse the 

influences of BMI on high blood pressure and risk of diabetes as positive controls. Second, we 

evaluate the influences of height and BMI on educational attainment and demonstrate major 

discrepancies between population-based and within-family based approaches, indicating the 

importance of controlling for family effects and population structure in Mendelian 

randomization studies. 
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Results 

We conducted a simulation to demonstrate how dynastic effects can affect Mendelian 

randomization estimates from unrelated individuals, and the methods that can be used to 

reduce these biases. Then we illustrate how these methods can be used with four empirical 

hypotheses examples using data from the HUNT and UK Biobank studies.  

Simulation Study 

In simulations where the exposure does not have a causal effect on the outcome (Figure 2), the 

standard Mendelian randomization estimates were biased with high false discovery rates in the 

presence of dynastic effects (false discovery rate > 0.75 when the confounders were 𝐶"  and 

𝐶# = 0.1,  b(" = 0.1, n> 10,000). The sibling and trio methods were unbiased.  

 

Where we simulated the exposure to have a causal effect on the outcome Mendelian 

randomization using unrelated individuals had the highest power (Figure 2). However, the 

sibling and trio design also performed well with larger sample and effect size (power > 0.9 when 

sample sizes >= 10,000, dynastic effect <= 0.2, effect size = 0.05). The within-family models 

were substantially less powerful than standard Mendelian randomization using unrelated 

individuals; as usual, controlling bias comes at a cost. 
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Empirical study 

Participants with higher BMI were more likely to have diabetes: each 1kg/m2 increase in BMI 

was associated with a 0.60 (95%CI: 0.55 to 0.65, p-value<1.2×10-136) percentage point increase 

in the diabetes risk. These differences were modestly attenuated after including a family fixed 

effect (0.46, 95%CI: 0.40 to 0.52, p-value=8.5×10-52). The Mendelian randomization estimate 

using unrelated individuals suggested that each unit increase in BMI increased the risk of having 

diabetes by 0.82 (95%CI: 0.71 to 0.93, p-value=3.3×10-50) percentage points. This estimate 

remained after allowing for the fixed effects of family (1.01 percentage point increase per 

1kg/m2 increase in BMI, 95%CI: 0.58 to 1.44, p-value=3.3×10-06). The summary data Mendelian 

randomization analysis allowing for family effects estimates were similar (0.75 percentage point 

increase per 1kg/m2 increase in BMI, 95%CI: 0.38 to 1.13, p-value=7.6x10-05, pdiff unrelated= 0.74). 

On average the associations of the SNPs and BMI and diabetes were similar before and after 

allowing for a family fixed effect, falling 7% (95%CI: -5% to 20%, p-value=0.26) and increasing 

11% (95%CI: -17% to 40%, p-value=0.42) respectively. 

 

Participants with higher BMI were more likely to have high blood pressure; each 1kg/m2 

increase in BMI was associated with a 2.63 (95%CI: 2.54 to 2.72, p-value<1×10-300) percentage 

point increase in high blood pressure risk. This association did not attenuate after including a 

family fixed effect (2.42, 95%CI: 2.30 to 2.54, p-value<1×10-300). The Mendelian randomization 

estimate using the sample of unrelated individuals suggested that each unit increase in BMI 

increased the risk of having high blood pressure by 1.59 (95%CI: 1.34 to 1.83, p-value=1.3×10-36) 

percentage points. The Mendelian randomization estimate was similar after allowing for a 

family fixed effect (1.13 percentage point increase per 1kg/m2 increase in BMI, 95%CI: 0.04 to 

2.21, p-value=0.04). The summary data Mendelian randomization estimates were similar (0.76 

percentage point increase per 1kg/m2 increase in BMI, 95%CI: -0.19 to 1.70, p-value=0.12, pdiff 

unrelated= 0.10). On average the associations of the SNPs and high blood pressure fell by 51% 

(95%CI: 23% to 80%, p-value=0.0006) after allowing for family fixed effects. 
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Taller participants were more educated; each 10cm increase in height associated with an 

additional 0.45 (95%CI: 0.43 to 0.48, p-value=9.0×10-307) years of education (Figure 3). This 

association was attenuated after including a family fixed effect (0.22, 95%CI: 0.18 to 0.26, p-

value=4.6×10-25). The Mendelian randomization estimate using the sample of unrelated 

individuals implied that each 10cm increase in height caused an increase of 0.17 (95%CI: 0.14 to 

0.20, p-value=8.5×10-26) years of education. After allowing for a family fixed effect, the 

Mendelian randomization estimate was greatly attenuated suggesting little causal effect of 

height on education (mean difference per 10cm increase in height: 0.002, 95%CI: -0.13 to 0.13, 

p-value=0.98). When we used two sample Mendelian randomization by estimating the SNP-

exposure and SNP-outcome associations in different samples (split sample)35,36 and then meta-

analysed, there was little evidence of a causal effect of height on education (mean difference 

per 10cm increase in height=0.009, 95%CI: -0.11 to 0.13, p-value=0.87, pdiff unrelated= 0.008). On 

average, the associations of these SNPs and height and education fell by 18% (95%CI: 14% to 

22%, p-value=8.5×10-24) and 61% (95%CI: 49% to 73%, p-value=1.5×10-21) after allowing for 

family fixed effects respectively. 

