1 On-line Methods and Supplementary information

2	1. Sequence and assembly	3
3	1.1 From Duroc 2-14 DNA to Sscrofa11.1 assembly	3
4	1.1.1 Sample, sequencing and assembly	3
5	1.1.2 Contig quality assessment and contig splitting	3
6	1.1.3 Scaffolding	4
7	1.1.4 Gap filling	4
8	1.1.5 Targeted BAC sequencing to fill gaps	5
9	1.1.6 Polishing	6
10	1.2 From MARC1423004 DNA to assembly USMARCv1.0	6
11	1.2.1 Sample, sequencing and assembly	6
12	1.2.3 Scaffolding	8
13	1.1.4 Gap filling	8
14	1.2.5 Polishing	8
15	1.3 Anchoring the assemblies to chromosomes	9
16	1.3.1 Chromosome Preparation	9
17	1.3.2 Preparation and Selection of BAC clones for FISH	9
18	1.3.3 Fluorescence in situ hybridisation	9
19	1.4 Quality Assessment of Sscrofa11.1 and USMARCv1.0 assemblies	15
20	1.4.1 Order and orientation	15
21	1.4.2 BUSCO and Cogent analyses	19
22	1.4.3 Assemblytics	20
23	2. Analyses	
24	2.1 Repeat analysis	
25	2.1.1 Telomeres	
26	2.1.2 Centromeres	
27	2.2 Transcriptome data used for building gene models	31
28	2.2.1 Iso-Seq	
29	2.2.2 RNA-Seq	
30	2.3 SNP chip variants	35
31	2.3.1 SNP chip probes mapped to assemblies	35
32	3. Annotation (Ensembl)	
33	3.1 Repeat Finding	
34	3.2 Raw computes	
35	3.3 Generation of gene models	

36	3.3.1 cDNA alignments
37	3.3.2 PacBio Iso-Seq transcript data
38	3.3.3 Protein-to-genome alignment
39	3.3.4 RNA-seq pipeline
40	3.3.5 IG and TR genes
41	3.3.6 Olfactory receptor genes
42	3.3.7 Selenocysteine proteins
43	3.3.8 Filtering the models
44	3.3.9 Collapsing the transcript set
45	3.3.10 Addition of UTR to coding models46
46	3.3.11 Generating multi-transcript genes
47	3.3.12 Pseudogenes
48	3.3.13 Small ncRNAs
49	3.3.14 lincRNAs discovery
50	3.3.15 Cross-referencing and stable identifiers
51	3.3.16 Gene expression
52	3.3.17 Comparison of Ensembl and NCBI annotation47
53	3.3.18 Annotation of the USMARCv1.0 assembly
54	4. References
55	5. Further supplementary figures
56	

58 **1. Sequence and assembly**

59 1.1 From Duroc 2-14 DNA to Sscrofa11.1 assembly

60 **1.1.1 Sample, sequencing and assembly**

DNA was extracted from Duroc 2-14 cultured fibroblast cells passage 16-18 using the Qiagen Blood & Cell Culture DNA Maxi Kit, producing 139.15 µg DNA from three extractions. The high molecular weight DNA from this extraction was sequenced by Pacific Biosciences (PacBio) using their long read sequencing technology. Libraries for SMRT sequencing were prepared and sequenced as described previously (Pendleton *et al.*, 2015) using P6-C4 chemistry on the RSII using 213 SMRT cells. Initial read statistics are detailed in supplementary table ST1.

68 **Supplementary Table ST1**: Pacific Biosciences read statistics

	TJTabasco (Duroc 2-14)	MARC1423004
Chemistry	P6/C4	P5/C3 and P6/C4
Number of reads	12,328,735	32,960,338
Total length of reads (bp)	175,934,815,397	186,973,885,772
Mean read length (bp)	14,270	6,144
Read N50 (bp)	19,786	9,277

69

Contigs were assembled using the Falcon v0.4.0 assembly pipeline following the standard protocol. Quiver v. 2.3.0 (Chin *et al.*, 2013) was used to correct the primary and alternative contigs. Only the primary pseudo-haplotype contigs were used in the assembly.

73 **1.1.2 Contig quality assessment and contig splitting**

Paired-end Illumina from 74 reads the individual same 75 (http://www.ebi.ac.uk/ena/data/view/PRJEB9115) were mapped to the 3,206 haploid contigs 76 and assessed for structural abnormalities using the methods described previously (Warr et al., 2015). Briefly, 1,000 bp windows across the contigs were assessed for levels of 77 78 abnormal mapping including high GC-normalized coverage, improper pairing and

79 unexpected insert sizes. Additionally BAC end sequences (BES) (CHORI-242 library) (Humphray 2007) fosmids (WTSI_1005 80 et al., and library: 81 https://www.ncbi.nlm.nih.gov/clone/library/genomic/234/) (ENA accession:HE000001 -HE565349) (Skinner et al., 2016) from the same individual (i.e. Duroc 2-14) were mapped to 82 83 the contigs and regions with multiple occurrences of incorrect orientation were examined manually in the Integrative Genomics Viewer (IGV) (Robinson et al., 2011). For 28 contigs 84 where there was consistent evidence of structural disagreement between the contigs and the 85 86 Illumina reads, BAC ends and fosmids, the contigs were split or trimmed.

87 **1.1.3 Scaffolding**

In order to establish an initial scaffold the contigs were mapped to Sscrofa10.2 using 88 Nucmer (v3.23) (Kurtz et al., 2004). The positioning of the contigs was determined by using 89 90 the longest ascending subset of mapping locations using the show-coords tool from Mummer with the -g flag. Contigs with a %IDY below 95% were excluded. Contigs that 91 mapped to regions substantially larger (>180%) or smaller (<10%) than the contig size were 92 93 excluded. These tolerances were intentionally lenient due to the inflated gap sizes in the 94 Sscrofa10.2 assembly (e.g. including 50 kb between scaffolds as required by the NCBI 95 submission system in 2011) and highly fragmented nature of certain regions of Sscrofa10.2. Adjacent contigs were merged into a single fasta entry with Ns representing gaps between 96 97 them. Gaps were estimated from the distance between the mapping locations against 98 Sscrofa10.2, with an upper limit of 50 kb. Several of the remaining contigs were placed by 99 identifying their longest alignment position, if this alignment was more than 50% the length of 100 the contig and overlapped with a gap with a IDY>90% they were placed in the gaps with 101 25 bp gaps either side. 346 contigs covering 2.3 Gb were included in the initial chromosomal 102 scaffolds.

103 **1.1.4 Gap filling**

PBJelly (English *et al.*, 2012) was used with the 65X raw PacBio reads to fill the gaps in the scaffolds. Default parameters were used for all stages except the assembly stage where max wiggle (-w) was set to 100 kb and max trim (-t) was set to 1,000 bp. These parameters

107 were changed to account for the extremely inaccurate gap sizes and missing sequence in 108 Sscrofa10.2 that will have influenced the estimated gap sizes, to allow heavily overlapping 109 contigs to be closed and to allow potentially low-quality sequence at the end of contigs to be excluded. Following initial gap filling, PBJelly was rerun on the fasta output from the first 110 111 round, with the unused contigs from the Falcon output added to the fasta to allow extension 112 of the scaffolds. These contigs had been excluded initially to reduce secondary mapping 113 positions. PBJelly is able to add contigs to the end of scaffolds, but not place whole contigs 114 in gaps, so the initial mapping of contigs to scaffolds was examined to find if any of the 115 contigs that had been excluded in this stage due to overlap with existing contigs might fill the 116 gaps. Contigs were placed on a case-by-case basis if there was evidence of overlap with 117 placed sequence on both sides of the gap, if the initial contig quality control was good, and if 118 placement was well supported by BAC end mapping. Additionally, BACs for which the end 119 sequences mapped to adjacent contigs providing evidence for scaffolding these adjacent 120 contigs and for which finished quality sequence was publically available, were aligned and 121 the gap filled and placed following the same restrictions as the unplaced contigs. On 122 completion of these gap-filling procedures 108 gaps remained. Estimation of the size of the 123 remaining gaps was based on BAC end mapping, using the known median insert size of the 124 CHORI-242 library (see https://bacpacresources.org). Any gaps estimated to be <100 bp 125 were sized at 100 bp and unspanned gaps were sized at 50 kb.

126 **1.1.5 Targeted BAC sequencing to fill gaps**

127 Five BACs from the CHORI-242 library were selected for further sequencing (CH242-188M9 (SSC16); CH242-323K10 (SSC18); CH242-284F8 (SSC18); CH242-61K12 (SSC1); CH242-128 168C15 (SSC12)) based on BAC ends mapping either side of gaps. The BAC clones were 129 130 obtained from BACPAC (https://bacpacresources.org) and DNA was extracted using the 131 Epicentre BACMAX DNA purification kit following manufacturer's instructions. The BAC DNA was sequenced using Oxford Nanopore Technologies' MinION sequencer using a barcoded 132 2D library following the discontinued protocol SQK-LSK208 on an R9 flow cell using 133 MinKNOW v1.0.5. Sequences were assembled using Canu (Koren et al., 2017) with default 134

settings and each produced a single contig. The BAC vector sequences were removed from the contigs, the contigs were mapped to the assembly initially with Nucmer to confirm they mapped to the expected locations, with exact positions for placement determined by BWA-MEM (Li, 2013). All five contigs mapped to the expected positions and were placed to close the targeted gaps, leaving 103 gaps in the final Sscrofa11 assembly and closing chromosomes 16 and 18.

141 **1.1.6 Polishing**

correction 142 Error done using Arrow from the GenomicConsensus suite was (https://github.com/PacificBiosciences/GenomicConsensus) using the original 65X PacBio 143 coverage. This was followed by Pilon (Walker et al., 2014) with fixlist restricted to "bases", 144 145 but otherwise using default parameters and paired-end Illumina short read data that provided 146 50x genome coverage.