 

On average, participants with higher BMI were less educated: each 1kg/m2 increase in BMI was 

associated with 0.07 fewer years of education (95%CI: 0.06 to 0.07, p-value=8.4×10-222, see 

Figure 3). This association was attenuated after including a family fixed effect (0.02, 95%CI: 0.01 

to 0.02, p-value=5.1×10-13). The Mendelian randomization estimate using the sample of 

unrelated people implied that each unit increase in BMI decreased years of schooling by 0.03 

(95%CI: 0.02 to 0.04, p-value=2.6×10-06). This effect was eliminated after allowing for a family 

fixed effect, suggesting little causal effect of BMI on educational attainment (mean difference 

per 1kg/m2 increase in BMI= 0.00, 95%CI: -0.04 to 0.05, p-value=0.89). Again, the effect was 

also largely attenuated when we used two sample summary data approaches. Using separate 

samples to estimate the SNP-exposure and the SNP-outcome associations allowing for family 

fixed effects, there was little evidence of an effect of BMI on educational attainment (mean 

difference per 1kg/m2 increase in BMI=-0.01, 95%CI: -0.05 to 0.03, p-value=0.59, pdiff unrelated= 

1.6×10-03). On average, the association of the 69 BMI SNPs and education fell by 65% (95%CI: 
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34% to 76%, p-value=1.8×10-06) after allowing for family fixed effects. These results suggest that 

the estimates in unrelated individuals may be due to dynastic effects or assortative mating. We 

found little evidence of heterogeneity between the two sample Mendelian randomization 

estimates from UK biobank and HUNT, except for the effect of BMI on diabetes (p-value=0.027). 

 

We investigated whether our results could be explained by pleiotropy using the weighted 

median, weighted modal and MR-Egger estimators. These summary data Mendelian 

randomization estimators use estimates of the SNP-exposure and SNP-outcome associations to 

estimate the effect of the exposure on the outcome. These estimators are robust to a number 

of forms of pleiotropy. There was little evidence of differences between the IVW and pleiotropy 

robust methods, pleiotropy from the MR-Egger intercept, or heterogeneity across the studies 

(Supplementary Figure 3). 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 5, 2019. ; https://doi.org/10.1101/602516doi: bioRxiv preprint 

https://doi.org/10.1101/602516


 11 

Discussion 

We have presented within-family methods for Mendelian randomization and demonstrated 

how confounding due to family structure can bias Mendelian randomization studies using 

unrelated individuals. The simulations illustrated how bias occurs even if the phenotype of 

interest has no direct causal effect on the outcome, and these effects can theoretically cause 

false positive findings. The simulations further demonstrated how family structure can be 

exploited to control for these effects either using samples of siblings or parent-offspring trios. 

However, estimates from within-family Mendelian randomization are less precise than 

estimates using unrelated individuals, which is consistent with those seen for allelic 

association.37–39. Furthermore, in practice, there are fewer relatives than unrelated people in 

most studies. In samples from HUNT and UK Biobank, we investigated the impact of family 

structure on four empirical examples; the effects of BMI on the risk of diabetes and high blood 

pressure and the effects of height and BMI on educational attainment. We found that the 

effects of BMI on the risk of diabetes and high blood pressure were less precise, but similar 

when allowing for family effects. Conversely, the effects of height and BMI on educational 

attainment were almost entirely attenuated after allowing for family fixed effects. 

 

A substantial literature has used Mendelian randomization and samples of unrelated individuals 

to establish that BMI increases the risk of diabetes and hypertension later in life.40 Our results 

suggest that confounding due to family structure is unlikely to be generating these results, and 

that they are more likely to be due to a causal effect of BMI on individual’s risk. Behavioural 

geneticists have used longitudinal data from samples of twins to understand how different 

family members affect each other over time.41,42  Other studies have used animal models to 

investigate how “social genetic effects” (i.e. indirect or dynastic effects) can affect health 

outcomes.43 A rich literature has established that height and BMI are respectively positively and 

negatively associated with educational attainment and socioeconomic position.44–46 Consistent 

with our results, previous studies using twin data have indicated that the relationship between 

height and educational attainment is likely to be due to non-genetic shared familial factors.47,48 

These findings raise questions about whether height and BMI have causal effects on 
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socioeconomic outcomes later in life.49–51 However, larger studies of related individuals with 

information on socioeconomic outcomes, such as income and occupation later in life are 

required to provide definitive evidence about the consequences of height and BMI later in life. 

 

In general, within-family Mendelian randomization estimates are less precise than estimates 

from samples of unrelated individuals. Thus, within-family estimates of a specific association 

can be considered more robust, but less efficient estimates. Therefore, if there is evidence of 

differences between the estimates, then generally, the more imprecise but less biased within-

family estimates should be preferred. Our estimates of the effect of height and BMI on 

educational attainment are an example of this situation. If there is little evidence of differences 

between estimates using unrelated and those allowing for family effects, then the former 

estimates should be preferred. Our estimates of the effect of BMI on risk of diabetes and high 

blood pressure are an example of this situation. This is analogous to comparing instrumental 

variable estimates to multivariable adjusted estimates.3 While allowing for family fixed effects 

or using difference estimators will account for dynastic effects or assortative mating, these 

methods will not address bias due to violations of the third Mendelian randomization 

assumption (exclusion restriction). This assumption is that the SNPs have no direct effect of the 

SNPs on the outcome (i.e. no pleiotropy). MR-Egger, weighted median and mode, or Lasso 

estimators are robust to various forms of violations of this assumption.7–9,34 It is trivial to use 

these estimators with the summary data methods we describe above and illustrate in 

Supplementary Figure 3. However, typically these estimators have lower power than the IVW 

estimator. The within-family summary data SNP-exposure and SNP-outcome associations, 

which allow for a family fixed effect, can be used with existing summary data estimators. Other 

proposed approaches allow for sophisticated control and estimation of pleiotropy and can 

trivially include family fixed effects,52 but again generally have lower power and require more 

data than Mendelian randomization approaches using allele scores or IVW.  Therefore, given 

the statistical power of currently available samples of related individuals, investigators may be 

restricted to estimators that are robust to either family structure or pleiotropy, but not both. A 

further issue concerns residual population stratification in ancestrally heterogenous GWAS such 
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as GIANT, which may bias SNP-phenotype associations for height, and affect analyses in other 

samples using SNPs identified in those GWAS.22 Within-family Mendelian randomization can 

control for residual population stratification. 

 

Within-family estimates from samples of siblings, that allow for a family fixed effect are robust 

to biases due to dynastic effects, assortative mating and fine population structure.1 Of these 

approaches, the sibling design is potentially most useful because large amounts of such data 

are available through biobanks and family-based studies.  Phenotypic similarity of siblings may 

reflect ‘passive’ sharing of environments or genes, or ‘active’ imitation or contrast effects 

arising from interaction between siblings.53 Contrast effects, which may inflate the estimated 

contribution of the nonshared environment in twin studies,54 can be mimicked by parental 

rating bias.55,56 However, for biological phenotypes where rating bias is not a concern, 

Mendelian randomization could be used to study the influence via imitation or contrast of one 

sibling’s genotype on the other’s phenotype, sometimes called ‘social genetic effects’,43 thereby 

adding to work on dynamic interplay between siblings. 41,42 

 

Dynastic effects and assortative mating may cause bias in GWAS.14 If a GWAS is aiming to 

estimate the causal effect of variants on a given phenotype, then samples of unrelated 

individuals may produce biased estimates and potentially spurious findings. Future studies 

could re-run GWAS on a full range of traits on samples of siblings allowing for family fixed 

effects. This approach would also address concerns about residual population stratification in 

GWAS, which may bias SNP-phenotype associations in GWAS especially of heterogeneous 

ancestry.22 However, to detect genetic variants that explain 0.1% of the variance of either the 

offspring or maternal effects (i.e. a 2 df test) will require sample sizes of 50,000 mother-

offspring pairs to detect genome-wide significant associations (α = 5x10-08). Sample sizes of 

around 10,000 will be required to partition known loci of similar size to the above into maternal 

and/or offspring genetic effects (α = 0.05).57 This sample size would provide valuable 

information about which phenotypes are likely to  be most strongly affected by dynastic 

effects and assortative mating. It is likely that many, particularly biological, traits are relatively 
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unaffected by these effects and thus GWAS results for these traits are unlikely to be biased due 

to these factors. Recent GWAS of social traits such as education reported the attenuation after 

allowing for family effects in their estimates in small samples.30 Further work in this area should 

include estimating the consequences of family structure for GWAS and Mendelian 

randomization estimates.   

 

Conclusions  

Family structure can cause bias in Mendelian randomization studies. We found differences 

between estimates from unrelated individuals and within-family estimates in simulations and 

empirical analysis. The causal estimates of the effect of height and BMI on educational 

attainment were almost entirely attenuated after allowing for family fixed effects. Within-

family methods, either using individual-level, or summary data Mendelian randomization 

approaches can be used to obtain unbiased estimates of the causal effects of phenotypes in the 

presence of dynastic effects, assortative mating and population stratification. 
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Figure 1. Dynastic effects can cause confounding bias in Mendelian randomization studies. The 
MR estimate of the causal effect of the exposure on the outcome is biased because of 
potentially unobserved confounders between the SNPs and the exposure and the outcome. 
Panel A illustrates how population demography and structure can confound the SNP-outcome 
association. Panel B illustrates how dynastic effects can confound the SNP-outcome association. 
The solid red vertical arrow indicates the genetic inheritance of germline DNA. The dotted line 
indicates the direct (dynastic) effect of the parents on the offspring’s outcomes. Mendelian 
randomization estimates of the effect of the exposure on the outcome in samples of unrelated 
individuals will be biased, because there is a path between offspring SNP and the outcome via 
the effect of the parents’ phenotypes on their offspring’s outcomes (dynastic effects). The 
presence of dynastic effects would violate one of three key Mendelian randomization 
(instrumental variable) assumptions – the independence assumption. Estimates that control for 
mother or father genotype, or sibling genotype will close this path and be unbiased. Panel C 
illustrates how assortative mating can confound the SNP-outcome association. In this example 
we present cross-trait assortative mating where there is a pathway between the mother’s 
genotype and offspring’s outcome via the father’s genotype for the outcome. Dynastic effects 
and assortative mating can be accounted for by using methods based on within-family 
contrasts.  
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Figure 2: Estimated false discovery rate by power of the studies using different Mendelian 
randomization designs. A: SNP-exposure r2 = 0.05; sample size = 10000; simulation involves an 
influence of parental exposure influencing child’s confounder, which explains 10% of variance in 
child exposures and outcomes. For a simulated causal effect = 0, we expect the false discovery 
rate to be 0.05. B: Estimated bias by sample size using different Mendelian Randomization 
designs. The simulations are similar to panel (A) but allow sample size to vary and fixing the 
causal effect of an exposure x on an outcome y to 1% of variance explained. The bias in within-
family Mendelian randomization estimates is small unless the dynastic effects are very small, or 
the number of observations modest.  
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Figure 3: Estimates of the effect of BMI on self-reported diabetes and high blood pressure and 
height and BMI on educational attainment using ordinary least squares, Mendelian 
randomization in unrelated individuals and samples of siblings. All methods were consistent 
with BMI increasing diabetes and high blood pressure risk. Being taller and slimmer were 
phenotypically associated with higher educational attainment. However, the effects of height 
and BMI on educational attainment were attenuated but still detected by Mendelian 
randomization estimates using unrelated individuals from UK Biobank and HUNT. The effects 
were eliminated after allowing for a family effect using individual-level or summary data 
Mendelian randomization. 
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Methods 

Statistical models 

We describe four methods of using family data for Mendelian randomization below. If there are 

only two siblings, the difference and family fixed effects methods are equivalent, see appendix 

for proof. 

 

The model to be estimated can be described as: 

 𝑥*,,	 = 	 𝛾/ + 𝛾1𝑔*,, + 𝛾3𝐶*,, + 𝑓* + 𝑣*,,  (i)  

 𝑦*,, = 𝛽/ + 𝛽1𝑥*,, + 𝛽3𝐶*,, + 𝑓* + 𝑢*,,  (ii) 

 

Where 𝑦*,,	and 𝑥*,,	are the outcome and exposure for individual 𝑖 from family 𝑘. 𝑔*,,	is a set of 

genetic variants that are associated with the exposure. 𝑓* is a family-level confounder, 

modelled in the empirical analysis via a family fixed effect (i.e. an indicator variable for each 

family). This accounts for all family-level confounders of the genetic variant-outcome 

association. Both 𝑔*,,	and 𝑓*	are functions of a family-level genetic component. 𝑢*,,  and 𝑣*,,  are 

random error terms. 𝐶*,,  is a confounder of the association of the exposure and the outcome, 

𝛾3 and 𝛽3 indicate the effect of the confounder on the exposure and the outcome. 𝛽1 is the 

true causal effect of the exposure on the outcome which we wish to estimate. This model 

implies that Mendelian randomization using data from unrelated individuals would produce 

biased estimates of 𝛽1 due to the correlation between 𝑔*,,,;	and 𝑓*. The effect of the exposure 

on the outcome can be estimated using individual level data allowing for a family fixed effect, 

or summary level data using difference methods within families, or by allowing for a family 

fixed effect. We describe these approaches below. 