147 **1.2 From MARC1423004 DNA to assembly USMARCv1.0**

148 **1.2.1 Sample, sequencing and assembly**

DNA was isolated from barrow MARC1423004 using a salt extraction method. Briefly, frozen 149 lung tissue was crushed into powder, scraped into a 15 mL tube, and suspended in 4 mL 150 151 digestion buffer (10 mM NH₄Cl, 400 mM NaCl, 50 mM Na₂EDTA, pH 8.0). Digestion was initiated with 100 µL 20% SDS and 70 µL trypsin (5 mg/ml). This initial digestion was allowed 152 to proceed at room temperature (approximately 22°C) for one hour, and then 200 µL of 153 20% SDS and 50 µL of Proteinase K (50 mg/mL) were added. The digestion was incubated 154 at 55°C in a shaking water bath overnight (16 hours). Another 100 µL of Proteinase K were 155 added and incubation extended for another 1.5 hours, until no remaining tissue pieces could 156 be observed in the solution, and then 10 µL of RNase (10 U/µL) were added followed by 157 additional incubation for one hour. 1.25 mL 5M NaCl was added, mixed by inversion, and 158 159 the tube was centrifuged at 3200 x g at 4°C. The supernatant was transferred to a fresh 160 15 mL tube, and DNA precipitated by addition of 2.5 volumes of 95% ethanol. The precipitate was removed using a hooked Pasteur pipet, dipped twice in separate tubes of 161 162 70% ethanol on ice, and allowed to briefly dry in air on the hook. The DNA was then eluted

from the hook by placing it under 250 µL TE buffer (10 mM Tris-HCl, 0.1 mM EDTA) until the 163 164 pellet slipped off into the buffer. The hook was then removed, and the DNA was allowed to dissolve into the buffer for several days at 4°C until it appeared to be completely dissolved. 165 The high molecular weight DNA from this extraction was sequenced by Pacific Biosciences 166 (PacBio) using their long read sequencing technology. Libraries for SMRT sequencing were 167 prepared and sequenced as described previously (Pendleton et al., 2015) using P5/C3 and 168 P6-C4 chemistry on the RSII. A total of 199 P5/C3 cells and 127 P6/C4 cells were 169 170 produced. Initial read statistics are detailed in supplementary table ST1. Contigs were 171 assembled using Celera Assembler v8.3rc2 (Berlin et al., 2015) using the command:

173	wgs-8.3/Linux-amd64/bin/PBcR -s pacbio.spec -fastq
174	filtered_subreads.fastq genomeSize=3000000000 -sensitive -l swine
175	sgeName=swine "sge=-p -500 -A swinenewsens" useGrid=1 scriptOnGrid=1
176	
177	and spec file:
178	merSize = 16
179	
180	ovlMemory = 32
181	ovlStoreMemory = 32000
182	ovlThreads = 32
183	threads = 32
184	ovlConcurrency = 1
185	cnsConcurrency = 8
186	merylThreads = 32
187	merylMemory = 32000
188	frqCorrThreads = 16
189	frgCorrBatchSize = 100000
190	ovlCorrBatchSize = 100000
191	
192	useGrid=1
193	scriptOnGrid=1
194	ovlCorrOnGrid=1
195	frgCorrOnGrid=1
196	
197	sge = -A assembly
198	sgeScript = -pe threads 1
199	sgeConsensus = -pe threads 8
200	sgeOverlap = -pe threads 4 -1 mem=2GB
201	gridEngineMhap = -pe threads 15 -1 mem=2GB
202	sgeCorrection = -pe threads 15 -1 mem=2GB
203	sgeOverlapCorrection = -pe threads 1 - 1 mem=16GB
204	sgeFragmentCorrection=-pe threads 2 -1 mem=2GB
205	sgeOverlapCorrection=-pe threads 1 -1 mem=4GB
206	
207	asmOvlErrorRate=0.1
208	asmUtgErrorRate=0.06
209	asmCgwErrorRate=0.1
210	asmCnsErrorRate=0.1
211	asmOBT=1
212	asmObtErrorRate=0.08

213 214	asmObtErrorLimit=4.5	
215	batOptions=-RS -NS -CS	
216	utgGraphErrorRate=0.055	
217	utgGraphErrorLimit=4	
218	utgMergeErrorRate=0.055	
219	utgGraphErrorLimit=4	
220		
221	ovlHashBits=24	
222	ovlHashLoad=0.80	
223		
224	ovlHashBlockLength	=300000000
225	ovlRefBlockLength	=0
226	ovlRefBlockSize	=2000000
227		

- This initial assembly was 2.67 Gbp in 16,441 contigs and an N50 of 2.8 Mbp. Quiver from
- 229 SMRTportal v. 2.3.0 (Chin *et al.*, 2013) was used to correct the assembly.

230 **1.2.3 Scaffolding**

231 The lung tissue from the pig was sent to Dovetail Genomics (Santa Cruz) for scaffolding by Chicago and HiRise as described (Putnam et al., 2016). This process identified 270 putative 232 misjoins in the contigs and output scaffolds 13,039 scaffolds (294 > 50 kb). The total length 233 was 2.66 Gbp and scaffold N50 was 36.5 Mbp. The dovetail scaffolds were gap-filled where 234 235 a single contig spanned the gap, correcting false breaks made by HiRise. The resulting 236 assembly was used for reference-guided scaffolding based on the Sscrofa11.1 reference. In 237 case of conflicts, with the exception of cross-chromosome joins, the USDA assembly was 238 unchanged.

239 **1.1.4 Gap filling**

- PBJelly (English *et al.*, 2012) was used with the 65X raw PacBio reads to fill the gaps in the
- scaffolds. Default parameters were used for all steps.

242 **1.2.5 Polishing**

Gap filling was followed by Pilon (Walker *et al.*, 2014) with fixlist restricted to "bases", but otherwise using default parameters and paired-end Illumina short read data that provided 50x genome coverage. The final assembly of 2.8 Gbp has a scaffold N50 of 131.5 Mbp and a contig N50 of 6.4 Mbp (Table 1).

1.3 Anchoring the assemblies to chromosomes

249 **1.3.1 Chromosome Preparation**

Heparinized blood samples were cultured for 72 h in PB MAX Karyotyping medium (Invitrogen) at 37° C, 5% CO₂. Cell division was arrested by adding colcemid at a concentration of 10.0 µg/ml (Gibco) for 30 min prior to hypotonic treatment with 75 mM KCl and fixation to glass slides using 3:1 methanol:acetic acid.

1.3.2 Preparation and Selection of BAC clones for FISH

BAC clones with inserts of approximately 150 kb in size were selected for position using the Sscrofa10.2 NCBI database (www.ncbi.nim.nih.gov) and ordered from the PigE-BAC library (ARK-Genomics) (Anderson *et al.*, 2000) and the CHORI-242 Porcine BAC library (BACPAC, https://bacpacresources.org/). BAC clone DNA was isolated using the Qiagen Miniprep Kit (Qiagen) prior to amplification and direct labelling by nick translation. Probes were labelled with Texas Red-12-dUTP (Invitrogen) and FITC- Fluorescein-12-UTP (Roche) prior to purification using the Qiagen Nucleotide Removal Kit (Qiagen).

262 **1.3.3 Fluorescence** *in situ* hybridisation

Metaphase preparations were fixed to slides and dehydrated through an ethanol series 263 (2 min each in 2×SSC, 70%, 85% and 100% ethanol at RT). Probes were diluted in a 264 formamide buffer (Cytocell) with Porcine Hybloc (Insight Biotech) and applied to the 265 metaphase preparations on a 37°C hotplate before sealing with rubber cement. Probe and 266 target DNA were simultaneously denatured for 2 mins on a 75°C hotplate prior to 267 268 hybridisation in a humidified chamber at 37°C for 16 h. Slides were washed post hybridisation in 0.4x SSC at 72°C for 2 mins followed by 2x SSC/0.05% Tween 20 at RT for 269 30 secs, and then counterstained using VECTASHIELD anti-fade medium with DAPI (Vector 270 271 Labs). Images were captured using an Olympus BX61 epifluorescence microscope with 272 cooled CCD camera and SmartCapture (Digital Scientific UK) system.

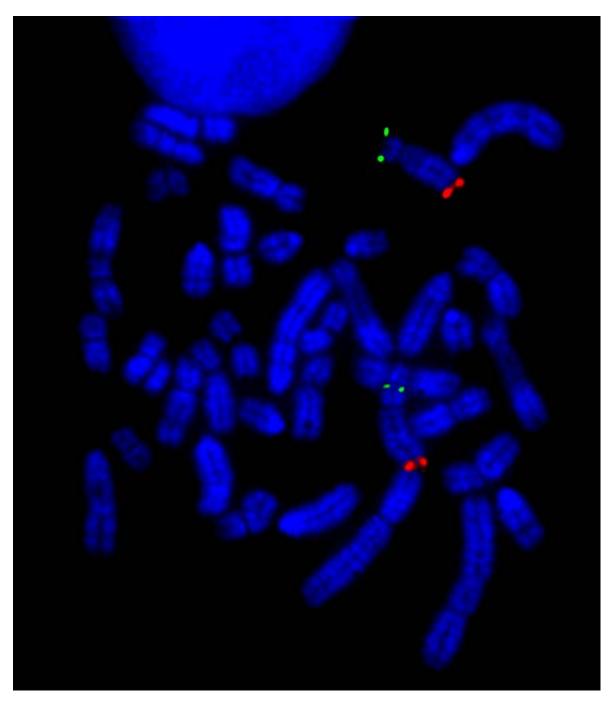
The Sscrofa11.1 and USMARCv1.0 assemblies were searched using BLAST with sequences derived from the BAC clones which had been used as probes for the FISH analyses. For most BAC clones these sequences were BAC end sequences (Humphray *et*

al., 2007), but in some cases these sequences were incomplete or complete BAC clone sequences (Groenen *et al.*, 2012; Skinner *et al.*, 2016). The links between the genome sequence and the BAC clones used in cytogenetic analyses by fluorescent *in situ* hybridization are summarised in Supplementary Table ST2.

The fluorescent *in situ* hybridization data indicate that the following chromosomal scaffolds in the USMARCv1.0 are inverted relative to the conventional cytogenetic orientation of the corresponding chromosomes: SSC1, SSC6, SSC7, SSC8, SSC9, SSC10, SSC11, SSC13, SSC14, SSC15, and SSC16. Whilst the USMARCv1.0 assembly of SSC16 appears overall to be in the reverse orientation with respect to the cytogenetic orientation and the Sscrofa11.1 assembly of this chromosome it also appears to harbour sequences at the start of the scaffold that perhaps belong at the other end of the scaffold.

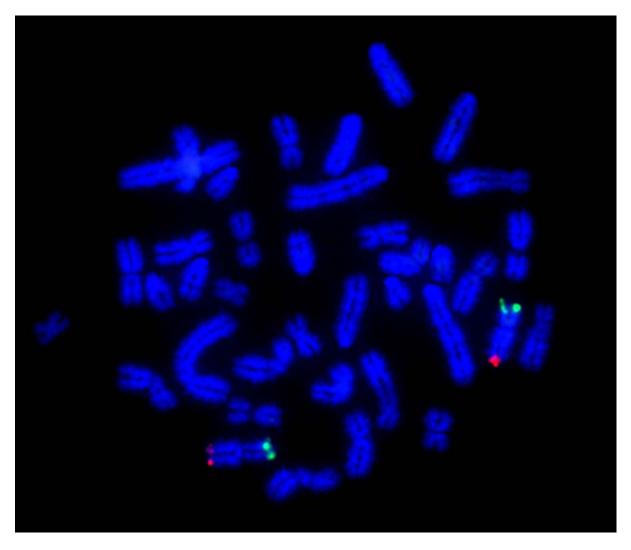
The fluorescent *in situ* hybridization results also indicate areas where future assemblies might be improved. For example, the Sscrofa11.1 unplaced scaffolds contig 1206 and contig1914 may contain sequences that could be added to end of the long arms of SSC1 and SSC7 respectively. Examples of the primary fluorescent in situ hybridisation data are provided in Supplementary Figures SF1a, SF1b.