 

(1) Siblings difference method     

To apply Mendelian randomization to samples of siblings, effect estimates for the SNP-

exposure association and SNP-outcome association are based on correlating the phenotypic 

divergence with the genotypic divergence within sibling pairs. Taking the difference between 
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siblings removes the effect of the family-level confounder. For any pair of siblings within family 

𝑘, indicated 𝑘, 1 and 𝑘, 2, the genotypic difference at genetic variant 𝑗 is: 

 𝛿*,; = 𝑔*,1,; − 𝑔*,3,;  (iii) 

 

The association between the genotypic differences and phenotypic differences in the exposure, 

𝑥, and outcome 𝑦, for SNP 𝑗 can be estimated via: 

 @𝑥*,1 − 𝑥*,3A
3 = 𝛾;𝛿*,;

3 + 𝑢*,;  (iv) 

 

 @𝑦*,1 − 𝑦*,3A
3 = Γ;𝛿*,;

3 + 𝑣*,;  (v) 

 

The estimated associations, 𝛾;	and Γ;,	can be used with any summary level Mendelian 

randomization estimator. Here we apply the inverse variance weighted (IVW) approach. Each 

pair of siblings can be included as a separate pseudo-independent pair.  

 

(2) Family fixed effect with sibling data  

Alternatively, we can estimate the associations using family fixed effects indicated by 𝑓* for 

each family, which is equivalent to centring the data by subtracting the family mean. 

 𝑥*,, = 𝛾/ + 𝛾1,;𝑔*,,,; + 𝑓* + 𝑢*,,,;  (vi) 

and 

 𝑦*,, = 𝛽/ + Γ1𝑔*,,,; + 𝑓* + 𝑣*,,,;. (vii) 

 

This estimator accounts for any differences between families, which includes any effect of 

assortative mating or dynastic effects common to all siblings by including a dummy variable for 

each family. This provides unbiased estimates of the SNP-exposure and SNP-outcome 

associations.  These estimates can be used with standard summary data Mendelian 

randomization methods. The difference and family fixed effects methods are identical if there 

are only two siblings in each family. This fact follows from substituting equations iv and v into 

equations ii and iii and simplifying (see Appendix for proof). If there are more siblings, then the 

estimators are non-identical, but likely to be similar, see the appendix for further details. 
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Cluster robust standard errors can be used to allow for clustering and relatedness within 

families. 

 

(3) Adjusting for parental genotype with mother-father-offspring trio data 

 

Finally, if data on mother-father-offspring trios are available, the estimates of the SNP-exposure 

and SNP-outcome associations for each child can be adjusted for their mother’s and father’s 

genotypes, indicated by 𝑔,C,;  and 𝑔,D,;  respectively58: 

 

 𝑥, = 𝛾/ + 𝛾1,;𝑔,,; + 𝛾3,;𝑔,C,; + 𝛾E,;𝑔,D,; + 𝑢,,;  (viii) 

and 

 𝑦, = 𝛽/ + Γ1𝑔,,; + Γ3𝑔,C,; + ΓE𝑔,D,; + 𝑣,,;. (ix) 

 

Again, these associations can be used to estimate the effect of the exposure on the outcome 

using summary data Mendelian randomization methods. It is possible to estimate the effect of 

foetal genotype on the exposure and outcome conditional on the mother and father genotype 

using summary data.25,58 The estimated causal effect can be biased if both the SNP-exposure 

and SNP-outcome associations are estimated in the same sample.59 This bias can be eliminated 

by splitting the sample and estimating the associations in separate samples.  

 

(4) Two-stage least squares with sibling data 

Many summary data methods assume no measurement error on the SNP-exposure association 

(NOME).60 This assumption may lead to underestimation of the standard error of the effect of 

the exposure on the outcome. Two-stage least squares can estimate the effect of the exposure 

on the outcome using the individual-level data from siblings. Estimators that use individual-

level data can account integrate the estimation error from the SNP-exposure association. We 

used cluster robust standard errors that allow for clustering and relatedness within family. We 

used the commands xtivreg and plm.61 
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Simulation of dynastic effects 

We simulated a cohort consisting of pairs of unrelated mothers and fathers who had two 

offspring. All individuals had a genome of 90 SNPs. We set the distribution of identity by 

descent (IBD) across the 90 SNPs as 𝑁(0.5, 0.037) for each sibling pair, as per theory, because 

there are on average 90 recombination events separating human siblings. Hence, we assume 

that each SNP has an independent effect on the exposure. 

 

We defined parents’ exposure and outcome by defining confounders 𝑢, exposure 𝑥 and 

outcome 𝑦. A directed acyclic graph illustrating these relationships is shown in Figure 1 (panel 

B). The confounder influences the parents’ exposure and outcome. The offspring have the same 

confounding structure, except the parent’s exposure affects their offspring’s outcomes, via a 

dynastic or ancestry effect. The genetic influence of each of the 90 SNPs on the exposure 

amounts to explaining 𝑉M" of the variance in the exposure. We assumed no horizontal 

pleiotropy. All estimates assume 𝑉M" = 0.1 and 90 independent causal variants (i.e. somewhat 

similar to GIANT results for BMI).62 

 

To generate the phenotypes under a model of dynastic effects, the offspring outcome was 

influenced by both the offspring exposure and the parents’ exposures. In these simulations all 

phenotypes had mean of 0 and variance of 1. Differing strengths of dynastic effects, where the 

parental exposure influenced the offspring outcome were generated (b(" = 0, 0.01, 0.02) 

under a set of models with a range of causal effects of the exposure on the outcome (b"# =

0, 0.001, 0.002, 0.005, 0.01, 0.05). We calculated the false discovery rate (proportion of test 

with p-value < 0.05) for 100 iterations of each simulation using each of three methods: standard 

IVW as applied to one of each individual in a set of siblings (i.e. a sample of unrelated 

individuals), the within-family sibling design, and the within-family trio design. Finally, we 

calculated bias (estimated effect – simulated effect) for all three study approaches by simulated 

confounding (𝐶" and 𝐶# = 0, 0.1, 0.2), dynastic bias (bN" = 0, 0.1, 0.2) and simulated causal 

effects (b"# = 0, 0.001, 0.002, 0.005, 0.01, 0.05). The sample sizes were 10 000, 20 000, 40 

000, 60 000 and 100 000 sibling pairs for all simulations. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 5, 2019. ; https://doi.org/10.1101/602516doi: bioRxiv preprint 

https://doi.org/10.1101/602516


 22 

 

Empirical Analysis 

To demonstrate the approach and assess potential dynastic effects, assortative mating, and 

residual population stratification, we conducted within-family Mendelian randomization using 

two illustrative examples in the Nord-Trøndelag Health Study (HUNT) and the UK Biobank.63–65 

We estimated the effects of BMI on hypertension and diabetes and the effects of height and 

BMI on educational attainment. The effects of BMI on diabetes and hypertension have been 

well studied and provide a positive control.40 These effects on clinical outcomes experienced 

later in life are unlikely to be due to assortative mating or dynastic effects, because parents are 

less likely to assort on genetic liability for diabetes or high blood pressure. The genetic liability 

for these conditions was probably unknown when the couples were formed. Previous 

longitudinal and Mendelian randomization studies using unrelated individuals have suggested 

that height and BMI may affect educational attainment.44,49  Such an association, if causal, 

might be counteracted by changing educational policy. However, the association may be due to 

parents’ education, via dynastic effects or assortative mating, where more educated people 

select taller and slimmer partners. Assortative mating and dynastic effects can confound the 

association between genetic variants when data from the offspring generation are used. 

Therefore, the ratio of individual-level causal effects to family-level effects is likely to be higher 

for the effects of BMI on clinical end points than for the effects of height and BMI on education. 

 

HUNT descriptive data 

There were 56,374 genotyped individuals in HUNT, including 11,448 families with at least two 

siblings comprising of 28,777 siblings (14,718 women) with complete data on genotype, height 

and education, diabetes and blood pressure. On average the participants in the full unrelated 

sample were 48.7 (SD = 15.1) years old, had a BMI of 26.3 kg/m2 (SD = 3.9), were 177.5cm tall 

(SD = 6.6) and 164.3cm tall (SD = 6.11) for men and women respectively, 2.5% of them had 

diabetes, and 42.5% had high blood pressure and had 12.0 years (SD = 2.1) of education. High 

blood pressure was defined as either currently taking anti-hypertensive medication or having 

systolic or diastolic blood pressure above 140mmHg or 90mmHg on average across up to three 
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measurements in HUNT2. Descriptive statistics of the sample can be found in Supplementary 

Tables 1 and 2. 

 

UK Biobank descriptive data 

There were up to 370,180 genotyped individuals in the UK Biobank, among whom were 16,847 

families with at least two siblings, with 33,642 siblings (19,445 women) with complete data on 

genotype, height and education, diabetes and blood pressure. On average, the participants 

without siblings were 57.5 (SD = 7.4) years old, had a BMI of 27.4 kg/m2 (SD = 4.8), were 

175.0cm tall (SD = 6.8) and 162.8cm tall (SD = 6.2) for men and women respectively, had 14.1 

(SD = 2.3) years of education. 4.5% of them had diabetes and 54.0% had high blood pressure. 

High blood pressure was defined as either having a diagnosis of high blood pressure or having 

systolic or diastolic blood pressure above 140mmHg or 90mmHg respectively on average across 

up to two clinic measurements. 

 

Selection of genotypes for instruments 

We selected 385 independent (r2<0.01 within 10,000kb) SNPs associated with height (p<5x10-

08) from Wood et al. and 79 associated with BMI in Locke et al.62,66 Neither HUNT or UK Biobank 

were included in these studies. We clumped variants using the TwoSampleMR package.67 We 

harmonized the alleles’ effect sizes across the two samples and constructed weighted polygenic 

scores which were sums of the phenotype increasing alleles and weighted each variant by its 

effect on the phenotype in the published GWAS. 

 

The Nord-Trøndelag Health Study 

The Nord-Trøndelag Health Study (HUNT) is a population-based cohort study. The study was 

carried out at four time points over approximately 30 years (HUNT1 [1984-1986], HUNT2 [1995-

1997] and HUNT3 [2006-2008] and HUNT4 [2017-2019]). A detailed description of HUNT is 

available.63 We include 71,860 participants from HUNT2 and HUNT3 as they have been recently 

genotyped using one of three different Illumina HumanCoreExome arrays (HumanCoreExome12 

v1.0, HumanCoreExome12 v1.1 and UM HUNT Biobank v1.0). For a flow chart of participants 
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inclusion and exclusion from the study see Supplementary Figure 1. Imputation was performed 

on samples of recent European ancestry using Minimac3 (v2.0.1, 

http://genome.sph.umich.edu/wiki/Minimac3) from a merged reference panel constructed 

from the Haplotype Reference Consortium (HRC) panel (release version 1.1) and a local 

reference panel based on 2,202 whole-genome sequenced HUNT participants 12-14. Ancestry of 

all samples was inferred by projecting all genotyped samples into the space of the principal 

components of the Human Genome Diversity Project (HGDP) reference panel (938 unrelated 

individuals; downloaded from  http://csg.sph.umich.edu/chaolong/LASER/)15, 16, using PLINK. 