293 Supplementary Table ST2: Fluorescent in situ hybridisation results using named BAC clones as probes plus sequence matches for


ese BAC clones.

Chr	BAC Name	BES	FISH	Sscrofa11.1 coordinates	USMARCv1.0 coordinates
1	PigE-232G23	CT070230.1; CT218278.1	1p	1:615,021-619,597	1:280,453,704-280,458,272
1	CH242-248F13	FP340244.3	1p	1:1,470,202-1,660,001	1:279,368,385-279,558,294
1	CH242-151E10	CT239299.1; CT245986.1	1q	unplaced scaffold: Contig1206	1: 6,156,768-6,336,737
2	PigE-117G14	CT074446.1; CT074447.1	2p	2:19,406-161,226	2:537,026-678,808
2	PigE-8G19	CT260033.1; CT260032.1	2p	2:552,031-671,098	2:29,620-146,529
2	CH242-188K23	CU929880	2 cen	2:52,747,463-52,933,130	2:51,728,649-51,908,148
2	CH242-230M23	CT144824.1; CT258059.1	2 cen	2:53,300,582-53,472,497	no match
2	CH242-441A1	CT364255.1;CT364256.1	2 cen	2:53,458,574-53,652,606	2:52,095,251-52,095,932
2	CH242-294F6	CT378635.1; CT378634.1	2q	2:151,178,736-151,402,963	2:145,456,152-145,678,427
3	PigE-168G22	CT094069.1; CT094070.1	3р	3:301,813-509,346	3:218,358-425,025
3	CH242-315N8	CT359002.1; CT359003.1	3q	3:122,720,374-122,869,530	no match
4	PigE-262E12	CT082779.1; CT193441.1	4p	4:37,383-223,717	4: 96,811- 97,511
4	PigE-131J18	CT116562.1; CT171811.1	4p	4:449,934-626,677	4:322,853-499,367
4	PigE-85G21	CT070098.1; CT190031.1	4q	4:130,625,653-130,748,215	4:130,215,908-130,338,404
5	CH242-288F8	CT132004.1; CT211915.1	5p	5:170,319-344,353	5:188,019-362,653
5	PigE-178M22	CT139068.1; CT155898.1	5p	5:175,168-311,462	5:192,886-329113
5	CH242-133F9	CT166002.1; CT166003.1	5p	5:438,296-633,458	5:456,924-652,458
5	PigE-127K14	CT057696.1; CT057697.1	5p	5:1,003,455-1,129,329	5:1,024,261-1,148,699
5	PigE-74P10	CT188857.1; CT188858.1	5p	5:3,739,938-3,883,755	5:103,338,585-103,481,984
5	PigE-99L23	CT079916.1; CT106700.1	5p Mid	5:31,980,969-32,114,628	no match
5	CH242-63B20	FP102738	5q	5:104,304,289-104,489,770	no match
6	PigE-238J17	CT220438.1; CT220439.1	6p	6:2,333,972-2,522,065	6:162,952,836-163,141,204
6	PigE-199E24	CT272854.1; CT272853.1	6 below cen	6:62,771,286-62,952,647	6:104,969,580-105,152,317
6	CH242-510F2	CT396711.1; CT442620.1	6q	6:170,248,061-170,454,571	6:162,654-369,119
7	PigE-52L22	CT054562.1; CT063652.1	7p	7:188,339-317,255	7:125,463,765-125,463,765
7	PigE-246A1	CT203984.1; CT070741.1	7 cen	7:24,628,314-24,671,828	no match
7	PigE-230H8	CT120917.1	7q below cen	7:46,704,415-46,704,995	7:395,704-396,284
7	PigE-75E21	CT188956.1; CT261917.1	7q below cen	7:46,901,592-47,032,091	7:68,406-199,212
7	CH242-103I13	CU695123.2	7q	Unplaced scaffold: Contig1914	7:7,614,911-7,838,927

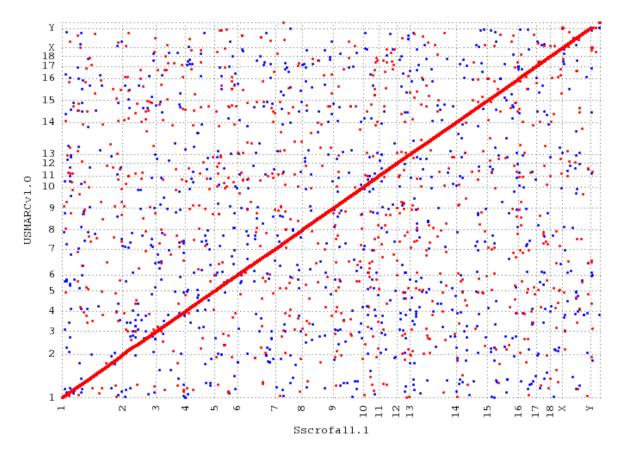
Chr	BAC Name	BES	FISH	Sscrofa11.1 coordinates	USMARCv1.0 coordinates
8	PigE-134L21	CT126839.1; CT172501.1	8p	8:570,904-705,341	8:280,369,080-280,502,409
8	PigE-2N1	CT229915.1; CT229916.1	8p	8:819,717-958,131	8:137,599,822-137,737,820
8	PigE-118B21	CT048761.1; CT091504.1	8q	8:138,491,413-138,647,394	8:322,914-478,869
9	CH242-65G4	CU695192.2	9p	9:320,582-511,079	9:137,686,630-137,874,917
9	PigE-126017	CT170583.1; CT057320.1	9p	9:443,462-603,022	9:137,594,779-137,754,110
9	PigE-242D8	CT123266.1; CT123265.1	9 mid	9:67,752,381-67,910,109	9:71,096,887-71,254,731
9	CH242-411M8	CT362997.1; CT468791.1	9q	9:139,180,446-139,338,710	9:168,756-327,007
10	CH242-451I23	CT369304.1; CT459538.1	10p	Unplaced scaffold: Contig2471	10:71,863,534-72,028,842
10	CH242-36D16	CT345373.1; CT186999.1	10q	10:55,422,866-55,600,351	10:15,300,371-15,480,359
10	CH242-517L16	FP325295.2	10q	10:55,609,778-55,800,022	10:15,098,969-15,290,916
11	PigE-199B10	CT272693.1	11p	11:135,233-297,713	11:79,101,520-79,264,254
11	PigE-232N19	CT193346.1	11p	11:290,540-291,222	11:79,108,017-79,108,697
11	PigE-211E21	CT044498.1; CT044499.1	11p	11:1,584,043-1,743,425	11:77,663,220-77,822.434
11	CH242-239011	CT146353.1; CT286242.1	11q	11:78,888,491-79,057,526	11:827,483-996,382
12	PigE-253K5	CT081057.1; CT204391.1	12p	12:324,614-524,015	12:3,288-206,400
12	PigE-124G15	CT056668.1; CT092177.1	12q	12:60,846,540-60,990,610	12:58,746,918-58,890,342
13	PigE-197C11	CT271598.1; CT271599.1	13p	13:556,804-694,010	13:204,579,401-204,716,338
13	PigE-179J15	CT124924.1; CT124925.1	13q	13:205,856,740-206,006,912	13:3,005,553-3,154,893
14	PigE-137C12	FP340551.3	14p	14:17,423-156,591	14:140,940,126-140,804,938
14	PigE-167E18	CT089616.1; CT089617.1	14q	14:141,407,495-141,435,234	14:98,899-125,652
15	PigE-90C11	CT190903.1; CT190904.1	15p	15:3,442,144-3,596,666	15:139,733,189-139,886,921
15	PigE-108N22	CT073138.1; CT046453.1	15 mid	15:56,903,229-57,028,679	no match
15	CH242-170N3	FP236135.2	15q	15:139,616,279-139,784,756	15:3,511,408-3,588,855
16	PigE-90L22	CT191132.1; CT113297.1	16p	16:109,696-235,547	16:87,402-212,531
16	PigE-124C22	CT056551.1; CT056550.1	16p	16:117,329-308,428	16:94,873-287,243
16	CH242-4G9	CT041970.1; CT041969.1	16p	16:141,557-324,802	16:118,753-303,587
16	PigE-173H6	CT123878.1; CT123877.1	16p	16:167,106-299,570	16:144,276-278,432
16	PigE-149F10	CT088298.1; CT153977.1	16p	16:596,671-782,524	16:78,918,129-79,108,868
16	CH242-42L16	CT347302.1; CT347303.1	16q	16:79,097,179-79,303,695	16:878,687-1,085,418
17	CH242-70L7	CT077340.1; CT077341.1	17p	17:545,995-673,770	17:464,378-592,438
17	PigE-190G24	CT126644.1; CT096362.1	17p	17:515,422-707,787	17:433,829-626,496
17	CH242-243H19	CT321876.1; CT321877.1	17q	17:61,760-582-61,937,945	17:62,450,941-62,628,249


Chr	BAC Name	BES	FISH	Sscrofa11.1 coordinates	USMARCv1.0 coordinates
18	PigE-253N22	CT081116.1; CT204433.1	18p	18:1,616,389-1,751,286	18:1,565,719-1,700,920
18	PigE-202111	CT042866.1; CT254626.1	18q	18:55,539,630-55,700,409	18:55,320,418-55,481,057
Х	CH242-447L20	CT377508.1; CT467360.1	Хр	X:505,086-692,549	no match
Х	CH242-156011	FP074895.7	Xp + Yp	X:6,337,709 6,584,993	X:7,588,110-7,597,109
Х	CH242-19N1	CU856094.8	Хр	X:6,705,194-6,834,183	X:7,588,110-7,715,932
Х	CH242-305A15	CU861979.13	Xq	X:125,384,028-125,529,813	X:126,150,718-126,296,945
Y	CH242-156011	FP074895.7	Xp + Yp	Y:4,744,231-4,791,971	Y:32,909,634-32,923,401

- 298 Supplementary Figure SF1a: Fluorescent *in situ* hybridisation assignments
- a. SSC6 p-telomeric end labelled with PigE-238J17, q-telomeric end labelled with CH242-
- **510F2**

305 **Supplementary Figure SF1b:** Fluorescent *in situ* hybridisation assignments

b. SSCX – p-telomeric end labelled with CH242-19N1, q-telomeric end labelled with CH242 305A15

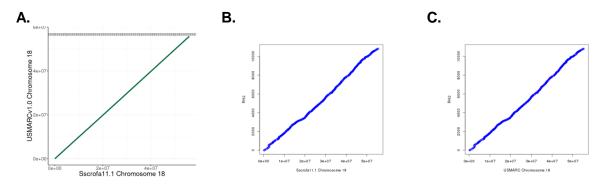



```
308
309
```

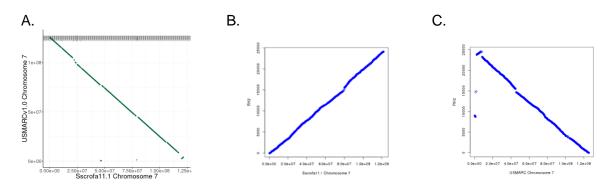
1.4 Quality Assessment of Sscrofa11.1 and USMARCv1.0 assemblies

1.4.1 Order and orientation

In addition to assigning and orienting the scaffolds on chromosomes as described above, order and orientation within chromosome assemblies was checked by alignment to the radiation hybrid map (Servin *et al.*, 2012) and alignments amongst the assemblies (Sscrofa10.2, Sscrofa11.1 and USMARCv1.0). The overall alignments indicate that the new assemblies (Sscrofa11.1, USMARCv1.0) are essentially co-linear with each other and with the radiation hybrid map (Figure 1, Supplementary Figure SF2). At the level of individual chromosomes, order and orientation within chromosome 18, for example, is consistent between Sscrofa11.1 and USMARCv1.0 and both SSC18 chromosome assemblies are supported by the radiation hybrid map (Supplementary Figure SF3). However, although the alignments of other chromosomes with the radiation map also support the overall co-linearity of the sequence and radiation hybrid maps, there are some differences in local order and orientation between the Sscrofa11.1 and USMARCv1.0 as illustrated in Supplementary Figures SF4 and SF5 for SSC7 and SSC8 respectively.



327 Supplementary Figure SF2: Alignment of Sscrofa11.1 and USMARCv1.0 assemblies after


328 correcting inversions of USMARCv1.0 chromosome scaffolds

329

326


Supplementary Figure SF3: Order and orientation of SSC18 assemblies: A. alignment of
 Sscrofa11.1 and USMARCv1.0 assemblies of SSC18; B. alignment of Sscrofa11.1 and
 radiation hybrid map (RH2); C. alignment of USMARCv1.0 and radiation hybrid map (RH2).

335 **Supplementary Figure SF4:** Order and orientation of SSC7 assemblies: **A.** alignment of

337 radiation hybrid map (RH2); **C.** alignment of USMARCv1.0 and radiation hybrid map (RH2).

Sscrofa11.1 and USMARCv1.0 assemblies of SSC7; B. alignment of Sscrofa11.1 and

Supplementary Figure SF5: Order and orientation of SSC8 assemblies: **A.** alignment of Sscrofa11.1 and USMARCv1.0 assemblies of SSC8; **B.** alignment of Sscrofa11.1 and radiation hybrid map (RH2); **C.** alignment of USMARCv1.0 and radiation hybrid map (RH2).

The matches shown in the grey zone at the top of each plot of the Sscrofa11.1 versus USMARCv1.0 alignments probably represent a mix of repetitive sequences and matches to the unplaced scaffolds in the USMARCv1.0 assembly.

Whether the differences between Sscrofa11.1 and USMARCv1.0 in order and orientation within chromosomes represent assembly errors or real chromosomal differences will require further research. The sequence present at the telomeric end of the long arm of chromosome 7 (after correcting the orientation of the USMARCv1.0 SSC7 assembly) is missing from the Sscrofa11.1 SSC7 assembly, and currently located on a 3.8 Mbp unplaced scaffold (AEMK02000452.1) that harbours several genes including DIO3, CKB and NUDT14 whose

334

orthologues map to human chromosome 14 as would be predicted from the pig-human comparative map (Meyers *et al.*, 2005). This omission will be corrected in an updated assembly in future.

353 **1.4.2 BUSCO and Cogent analyses**

354 The assembly was assessed for completeness using BUSCO (Simão et al., 2015) (Table ST3) and Cogent (https://github.com/Magdoll/Cogent), and assessed for structural accuracy 355 by checking consistency between markers from radiation hybrid maps (Servin et al., 2012) 356 and the assembly. PacBio transcriptome (Iso-Seg) data consisting of high-quality isoform 357 sequences from 7 tissues (diaphragm, hypothalamus, liver, skeletal muscle (longissimus 358 dorsi), small intestine, spleen and thymus) from the pig whose DNA was used as the source 359 360 for the USMARCv1.0 assembly were pooled together for Cogent analysis. Cogent is a tool that identifies gene families and reconstructs the coding genome using full-length, high-361 quality (HQ) transcriptome data without a reference genome. Cogent partitioned 276,196 HQ 362 isoform sequences into 30,628 gene families, of which had at least 2 distinct transcript 363 364 isoforms. Cogent then performed reconstruction on the 18,708 partitions. For each partition, 365 Cogent attempts to reconstruct coding 'contigs' that represent the ordered concatenation of 366 transcribed exons as supported by the isoform sequences. The reconstructed contigs were 367 then mapped back to Sscrofa11.1 and contigs that could not be mapped or map to more than one position are individually examined. 368

369

371 **Supplementary Table ST3:** BUSCO statistics, BUSCOv2 (OrthoDBv9)

	Sscrofa10.2	Sscrofa11.1	USMARCv1.0
Complete BUSCOs	80.9%	93.8%	93.1%
Complete and single-copy BUSCOs	80.2%	93.3%	92.6%
Complete and duplicated BUSCOs	0.7%	0.5%	0.5%
Fragmented BUSCOs	8.2%	3.5%	3.5%
Missing BUSCOs	10.9%	2.7%	3.4%
Total BUSCO groups searched	4,104	4,104	4,104

372

1.4.3 Assemblytics

374 A comparison of pig genome assemblies was undertaken using the Assemblytics tools

375 (Nattestad and Schatz, 2016) (<u>http://assemblytics.com</u>). The comparisons are listed in Table

376 ST4.

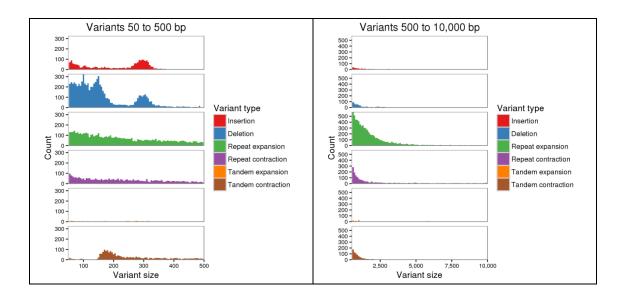
377

Supplementary Table ST4a: Assemblytics comparisons

Reference		Sscrofa10.2 (GCF_000003025.5)
Query	Assembly accession	
Sscrofa11.1	GCA_000003025.6	http://qb.cshl.edu/assemblytics/analysis.php?code=i0H3KuHhWjKO5Tn7nsXg
USMARCv1.0	GCA_002844635.1	http://qb.cshl.edu/assemblytics/analysis.php?code=faROmPzOIMp1q5IdToO8
Reference		Sscrofa11.1
Query	Assembly accession	
Sscrofa11.1	GCA_000003025.6	N/A
USMARCv1.0	GCA_002844635.1	http://assemblytics.com/analysis.php?code=4rscWrlT7paorSvTMI7L
Bamei	GCA_001700235.1	http://assemblytics.com/analysis.php?code=gpCq8VWG4aWrocrlCWww
Berkshire	GCA_001700575.1	http://assemblytics.com/analysis.php?code=dvVxU3qkCNUR3rWpm2Fl
Hampshire	GCA_001700165.1	http://assemblytics.com/analysis.php?code=V6jWeDYKywLu4Av40lkh
Jinhua	GCA_001700295.1	http://qb.cshl.edu/assemblytics/analysis.php?code=UxtEbFk065DWQBpYz0sV
Landrace	GCA_001700215.1	http://qb.cshl.edu/assemblytics/analysis.php?code=7V7QGUCXrNAtFcGL6DMT
LargeWhite	GCA 001700135.1	http://qb.cshl.edu/assemblytics/analysis.php?code=UymCHs1NirQkdMFFbM1e
Meishan	GCA 001700195.1	http://qb.cshl.edu/assemblytics/analysis.php?code=toDVmO7nus0BbyMCGKSc
Pietrain	GCA_001700255.1	http://qb.cshl.edu/assemblytics/analysis.php?code=TIIXYB2uQYgWbf5YqNXk
Rongchang	GCA_001700155.1	http://qb.cshl.edu/assemblytics/analysis.php?code=HzggG8kBPJ6uKWWEvZOV
Tibetan	GCA 000472085.2	http://qb.cshl.edu/assemblytics/analysis.php?code=o9WtyIF6wTnGsEeAiizn
Wuzhishan	GCA_000325925.2	http://qb.cshl.edu/assemblytics/analysis.php?code=UbH3avfeoW19DjJmVC8C

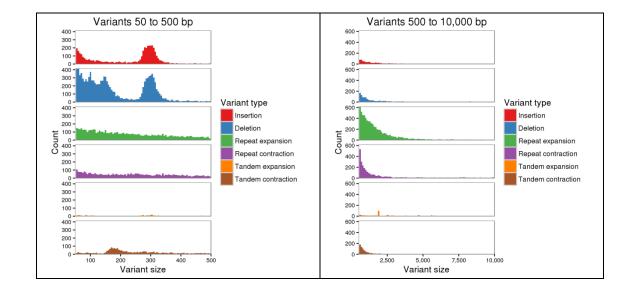
Supplementary Table ST4b: Assemblytics comparisons