We defined recent European ancestry as samples that fell into an ellipsoid spanning exclusively 

the European population within the HGDP panel. We restricted the analysis to individuals of 

recent European ancestry who passed quality control. Among these, 17,329 pairs of siblings 

comprising of 28,777 siblings,  were inferred using KING17, where an estimated kinship 

coefficient between 0.177 and 0.355, the proportion of the genomes that share two alleles IBD 

> 0.08, and the proportion of the genome that share zero alleles IBD > 0.04 corresponded to a 

full sibling pair. 

 

Questionnaires, clinical measurements and hospitalizations 

Participants attended a health survey which included comprehensive questionnaires, an 

interview and clinical examination. The participants’ height and weight were measured with the 

participant wearing light clothes without shoes to the nearest centimetre and half kilogram, 

respectively. Education was defined using the question “What is your highest level of 

education”. Participants answered one of five categories 1) primary school (=10 years), 2) high 

school for 1 or 2 years (=12 years), 3) complete high school (=13 years), 4) college or university 

less than 4 years (=16 years), and 5) college or university 4 years or more (=17 years).  

Participants with university degrees were assigned to 16 years of education, those who 

completed high school were assigned 13 years, those who attended high school for 1 or 2 years 

were assigned to 12 years, and those who only attended primary school were assigned to 10 

years. Diabetes was defined using responses to the question “Have you had or do you have 

diabetes” which has high validity.68 High blood pressure was defined as those with systolic or 
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diastolic blood pressure equal to or more than 140 or 90, respectively, or reported use of 

antihypertensive medication. 

 

Ethics 

This study was approved by the Regional Committee for Medical and Health Research Ethics, 

Central Norway and all participants gave informed written consent (REK Central application 

number 2016/21296). 

 

The UK Biobank 

The UK Biobank invited over 9 million people and sampled 503,317 participants from March 

2006 to October 2010. The study sampled individuals from 21 study centres across Great 

Britain. A detailed description of the study can be read elsewhere.64,65,69 We included 33,642 

related participants who were born in England to ensure that they experienced a similar school 

system. For a flow chart of participants inclusion and exclusion from the study see 

Supplementary Figure 2. The participants gave blood samples, from which DNA was extracted. 

Full details of the quality control process are available elsewhere. 70Briefly, we excluded 

participants who had mismatched genetic and reported sex, or those with non-XX or XY 

chromosomes, extreme heterozygosity or missingness. We limited the analysis to 11,554,957 

SNPs on the Haplotype Reference Consortium (HRC) panel. We selected SNPs that were 

reported to be associated with height and BMI in GWAS.62,66 We used these GWAS because 

they did not include UK Biobank. We selected independent SNPs associated r2<0.01 within 

10,000kb by selecting the SNP most strongly associated with the trait of interest. We created 

weighted allele scores for height and BMI by calculating a weighted average of the number of 

height or BMI increasing alleles each participant had.59 

 

Questionnaires, clinical measurements and hospitalizations 

Weight (ID:21002) and standing height (ID:50) were measured using standardised instruments 

the baseline assessment centre visits. We defined education using the participants response to 

the touch screen questionnaires about their educational qualifications (ID= 6138). We defined 
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educational attainment using the participants’ highest reported educational qualification at 

either measurement occasion. We assigned participants with university degrees to 17 years of 

education, those with professional qualifications such as teaching or nursing to 15 years, those 

with A-levels to 14 years, those with National Vocational Qualifications (NVQs), Higher National 

Diplomas (HNDs) to 13 years, General Certificate of Secondary Education (GCSEs), Certificate of 

Secondary Education (CSEs) or O-levels to 12 years, and those who reported no qualifications to 

11 years, which was the legal minimum length of education for this cohort. Diabetes and high 

blood pressure were defined using responses to the self-reported touch screen questionnaire 

(ID=6150 and ID=2443). We used self-reported measures because measured blood pressure is 

affected by medication use. Missing values at the baseline visit were replaced by measures 

from subsequent visits if available.  

 

Covariates and standard errors 

All analyses included age, sex, the first 20 principal components of genetic variation. Cluster 

robust standard errors were used to allow for heteroskedasticity and allow for clustering and 

relatedness across siblings within families. Inclusion of the covariates age, sex, and principal 

components did not meaningfully affect the within family estimates, as they are independent of 

genotype conditional on sibling genotype. 

 

Ethics 

UK Biobank received ethical approval from the Research Ethics Committee (REC reference for 

UK Biobank is 11/NW/0382). This research was approved as part of application 8786. 

 

Empirical analyses 

We compared seven empirical estimates of the BMI on self-reported diabetes and high blood 

pressure and the effects of the height and BMI on educational attainment: 

1. IPD Ordinary least squares: The phenotypic association using ordinary least squares 

2. IPD OLS Family FE: The phenotypic association using ordinary least squares allowing for 

a family fixed effect across siblings. 
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3. IPD MR-PRS unrelateds: An estimate of the effect using a sample of unrelated 

individuals using a polygenic risk score and two stage least squares. 

4. IPD MR-PRS siblings: As with 2. above, but restricted to siblings. 

5. IPD MR-PRS siblings family fixed effects: An estimate using individual level data from 

the full sample of siblings family fixed effects. The standard errors allow for clustering by 

family and integrate imprecision from the SNP-exposure association. The results from 

HUNT and UK Biobank were combined via meta-analysis. Estimated using the xtivreg 

and plm packages.61 

6. 2SMR IVW siblings: An estimate using SNP summary data for Mendelian randomization 

including family fixed effects. The SNP-exposure and SNP-outcome associations were 

estimated on the same sample. The SNP level estimates of the effect of the exposure on 

the outcome were estimated separately in HUNT and UK Biobank and the overall 

Mendelian randomization (Wald) estimates are calculated for each SNP. For each SNP 

the Wald estimate is the ratio of the SNP-outcome and SNP-exposure association. We 

combine the estimate using Inverse Variance Weighted (IVW) meta-analysis. 