Reference		USMARCv1.10
Query	Assembly accession	
Sscrofa11.1	GCA_000003025.6	http://assemblytics.com/analysis.php?code=4rscWrIT7paorSvTMI7L
USMARCv1.0	GCA_002844635.1	N/A
Bamei	GCA_001700235.1	http://assemblytics.com/analysis.php?code=A1doW581DPkQKXlwfbtB
Berkshire	GCA_001700575.1	http://qb.cshl.edu/assemblytics/analysis.php?code=5dCXFbth2110zsguw58t
Hampshire	GCA_001700165.1	http://qb.cshl.edu/assemblytics/analysis.php?code=Xe5ENqAjsxeNcrK7TaRp
Jinhua	GCA_001700295.1	http://qb.cshl.edu/assemblytics/analysis.php?code=nqEihnLJRPsjNswVxV9J
Landrace	GCA_001700215.1	http://qb.cshl.edu/assemblytics/analysis.php?code=tfrtkAXiy148TUsb8HIJ
LargeWhite	GCA_001700135.1	http://qb.cshl.edu/assemblytics/analysis.php?code=IZM3EFMBzo9KyytQMSWH
Meishan	GCA_001700195.1	http://qb.cshl.edu/assemblytics/analysis.php?code=K9qeCrVxr9znPtFanHd3
Pietrain	GCA_001700255.1	http://qb.cshl.edu/assemblytics/analysis.php?code=U1n9D7z7DtRvbWjqEdTH
Rongchang	GCA_001700155.1	http://qb.cshl.edu/assemblytics/analysis.php?code=nEk3faE5s8YYckjNuvN7
Tibetan	GCA_000472085.2	http://qb.cshl.edu/assemblytics/analysis.php?code=NqjCZ7wvt6D0vm7Ai4tN
Wuzhishan	GCA_000325925.2	http://qb.cshl.edu/assemblytics/analysis.php?code=mEqp9WaGi9eceSY4Vid6


Assembly	Accession	Total (bp)(ungapped)	Scaffolds	Scaffold N50	Contigs	Contig N50
Sscrofa11.1	GCA_000003025.6	2,472,047,747	706	88,231,837	1,118	48,231,277
USMARCv1.0	GCA_002844635.1	2,623,130,238	14,818	131,458,098	14,818	6,372,407
Bamei	GCA_001700235.1	2,433,636,520	129,335	1,529,027	187,466	70,893
Berkshire	GCA_001700575.1	2,414,739,650	94,468	1,655,397	137,661	94,651
Hampshire	GCA_001700165.1	2,418,011,428	82,206	1,550,023	122,452	102,417
Jinhua	GCA_001700295.1	2,433,032,022	115,554	1,478,908	158,796	95,227
Landrace	GCA_001700215.1	2,420,570,845	94,659	1,407,841	141,909	88,142
LargeWhite	GCA_001700135.1	2,430,896,979	102,342	2,441,555	150,742	88,831
Meishan	GCA_001700195.1	2,438,814,343	133,833	1,248,180	201,146	63,263
Pietrain	GCA_001700255.1	2,415,062,022	88,436	1,663,542	139,497	80,611
Rongchang	GCA_001700155.1	2,429,730,895	120,246	2,325,000	173,508	79,093
Tibetan	GCA_000472085.2	2,379,878,366	72,068	861,885	148,234	57,199
Wuzhishan	GCA_000325925.2	2,453,484,489	137,577	5,853,977	272,163	31,939

Supplementary Table ST4c: Assembly statistics* for pig genome assemblies subject to Assemblytics analyses

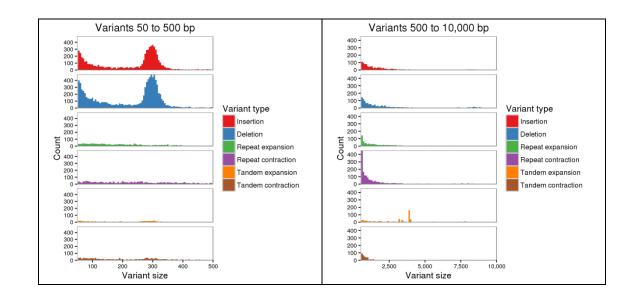
387 * source NCBI Assembly

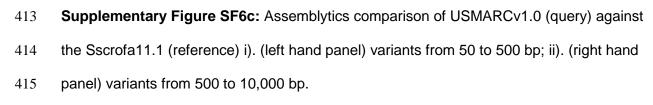

389 In all the pairwise comparisons amongst the former Sscrofa10.2 assembly and the new 390 Sscrofa11.1 an USMARCv1.0 assemblies there is a peak of insertions and deletion with 391 sizes of about 300 bp (Supplementary Figures SF6a-c). We assume that these correspond to SINE elements. Despite the fact that the Sscrofa10.2 and Sscrofa11.1 assemblies are 392 393 representations of the same pig genome, there are many more differences between these assemblies than between the Sscrofa11.1 and USMARCv1.0 assemblies. We conclude that 394 many of the differences between the Sscrofa11.1 assembly and the earlier Sscrofa10.2 395 396 assemblies represent improvements in the former. Some of the differences may indicate local differences in terms of which of the two haploid genomes has been captured in the 397 assembly. The differences between the Sscrofa11.1 and USMARCv1.0 will represent a mix 398 399 of true structural differences and assembly errors that will require further research to resolve.

400

401

Supplementary Figure SF6a: Assemblytics comparison of Sscrofa11.1 (query) against the
Sscrofa10.2 (reference) i). (left hand panel) variants from 50 to 500 bp; ii). (right hand panel)
variants from 500 to 10,000 bp.

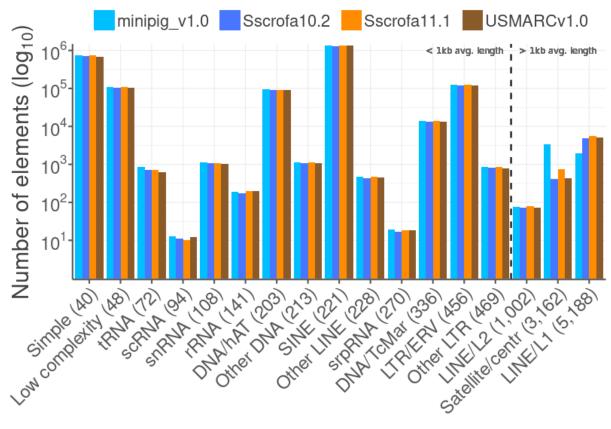




Supplementary Figure SF6b: Assemblytics comparison of USMARCv1.0 (query) against

the Sscrofa10.2 (reference) i). (left hand panel) variants from 50 to 500 bp; ii). (right hand

410 panel) variants from 500 to 10,000 bp.

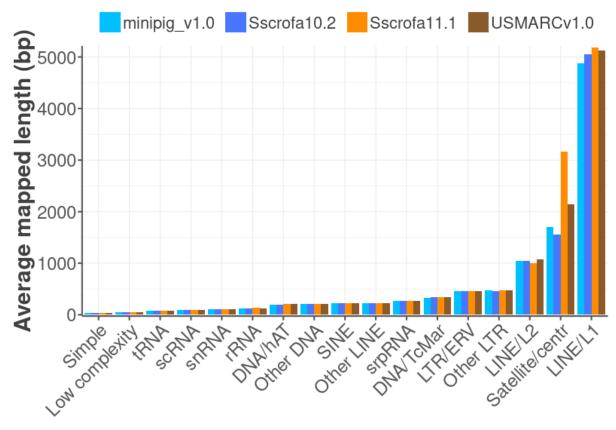


417 **2. Analyses**

418 **2.1 Repeat analysis**

Repeats were identified using RepeatMasker (v.4.0.7) (Smit et al. 2013) with a combined 419 repeat database including Dfam (v.20170127) (Hubley et al., 2016) and RepBase 420 421 (v.20170127) (Bao, Kojima and Kohany, 2015) on the minipig_v1.0, Sscrofa10.2, Sscrofa11.1 and USMARCv1.0 assemblies. RepeatMasker was run with "sensitive" (-s) 422 setting using sus scrofa as the query species (-- species "sus scrofa"). Repeats which 423 showed greater than 40% sequence divergence or were shorter than 70% of the expected 424 425 sequence length were filtered out from subsequent analyses. The presence of potentially novel repeats was assessed by RepeatMasker using the novel repeat library generated by 426 427 RepeatModeler (v.1.0.11) (Smit and Hubley, 2008).

The numbers of the different repeat classes and the average mapped lengths of the repetitive elements identified in these four pig genome assemblies are summarised in Supplementary Figures SF7 and SF8 respectively.


431

Repeat class (repeat length in bp)

432 **Supplementary Figure SF7:** Counts of repetitive elements in four pig assemblies. Counts

433 are given for repeat classes for which percent divergence was less than 40% and mapped

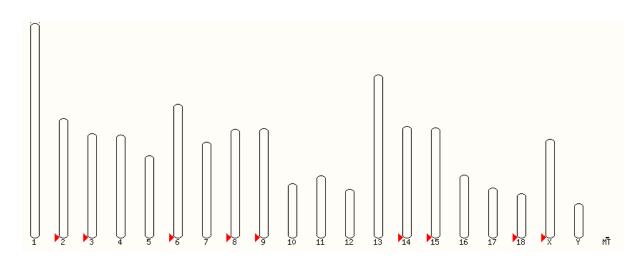
434 length was above 70% relative to the RepBase database entries.

Repeat class

436 Supplementary Figure SF8: Average mapped length of repetitive elements in four pig437 genomes.

438 **2.1.1 Telomeres**

Telomeres were identified by running Tandem Repeat Finder (TRF) (Benson, 1999) with 439 default parameters apart from Mismatch (5) and Minscore (40). The identified repeat 440 441 sequences were then searched for the occurrence of five identical, consecutive units of the 442 TTAGGG vertebrate motif or its reverse complement and total occurrences of this motif was 443 counted within the tandem repeat. Regions which contained at least 200 identical hexamer units, were >2kb of length and had a hexamer density of >0.5 were retained as potential 444 telomeres (Supplementary Table ST5; Supplementary Figure SF9). As chromosomes SSC1-445 446 SSC12 inclusive are metacentric we would have expected to identify telomeric sequences on the short arms of these chromosomes. 447


448

435

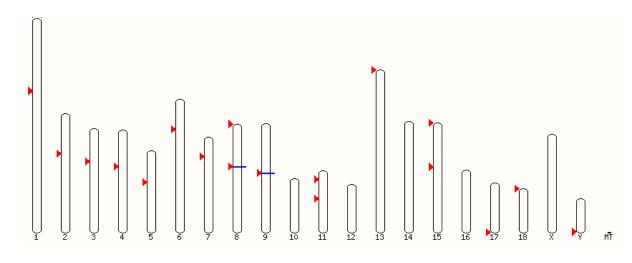
450 Supplementary Table ST5: Predicted telomere locations in the Sscrofa11.1 assembly.
451 Number of exact matches of the vertebrate TTAGGG repeat sequence was used to identify
452 candidate telomeres.

Chr	Start	End	Number of hexamers	Region length (kb)	Strand	Hexamer content
2	151,924,806	151,935,981	1,609	11.2	+	86.4%
3	132,840,959	132,848,913	1,046	8.0	+	78.9%
6	170,835,933	170,843,587	957	7.7	+	75.0%
8	138,963,948	138,966,197	208	2.2	+	55.5%
9	139,499,115	139,512,083	1,836	13.0	+	84.9%
14	141,745,369	141,755,446	1,201	10.1	+	71.5%
15	140,408,314	140,412,713	595	4.4	+	81.2%
18	55,971,782	55,982,971	1,571	11.2	+	84.2%
Х	125,929,106	125,939,592	1,329	10.5	+	76.0%

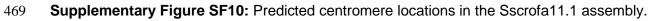
453

454

455 **Supplementary Figure SF9:** Predicted locations of telomeres in the Sscrfoa11.1 assembly


456 **2.1.2 Centromeres**

457 Centromeres were predicted using the following strategy. First, the RepeatMasker output, 458 both default and novel, was searched for centromeric repeat occurrences. Second, the 459 assemblies were searched for known, experimentally verified, centromere specific repeats 460 (Miller, Hindkjær and Thomsen, 1993) (Riquet et al., 1996) in the Sscrofa11.1 genome. Then 461 the three sets of repeat annotations were merged together with BEDTools (Quinlan and Hall, 462 2010) (median and mean length: 786 bp and 5775 bp, respectively) and putative centromeric 463 regions closer than 500 bp were collapsed into longer super-regions. Regions which were 464 >5kb were retained as potential centromeric sites (Supplementary Table ST6;


465 Supplementary Figure SF10).

Chr	Start	End	Repeat content	Region length	Repeat
			(bp)	(bp)	content
1	92,615,481	92,672,216	46,164	56,735	81.4%
1	92,760,768	92,881,119	110,990	120,351	92.2%
1	93,266,464	93,430,514	80,940	16,4050	49.3%
2	50,550,173	50,777,308	198,336	227,135	87.3%
3	41,776,737	41,860,603	35,376	83,866	42.2%
4	46,443,460	46,472,085	28,625	28,625	100.0%
5	39,774,025	39,828,563	54,538	54,538	100.0%
5	39,878,566	40,207,105	328,539	328,539	100.0%
6	38,712,705	38,886,534	163,335	173,829	94.0%
7	24,578,125	24,606,761	28,636	28,636	100.0%
8	144	20,905	20,761	20,761	100.0%
8	54,585,508	54,685,241	21,099	99,733	21.2%
9	63,144,551	63,503,859	356,770	359,308	99.3%
11	11,220,831	11,222,126	1,295	1,295	100.0%
11	35,726,738	35,728,355	1,617	1,617	100.0%
11	35,804,210	35,809,503	5,293	5,293	100.0%
11	35,870,705	35,878,206	7,501	7,501	100.0%
13	34	152,474	150,375	152,440	98.6%
15	1,649	36,105	10,369	34,456	30.1%
15	56,407,100	56,427,869	9,798	20,769	47.2%
17	63,189,675		171,758	171,758	100.0%
18	619	17,212	16,593	16,593	100.0%
Y	42,496,777	42,515,903	17,954	19,126	93.9%

Supplementary Table ST6: Predicted centromere locations in the Sscrofa11.1 assembly

472 **2.2 Transcriptome data used for building gene models**

Two new sources of transcriptome sequence data were generated for use in building gene
models as described below – Annotation (Ensembl). First, long read transcript data (Iso-Seq)
were generated on the Pacific Bioscience RSII platform. Second, short read Illumina RNASeq data.

477 **2.2.1 Iso-Seq**

The following tissues were harvested from MARC1423004 at age 48 days: brain (BioSamples: SAMN05952594), diaphragm (SAMN05952614), hypothalamus (SAMN05952595), liver (SAMN05952612), small intestine (SAMN05952615), skeletal muscle – *longissimus dorsi* (SAMN05952593), spleen (SAMN05952596), pituitary (SAMN05952626) and thymus (SAMN05952613).

483 Total RNA from each of these tissues was extracted using Trizol reagent (ThermoFisher Scientific) and the provided protocol. Briefly, approximately 100 mg of tissue was ground in a 484 485 mortar and pestle cooled with liquid nitrogen, and the powder was transferred to a tube with 1 ml of Trizol reagent added and mixed by vortexing. After 5 minutes at room temperature, 486 0.2 mL of chloroform was added and the mixture was shaken for 15 seconds and left to 487 stand another 3 minutes at room temperature. The tube was centrifuged at 12,000 x g for 488 15 minutes at 4°C. The RNA was precipitated from the aqueous phase with 0.5 mL of 489 isopropanol. The RNA was further purified with extended DNase I digestion to remove 490 potential DNA contamination. The RNA quality was assessed with a Fragment Analyzer 491 492 (Advanced Analytical Technologies Inc., IA). Only RNA samples of RQN above 7.0 were 493 used for library construction. PacBio IsoSeq libraries were constructed per the PacBio IsoSeq protocol. Briefly, starting with 3 µg of total RNA, cDNA was synthesized by using 494 495 SMARTer PCR cDNA Synthesis Kit (Clontech, CA) according to the IsoSeq protocol (Pacific Biosciences, CA). Then the cDNA was amplified using KAPA HiFi DNA Polymerase (KAPA 496 Biotechnologies) for 10 or 12 cycles followed by purification and size selection into 4 497 498 fractions: 0.8-2 kb, 2-3 kb, 3-5 kb and >5 kb. The fragment size distribution was validated on a Fragment Analyzer (Advanced Analytical Technologies Inc, IA) and guantified on a DS-11 499

500 FX fluorometer (DeNovix, DE). After a second round of large scale PCR amplification and 501 end repair, SMRT bell adapters were separately ligated to the cDNA fragments. Each size 502 fraction was sequenced on 4 or 5 SMRT Cells v3 using P6-C4 chemistry and 6 hour movies 503 on a PacBio RS II sequencer (Pacific Bioscience, CA). Short read RNA-Seq libraries were 504 also prepared for all nine tissue using TruSeq stranded mRNA LT kits and supplied protocol 505 (Illumina, CA), and sequenced on a NextSeq500 platform using v2 sequencing chemistry to 506 generate 2 x 75 bp paired-end reads.

507 2.2.1.1 Error-correction and redundancy reduction of PacBio Iso-Seq full-length cDNA 508 reads

The Read of Insert (ROI) were determined by using consensustools.sh in the SMRT-509 510 Analysis pipeline v2.0, with reads which were shorter than 300 bp and whose predicted 511 accuracy was lower than 75% removed. Full-length, non-concatemer (FLNC) reads were 512 identified by running the classify.py command. The cDNA primer sequences as well as the poly(A) tails were trimmed prior to further analysis. Paired-end Illumina RNA-Seg reads from 513 514 each tissue sample were trimmed to remove the adaptor sequences and low-quality bases 515 using Trimmomatic (v0.32) (Bolger, Lohse and Usadel, 2014) with explicit option settings: ILLUMINACLIP:adapters.fa: 2:30:10:1:true LEADING:3 TRAILING:3 SLIDINGWINDOW: 516 4:20 LEADING:3 TRAILING:3 MINLEN:25, and overlapping paired-end reads were merged 517 using the PEAR software (v0.9.6) (Zhang et al., 2014). Subsequently, the merged and 518 519 unmerged RNA-Seq reads from the same tissue samples were in silico normalized in a 520 mode for single-end reads by using a Trinity (v2.1.1) (Grabherr et al., 2011) utility, 521 insilico read normalization.pl, with the following settings: --max cov 50 --max pct stdev 522 100 --single. Errors in the full-length, non-concatemer reads were corrected with the 523 preprocessed RNA-Seq reads from the same tissue samples by using proovread (v2.12) 524 (Hackl et al., 2014). Untrimmed sequences with at least some regions of high accuracy in 525 the .trimmed.fq files were extracted based on sequence IDs in .untrimmed.fa files to balance 526 off the contiguity and accuracy of the final reads.

527 **2.2.2 RNA-Seq**

In addition to the Illumina short read RNA-seq data generated from MARC1423004 and used 528 to correct the Iso-Seq data (see above), Illumina short read RNA-seq data (PRJEB19386) 529 were also generated from a range of tissues from four juvenile Duroc pigs (two male, two 530 531 female) and used for annotation as described below. Extensive metadata with links to the protocols for sample collection and processing are linked to the BioSample entries under the 532 Study Accession PRJEB19386. The tissues sampled are listed in Supplementary Table ST7. 533 534 Sequencing libraries were prepared using a ribodepletion TruSeq stranded RNA protocol and 150 bp paired end sequences generated on the Illumina HiSeq 2500 platform in rapid 535

536 mode.

537 **Supplementary Table ST7:** Tissue samples characterised by Illumina short read RNA-Seq

538 analyses

Tissue	BioSample accession	alias	Animal	Sex
alveolar	SAMEA103886124	SUS_RI_DUR21-30	Duroc 21	female
macrophages				
alveolar	SAMEA103886168	SUS_RI_Pig 21_DUR_30	Duroc 21	female
macrophages	0.000		D 00	
alveolar	SAMEA103886137	SUS_RI_DUR22-60	Duroc 22	male
macrophages	CANE 4400000440		Dune e 00	
alveolar	SAMEA103886112	SUS_RI_Pig 22_DUR_60	Duroc 22	male
macrophages	CANE 4400000470		Dune e 00	famala
amygdala	SAMEA103886173	SUS_RI_R-Dur_23-08	Duroc 23	female
amygdala	SAMEA103886162	SUS_RI_Dur_24-C-S0	Duroc 24	male
brain, frontal lobe	SAMEA103886139	SUS_RI_R-Dur_23-01	Duroc 23	female
brain, frontal lobe	SAMEA103886156	SUS_RI_R-Dur_24-41	Duroc 24	male
brain stem	SAMEA103886128	SUS_RI_R-Dur_23-05	Duroc 23	female
brain stem	SAMEA103886129	SUS_RI_R-Dur_24-45	Duroc 24	male
caecum	SAMEA103886133	SUS_RI_DUR21-19	Duroc 21	female
caecum	SAMEA103886120	SUS_RI_DUR22-48	Duroc 22	male
caecum	SAMEA103886151	SUS_RI_Pig 22_DUR_48	Duroc 22	male
cerebellum	SAMEA103886116	SUS_RI_R-Dur_23-09	Duroc 23	female
cerebellum	SAMEA103886131	SUS_RI_R-Dur_24-49	Duroc 24	male
colon	SAMEA103886132	SUS_RI_Dur_23-21	Duroc 23	female
colon	SAMEA103886147	SUS_RI_Dur_24-61	Duroc 24	male
corpus callosum	SAMEA103886154	SUS_RI_R-Dur_23-10	Duroc 23	female
corpus callosum	SAMEA103886167	SUS_RI_R-Dur_24-50	Duroc 24	male
duodenum	SAMEA103886155	SUS_RI_Dur_23-22	Duroc 23	female