7. 2SMR IVW siblings – split sample: As with 5. above, but the SNP-exposure and SNP-

outcome associations were estimated in separate samples (i.e. split sample approach). 

The overall Wald estimates were combined via IVW meta-analysis as above. 

 

Sensitivity analyses 

Finally, we tested for difference (pdiff unrelated) between the Mendelian randomization estimates 

using the unrelated individuals and the summary data within-family estimates using the split 

sample approach (i.e. as in 6. above).71 We investigated whether our results could be explained 

by pleiotropy using the weighted median, weighted modal and MR-Egger estimators and the 

SNP-phenotype associations allowing for a family fixed effect.8,10,72 We used a split sample 

approach in which the SNP-exposure and SNP-outcome associations were estimated in separate 

samples. We estimated the percentage change in the SNP-phenotype coefficients with and 

without allowing for a family fixed effect. 
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Data and code availability 

The empirical dataset will be archived with the studies and will be made available to individuals 

who obtain the necessary permissions from the studies’ data access committees. The code used 

to clean and analyse the data and the SNP level summary statistics are available here: 

https://github.com/nmdavies/within_family_mr. 
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Supplementary materials 

 

  

Box 1: Possible confounders of genetic associations 

Assortative mating: when individuals choose their partners non-randomly, so are more alike 

or selected on a particular trait than would be expected. This can occur because people 

select on a specific trait, e.g. if tall women prefer to marry tall men, people who drink 

alcohol choose partners who also drink,8 or because of social homogamy where people 

select partners who have a similar environmental background to themselves, e.g. if educated 

women select men with a similar amount of education as themselves who happen to be 

taller.71 

 
Dynastic effects: when parental genotype affect offspring outcomes through pathways other 

than via offspring genotype. For example, if more educated parents support their offspring’s 

education, or if parents smoking positively or negatively affected the likelihood of their 

offspring smoking. An example of dynastic effects are passive gene-environmental 

correlations.11,16,17  

 

Fine scale population structure: when subtle difference in ancestry are associated with 

offspring phenotypes. For example, on average individuals from the north and west of 

England are poorer and are less educated, there are also geographic gradients in the 

distribution of education associated variants.13 
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Equivalence of the first difference and fixed effects estimators when estimating within-family 

Mendelian randomization models. 

 

The general model as describe above is: 

 𝑥*,, = 𝛾/ + 𝛾1,;𝑔*,,,; + 𝑓* + 𝑢*,,  (x) 

and 

 𝑦*,, = 𝛽/ + 𝛽1𝑔*,,,; + 𝑓* + 𝑣*,,. (xi) 

 

𝑓* is a family-level confounder, 𝑈P is an individual-level confounder. 𝑓* = 𝑓(𝐺*, 𝑁𝐺*) where 𝐺* 

is a family-level genetic component and 𝑁𝐺* is a family-level non-genetic component, and 

𝑔*,,,; = 𝑓∗(𝐺*). This setup means that Mendelian randomization using data from unrelated 

individuals is invalid due to the correlation between 𝑔*,,,;	and 𝑓*. 

 

With two siblings the model can be written as: 

 𝑥*,1 = 𝛾/ + 𝛾1,;𝑔*,1,; + 𝑓* + 𝑢*,1 (xii) 

 𝑥*,3 = 𝛾/ + 𝛾1,;𝑔*,3,; + 𝑓* + 𝑢*,3 (xiii) 

 𝑦*,1 = 𝛽/ + 𝛽1𝑥*,1,; + 𝑓* + 𝑣*,1 (xiv) 

 𝑦*,3 = 𝛽/ + 𝛽1𝑥*,3,; + 𝑓* + 𝑣*,3. (xv) 

 

Fixed effects estimation 

Fixed effects estimation estimates the model: 

 𝑥*,, = 𝛾/ + 𝛾1,;𝑔*,,,; + 𝑐𝐼* + 𝑢*,,,;  (xvi) 

and 

 𝑦*,, = 𝛽/ + 𝛽1𝑥*,,,; + 𝑐𝐼* + 𝑣*,,,;. (xvii) 

 

 

Where 𝐼U  is a set of family-level indicator variables that takes one value for each family (i.e. a 

set of extra indicator variables, the same size as the number of families in the model, each one 

of which takes 1 for one family and 0 for all other families).  This model is estimated by taking 
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the deviation from the family-level mean for each observation. Under this method of 

estimation our model becomes: 

 𝑥*,, − 𝑥*VVV = 𝛾1,;𝑔*,,,; − 𝛾1,;𝑔*,WVVVVV + 𝑓* − 𝑓*X + 𝑢*,,,; − 𝑢*,WVVVVV 

= 𝛾1,;@𝑔*,,,; − 𝑔*,WVVVVVA + @𝑢*,,,; − 𝑢*,WVVVVVA 

(xviii) 

and 

 𝑦*,, − 𝑦*VVV = Γ1𝑔*,,,; − Γ1,;𝑔*,WVVVVV + 𝑓* − 𝑓*X + 𝑣*,,,; − 𝑣*,WVVVVV. 

= Γ1@𝑔*,,,; − 𝑔*,WVVVVVA + @𝑣*,,,; − 𝑣*,WVVVVVA 

(xix) 

 

In a similar way to the First difference estimator, this estimator can now be consistently 

estimated using Mendelian randomization as  @𝑔*,,,; − 𝑔*,WVVVVVA  is independent of the family 

effect. This can be done by estimating: 

 𝑥*,, − 𝑥*VVV = 𝛾1,;𝑔*,,,; − 𝛾1,;𝑔*,WVVVVV + 𝑢*,,,; − 𝑢*,WVVVVV 

𝑥*,,∗ = 𝛾1,;𝑔*,,,;∗ + 𝑢*,,,;∗  

(xx) 

and 

 𝑦*,, − 𝑦*VVV = Γ;𝑔*,,,; − Γ1,;𝑔*,WVVVVV + 𝑣*,,,; − 𝑣*,WVVVVV 

𝑦*,,∗ = Γ;𝑔*,,,;∗ + 𝑣*,,,;∗  

(xxi) 

 

The two-sample MR estimator is then obtained from; 

ΓY; = 	𝛽1𝛾Z; + 𝜔;  

 

First difference (FD) estimation 

A special case of the fixed effect estimator is the first difference estimator with two siblings. 