Tissue	BioSample accession	alias	Animal	Sex
duodenum	SAMEA103886176	SUS_RI_Dur_24-62	Duroc 24	male
epididymis	SAMEA103886140	SUS_RI_DUR22-58	Duroc 22	male
hippocampus	SAMEA103886122	SUS_RI_Dur_23-B-S0	Duroc 23	female
hippocampus	SAMEA103886114	SUS_RI_R-Dur_24-51	Duroc 24	male
ileum	SAMEA103886163	SUS_RI_Dur_23-23	Duroc 23	female
ileum	SAMEA103886121	SUS_RI_Dur_24-63	Duroc 24	male
kidney cortex	SAMEA103886174	SUS_RI_DUR21-09	Duroc 21	female
kidney cortex	SAMEA103886153	SUS_RI_DUR22-39	Duroc 22	male
heart, left ventricle	SAMEA103886169	SUS_RI_DUR21-12	Duroc 21	female
heart, left ventricle	SAMEA103886172	SUS_RI_DUR22-43	Duroc 22	male
lymph node, mesenteric	SAMEA103886127	SUS_RI_DUR21-22	Duroc 21	female
lymph node, mesenteric	SAMEA103886115	SUS_RI_DUR22-51	Duroc 22	male
medulla oblongata	SAMEA103886135	SUS_RI_R-Dur_23-06	Duroc 23	female
medulla oblongata	SAMEA103886142	SUS_RI_R-Dur_24-46	Duroc 24	male
occipital lobe	SAMEA103886158	SUS_RI_R-Dur_23-02	Duroc 23	female
occipital lobe	SAMEA103886177	SUS_RI_R-Dur_24-42	Duroc 24	male
omentum	SAMEA103886145	SUS_RI_DUR21-65	Duroc 21	female
omentum	SAMEA103886146	SUS_RI_DUR22-73	Duroc 22	male
penis	SAMEA103886166	SUS_RI_DUR22-59	Duroc 22	male
pituitary gland	SAMEA103886152	SUS_RI_Dur_23-14	Duroc 23	female
pituitary gland	SAMEA103886150	SUS_RI_Dur_24-54	Duroc 24	male
pituitary gland	SAMEA103886149	SUS_RI_DUR21-06	Duroc 21	female
pons	SAMEA103886159	SUS_RI_R-Dur_23-07	Duroc 23	female
pons	SAMEA103886164	SUS_RI_R-Dur_24-47	Duroc 24	male
skeletal muscle	SAMEA103886171	SUS_RI_DUR21-24	Duroc 21	female
skeletal muscle	SAMEA103886118	SUS_RI_DUR22-75	Duroc 22	male
spleen	SAMEA103886157	SUS_RI_DUR21-25	Duroc 21	female
spleen	SAMEA103886170	SUS_RI_DUR22-55	Duroc 22	male
stomach	SAMEA103886111	SUS_RI_Dur_23-24	Duroc 23	female
stomach	SAMEA103886134	SUS_RI_Dur_24-64	Duroc 24	male
thalamus	SAMEA103886136	SUS_RI_R-Dur_23-13	Duroc 23	female
thalamus	SAMEA103886160	SUS_RI_R-Dur_24-53	Duroc 24	male
tonsils	SAMEA103886125	SUS_RI_DUR22-56	Duroc 22	male
uterus	SAMEA103886126	SUS_RI_DUR21-27	Duroc 21	female

540 **2.3 SNP chip variants**

- 541 **2.3.1 SNP chip probes mapped to assemblies**
- 542 The probes from four commercial SNP chips were mapped to the Sscrofa10.2, Sscrofa11.1
- and USMARCv1.0 assemblies using BWA MEM (Li and Durbin, 2009) and a wrapper script
- 544 (https://github.com/njdbickhart/perl_toolchain/blob/master/assembly_scripts/alignAndOrderS
- 545 <u>npProbes.pl</u>).
- Illumina PorcineSNP60 ((Ramos et al., 2009), https://emea.illumina.com/products/by-
- 547 type/microarray-kits/porcine-snp60.html)
- Affymetrix Axiom[™] Porcine Genotyping Array
- 549 (https://www.thermofisher.com/order/catalog/product/550588)
- Gene Seek Genomic Profiler Porcine HD beadChip
- 551 (http://genomics.neogen.com/uk/ggp-porcine)
- Gene Seek Genomic Profiler Porcine v2– LD Chip

553 (http://genomics.neogen.com/uk/ggp-porcine)

554 Probe sequence was derived from the marker manifest files that are available on the 555 provider websites. In order to retain marker manifest coordinate information, each probe 556 marker name was annotated with the chromosome and position of the marker's variant site from the manifest file. All mapping coordinates were tabulated into a single file, and were 557 558 sorted by the chromosome and position of the manifest marker site. In order to derive and 559 compare relative marker rank order. а custom Perl script 560 (https://github.com/njdbickhart/perl_toolchain/blob/master/assembly_scripts/pigGenomeSNP SortRankOrder.pl) was used to sort and number markers based on their mapping locations 561 in each assembly. 562 A Spearman's rank order (rho) value was calculated for each assembly (alternative 563

hypothesis: rho is equal to zero; $p < 2.2 \times 10^{-16}$) (Supplementary Table ST9). This rank order comparison was estimated by ordering all of the SNP probes from all chips by their listed manifest coordinates against their relative order in each assembly (with chromosomes ordered by karyotype). Any unmapped markers in an assembly were penalized by giving the 568 marker a "-1" rank in the assembly ranking order. The methods are similar to what those

used to assess the relative order of the ARS1 Goat assembly RH map vs the scaffold order

570 ((Bickhart *et al.*, 2017) see Supplementary Note 1).

- 571
- 572 **Supplementary Table ST8:** SNP chip markers mapped to pig genome assemblies

Assembly	Mapped / unmapped	AxiomHD	PorcineSNP60	GGP LD	80K
Sscrofa10.2	mapped	633,705	59,590	50,530	68,046
	unmapped	24,987	1,975	385	470
Sscrofa11.1	mapped	628,280	61,299	50,586	68,270
	ummapped	30,412	266	329	246
USMARCv1.0	mapped	618,771	60,692	50,042	67,604
	unmapped	39,921	873	873	912

573

574 **Supplementary Table ST9:** Spearman's rank order

Assembly	Rho
Sscrofa10.2	0.88464
Sscrofa11.1	0.88890
USMARCv1.0	0.81260

575

576 In order to examine general linear order of placed markers on each assembly, the marker 577 rank order (y axis; used above in the Spearman's rank order test) was plotted against the 578 rank order of the probe rank order on the manifest file (x axis) (Supplementary Figure SF11).

Supplementary Figure SF11: Assembly SNP rank concordance versus reported 579

580 chromosomal location

581

6e+05 Mapped positions (rank order) 4e+05 variable Sscrofa11.1 Sscrofa10.2 USMARCv1.0 2e+05 0e+00 4e+05 Reported positions (rank order) 2e+05 0e+00 6e+05

Assembly SNP rank concordance vs reported positions

The analyses reveal some interesting artifacts that suggest that the SNP manifest 582 583 coordinates for the porcine 60K SNP chip are still derived from an obsolete (Sscrofa9) reference in contrast to all other manifests (Sscrofa10.2). Also, it confirms that several of the 584 585 USMARCv1.0 chromosome scaffolds are inverted with respect to the canonical orientation of 586 pig chromosomes. Such inversions are due to the agnostic nature of genome assembly and 587 post-assembly polishing programs. Unless these are corrected post-hoc by manual curation, 588 they result in artefactual inversions of the entire chromosome. However, such inversions do

589 not generally impact downstream analysis that does not involve the relative order/orientation 590 of whole chromosomes. The large band of points at the top of the plot corresponds to marker 591 mappings on the unplaced contigs of each assembly. These unplaced contigs often 592 correspond to assemblies of alternative haplotypes in heterozygous regions of the reference 593 animal (Koren *et al.*, 2018). Marker placement on these segments suggests that these 594 variants are tracking different haplotypes in the population, which is the desired intent of 595 genetic markers used in Genomic Selection.

596 **3. Annotation (Ensembl)**

597 **3.1 Repeat Finding**

After loading into a database, the Sscrofa11.1. genomic sequence was screened for sequence patterns, including repeats using RepeatMasker (Smit et al., 2013-5) (version 4.0.5) with parameters '-nolow –species "sus scrofa" –engine "crossmatch", dustmasker (Camacho *et al.*, 2009) and TRF (Benson, 1999). Both executions of RepeatMasker and dustmasker combined masked 45.04% of the assembly.

603 **3.2 Raw computes**

Transcription start sites (TSS) were predicted using Eponine-scan (Down and Hubbard, 2002). CpG islands [Micklem, G., unpublished] longer than 400 bases and tRNAs (Lowe and Eddy, 1996) were also predicted. The results of Eponine-scan, CpG and tRNAscan are for display purposes only and are not used subsequently in the gene annotation process.

Genscan (Burge and Karlin, 1997) was run across the repeat-masked sequence and the results were used as input for UniProt (Goujon *et al.*, 2010), UniGene (Sayers *et al.*, 2010) and Vertebrate RNA (<u>www.ebi.ac.uk/ena/</u>) alignments by BLAST+ (Camacho *et al.*, 2009). Passing only Genscan results to BLAST is an effective way of reducing the search space and therefore the computational resources required. The resulting alignments to the Sscrofa11.1 assembly included 5,680,769 UniProt, 4,801,230 UniGene and 4,414,040 Vertebrate RNA sequences.