When the first difference is taken the model becomes: 

 𝑥*,1 − 𝑥*,3 = 𝛾1,;𝑔*,1,; − 𝛾1,;𝑔*,3,; + 𝑓* − 𝑓* + 𝑢*,1,; − 𝑢*,3,;  

			= 𝛾1,;@𝑔*,1,; − 𝑔*,3,;A + @𝑢*,1,; − 𝑢*,3,;A 

(xxii) 

and 

 𝑦*,1 − 𝑦*,3 = Γ1,;𝑔*,1,; − Γ1,;𝑔*,3,; + 𝑓* − 𝑓* + 𝑣*,1,; − 𝑣*,3,;  

= Γ1,;@𝑔*,1,; − 𝑔*,3,;A + @𝑣*,1,; − 𝑣*,3,;A. 

(xxiii) 
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As (𝑔*,1 − 𝑔*,3) is uncorrelated with @𝑢*,1,; − 𝑢*,3,;A this model can now be consistently 

estimated in a two-sample MR estimation by: 

 𝑥*,1 − 𝑥*,3 = 𝛾1,;@𝑔*,1,; − 𝑔*,3,;A + @𝑢*,1,; − 𝑢*,3,;A 

𝑥*\ = 𝛾𝐺*,;\ + 𝑢",*,;\  

(xxiv) 

and 

 𝑦*,1 − 𝑦*,3 = Γ1,;@𝑔*,1,; − 𝑔*,3,;A + @𝑣*,1,; − 𝑣*,3,;A	 

𝑦*\ = Γ𝑔*,;\ + 𝑣#,*,;\ 	. 

(xxv) 

 

The two-sample MR estimation of 𝛽]1 can then be calculated in the same way as above. 

 

Equivalence of the first difference and fixed effects estimators 

When there are exactly two individuals in each family these two methods of estimation will give 

the same result. 

 

For 𝑖 = 1  the variables in the fixed effects estimator is 

 

 𝑥*,1∗ = 	 𝑥*,1 − 𝑥*VVV = 	𝑥*,1 −
1
2 @𝑥*,1 + 𝑥*,3A = 	

1
2 @𝑥*,1 − 𝑥*,3A 

(xxvi) 

 

 𝑦*,1∗ = 	𝑦*,1 − 𝑦*VVV = 	𝑦*,1 −
1
2 @𝑦*,1 + 𝑦*,3A = 	

1
2 @𝑦*,1 − 𝑦*,3A 

(xxvii) 

 

 𝑔*,1,;∗ = 	𝑔*,1,; − 𝑔*,WVVVVV = 	𝑔*,1,; −
1
2 @𝑔*,1,; + 𝑔*,3,;A = 	

1
2 @𝑔*,1,; − 𝑔*,3,;A 

 

(xxviii) 

 

Therefore, the fixed effects estimator can be written as: 

 1
2 @𝑥*,1 − 𝑥*,3A = 𝛾1,;

1
2 @𝑔*,1,; + 𝑔*,3,;A +

1
2 @𝑢*,1,; − 𝑢*,3,;A 

(xxix) 
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1
2 𝑥*

\ = 𝛾1,;
1
2 𝑔*,;

\ +
1
2𝑢*,;

\  

𝑥*\ = 𝛾1,;𝑔*,;\ + 𝑢*,;\  

 

 

and 

 

1
2 @𝑦*,1 − 𝑦*,3A = 𝛽1

1
2 @𝑥*,1 − 𝑥*,3A +

1
2 @𝑣*,1 − 𝑣*,3A	 

1
2𝑦*

\ = 𝛽1
1
2 𝑥*

\ +
1
2 𝑣*,;

\ 	 

𝑦*\ = 𝛽1𝑥*\ + 𝑣*,;\ 	 

 

(xxx) 

 

Therefore, the fixed effects estimator is equal to the first difference estimator with all of the 

variables included divided by 2. As this transformation is applied to every variable in the model 

it cancels out across the estimation and the estimated parameters will be the same as in the 

first difference model. 

 

When there are more than two individuals in each family, the difference between these 

estimators depends on the error terms. If 𝑣*,,,;  is assumed to be uncorrelated between 

individuals in a family, then the fixed effects estimator is more efficient. However, if it is 

assumed to be dependent on the level taken by other family members (i.e.𝑣*,1,; = 	 𝑣*,3,; + 𝜖* 

where 𝜖* is a randomly distributed variable) then the first difference estimator is more 

efficient.73 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 5, 2019. ; https://doi.org/10.1101/602516doi: bioRxiv preprint 

https://doi.org/10.1101/602516


 49 

Supplementary Figure 1: STROBE Flow chart representing inclusion into the study sample for 

HUNT2. 
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Supplementary Figure 2: STROBE Flow chart representing inclusion and inclusion into the study 

sample for the UK Biobank. 
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Supplementary Figure 3: Estimates of the effect of BMI on self-reported diabetes and high 
blood pressure and height and BMI on educational attainment using Mendelian randomization 
in samples of siblings using inverse variance weighted (IVW), weighted median, weighted modal 
and MR-Egger. This analysis uses a split sample approach, in which the SNP-exposure and SNP-
outcome associations are estimated in separate samples and allow for a family fixed effect. The 
weighted median, weighted modal and MR-Egger estimators are less precise than IVW. We 
found little evidence of pleiotropy using MR-Egger. There was little evidence of heterogeneity 
between HUNT and UKBB for any of the estimates. The MR-Egger intercepts for all outcomes 
found little evidence of directional pleiotropy (p>0.05), however this may be due to lack of 
power. The total analysed sample size in UK Biobank and HUNT was 61,008. 
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