615 **3.3 Generation of gene models**

- Various sources of transcript and protein data were investigated and used to generate gene
- 617 models using a variety of techniques and are outlined here. The number of gene models
- 618 generated are summarised in Table ST10.
- 619 **Table ST10:** Gene model generation overview

Pipeline	Source	Number of models
Species specific cDNAs	RefSeq, ENA	45,589
PacBio Iso-Seq	USDA MARC	326,217
RNA-Seq	The Roslin Institute	572,419
Olfactory receptors	Human and mouse Ensembl Release 89	1,212
IG/TR genes	IMGT®	1,803
Protein-to-genome	Subset of UniProt vertebrate proteins	509,769

620

621 3.3.1 cDNA alignments

- Pig cDNAs were downloaded from ENA and RefSeq, and aligned to the Sscrofa11.1 assembly using Exonerate (Slater and Birney, 2005). A minimal sequence length of 60 bp was used and a cut-off of 97% identity and 90% coverage were required for an alignment to be processed further. The cDNAs are mainly used for display purposes, but can be used to add untranslated regions (UTRs) to the protein coding transcript models if they have matching introns.
- 628 **Table ST11:** Species specific cDNAs aligned against Sscrofa11.1

Species	Initial mRNA sequences	Sequences aligned	
Pig	45,571	45,526	

629

630 **3.3.2 PacBio Iso-Seq transcript data**

PacBio Iso-Seq data are high coverage long read transcriptomic data that allows for correction for the high error rate in raw PacBio reads. The consensus sequences representing nine tissues (brain, diaphragm, hypothalamus, liver, skeletal muscle (*longissimus dorsi*), pituitary, small intestine, spleen, and thymus were downloaded from the short read archive (SRA: PRJNA351265) after correction using Illumina short reads from the
same tissue type. The sequences were aligned to the genome using Exonerate (Slater and
Birney, 2005) using a cut-off of 95% identity and 90% coverage. All the Iso-Seq data sets
had 3' capping and were used for adding UTRs to homology-based protein coding models.
All Iso-Seq data sets were used as lincRNA candidates for our lincRNA prediction pipeline.

640 **Table ST12:** PacBio Iso-Seq sequences aligned against Sscrofa11.1

Tissue sample	Initial Iso-Seq	Aligned	
	sequences	sequences	
Liver	588,957	491,796	
Thymus	567,700	374,515	
Hypothalamus	414,021	256,930	
Brain	398,629	354,494	
Skeletal muscle (<i>I. dorsi</i>)	410,420	361,494	
Diaphragm	459,911	391,813	
Spleen	674,053	449,425	
Pituitary	411,562	252,707	
Small intestine	494,538	406,144	

641

642 **3.3.3 Protein-to-genome alignment**

643 Protein sequences were downloaded from UniProt and aligned to the Sscrofa11.1 assembly

in a splice aware manner using GenBlast (She *et al.*, 2011). The set of proteins aligned to

645 the genome was a subset of UniProt proteins used to provide a broad targeted coverage of

the pig genome. The set consisted of the following:

- Pig PE level 1, 2, 3
- 648 Human PE level 1, 2, 3
- 649 Mouse PE level 1, 2, 3
- Other mammals PE level 1, 2, 3
- Other vertebrates PE level 1, 2, 3

Note: PE level = protein existence levelA cut-off of 50 percent coverage and identity and an

e-value of e-1 were used for GenBlast (She *et al.*, 2011) with the exon repair option turned

on. The top 5 transcript models built by GenBlast for each protein passing the cut-offs were

kept. This process produced 509,769 transcript models in total.

656 **3.3.4 RNA-seq pipeline**

RNA-Seq data downloaded from ENA PRJEB19386 were used in the annotation. These 657 RNA-Seq data consisted of 150 bp paired end reads from libraries prepared using a 658 659 stranded library protocol from ribo-depleted total RNA from Duroc pigs. The dataset 660 comprised RNA-Seq data from 28 tissue and cell samples: alveolar macrophages, 661 amygdala, brain stem, caecum, cerebellum, colon, corpus callosum, duodenum, epididymis, 662 frontal lobe (brain), hippocampus, ileum, kidney cortex, left ventricle (heart), mesenteric 663 lymph node, medulla oblongata, occipital lobe, omentum, penis, pituitary gland, pons, 664 skeletal muscle, spleen, stomach, thalamus, tonsil, uterus (Supplementary Table ST7). A merged file containing reads from all tissues was also created. The merged data was less 665 likely to suffer from model fragmentation due to read depth. The available reads were 666 aligned to the Sscrofa11.1 assembly using BWA. A 50 percent allowed mismatch criteria 667 668 was applied to identify potential splice junctions. Initial rough exon/intron boundaries were generated via the BWA alignments and then refined by mapping the reads in a splice-aware 669 manner using Exonerate (Slater and Birney, 2005). The split reads and the processed BWA 670 alignments were combined to produce 1,060,366 transcript models in total. The predicted 671 672 open reading frames were compared to UniProt proteins using NCBI BLAST. Models with poorly scoring or no BLAST alignments were split into a separate class and considered as 673 674 potential lincRNAs.

676 **Supplementary Table ST13:** Tissue-specific values for initial read counts along with the 677 percent of mapped and properly paired reads. The final column shows the count of potential 678 transcript models build per tissue.

Properly Tissue name Total reads Mapped Transcript paired models 508,512,918 Alveolar macrophages 92.69% 64.31% 34,867 Amygdala 170,434,766 93.73% 64.43% 38,118 Brain stem 124,538,342 93.33% 61.60% 35,791 Caecum 444,611,528 92.40% 71.78% 40,716 Cerebellum 158,560,324 94.09% 64.42% 36,132 34,520 Colon 168,263,230 90.80% 61.79% Corpus callosum 148,039,874 93.75% 62.68% 37,474 Duodenum 346,909,970 91.94% 62.08% 40,112 Epididymis 186,743,514 92.74% 69.27% 37,377 Frontal lobe 119212918 94.30% 59.99% 35,119 Hippocampus 164,637,176 94.72% 62.38% 36,403 lleum 166,645,682 91.96% 69.83% 36,661 Kidney cortex 258,616,430 95.30% 86.38% 35,544 Left ventricle 265,075,268 95.33% 86.11% 33,125 Mesenteric lymph node 448,893,104 40,250 93.24% 69.37% Medulla oblongata 141,361,800 58.96% 42,716 93.18% Occipital lobe 13,3884,172 35,390 94.23% 64.25% Omentum 179,713,086 93.70% 84.61% 27,570 Penis 179,834,564 93.15% 71.84% 37,121 Pituitary 164,402,132 93.64% 61.23% 35,482 Pituitary gland 131,196,396 95.15% 86.44% 33,800 35,974 Pons 134,913,426 93.80% 61.90% Skeletal muscle 206,977,278 32,011 92.09% 81.55% 35,130 Spleen 194,924,210 94.26% 83.52% Stomach 141,172,602 92.49% 70.72% 33,326 Thalamus 149,227,654 93.84% 36,047 53.67% Tonsil 320,766,440 94.22% 74.78% 38,154 31,178 Uterus 90,381,988 94.56% 59.49%

680 **3.3.5 IG and TR genes**

All pig, cow, sheep, human and mouse IG/TR V, C and J segment protein sequences were downloaded from IMGT® (Lefranc *et al.*, 2015) and aligned against the Sscrofa11.1 assembly using Exonerate (Slater and Birney, 2005) using '—max-intron 50000' and only the models with 95% coverage and 80% identity were kept. We generated 1,803 gene models. For positions where there were overlapping transcript models, the transcript model with the highest combined alignment coverage and percent identity was kept as the representative model for the locus.

688 **3.3.6 Olfactory receptor genes**

We used the manually curated human and mouse set (Ensembl release 89) and pig olfactory receptor sequences (Nguyen *et al.*, 2012). The sequences were aligned against the genome with Exonerate (Slater and Birney, 2005) and only the models with high similarity (95% coverage, 95% identity) were kept, yielding 1,212 gene models.

693 **3.3.7 Selenocysteine proteins**

Known selenocysteine proteins were aligned against the Sscrofa11.1 assembly using
Exonerate (Slater and Birney, 2005). The models generated were checked for the presence
of selenocysteines in the same positions as the known proteins. We generated 103 models.

697 **3.3.8 Filtering the models**

The filtering phase decided the subset of protein-coding transcript models, generated from the model-building pipelines, that would comprise the final protein-coding gene set in the GeneBuild. Models were filtered based on information such as what pipeline they were generated using, how closely related the data are to the target species (i.e. pig) and how good the alignment coverage and percent identity to the original data are. Models were filtered using the LayerAnnotation and GeneBuilder modules. The Apollo software (Lewis *et al.*, 2002) was used to visualise the results of the filtering.

3.3.9 Collapsing the transcript set

The LayerAnnotation module was used to define a hierarchy of input data sets, from most preferred to least preferred. The output of this pipeline included all transcript models form the

708	highest ranked input set. Models from the lower ranked input sets are included only if their
709	exons do not overlap a model from an input set higher in the hierarchy. Note that models
710	cannot exist in more than one layer. For UniProt proteins, models were also separated into
711	clades. To help selection during the layering process. Each UniProt protein was in one clade
712	only, for example mammal proteins were present in the mammal clade and were not present
713	in the vertebrate clade to avoid aligning the proteins multiple times.
714	Layer 1:
715	Pig seleno-proteins
716	 Pig olfactory receptors with >= 90% coverage and 97% identity
717	All vertebrate seleno-proteins with full RNA-seq support
718	IG and TR genes
719	Layer 2:
720	 Pig cDNA models with >= 90% coverage and 97% identity
721	 Pig IsoSeq models with protein support >= 80% coverage and identity and full RNA-
722	seq support
723	 RNA-seq models with >=95% coverage and identity
724	• Pig curated UniProt proteins from PE levels 1 & 2 with >=80% coverage and identity
725	and full RNA-seq support
726	 Pig curated UniProt proteins from PE levels 3 with >=95% coverage and identity and
727	full RNA-seq support
728	 All vertebrate curated UniProt proteins from PE levels 1 & 2 with >=95% coverage
729	and identity and full RNA-seq support
730	Layer 3:
731	 RNA-seq models with >=80% coverage and identity
732	Layer 4:
733	 Pig curated UniProt proteins from PE levels 1 & 2 with >=50% coverage and identity
734	 Pig IsoSeq models with protein support >= 80% coverage and identity

735	Layer	5:
736	•	Pig curated UniProt proteins from PE levels 3 with >=80% coverage and identity
737	•	All vertebrate curated UniProt proteins from PE levels 1 & 2 with >=80% coverage
738		and identity
739	Layer	6:
740	•	RNA-seq models with \geq 50% coverage and identity
741	•	Pig IsoSeq models with protein support >= 50% coverage and identity
742	•	Pig curated UniProt proteins from PE levels 3 with >=50% coverage and identity
743	•	All vertebrate curated UniProt proteins from PE levels 1 & 2 with >=50% coverage
744		and identity
745	Layer	7:
746	•	Pig UniProt proteins from PE levels 1 & 2 & 3 with >=80% coverage and identity and
747		full RNA-seq support
748	•	All vertebrate UniProt proteins from PE levels 1 & 2 with $>=80\%$ coverage and
749		identity and full RNA-seq support
750	Layer	8:
751	•	Pig UniProt proteins from PE levels 1 & 2 & 3 with >=50% coverage and identity and
752		full RNA-seq support
753	•	All vertebrate UniProt proteins from PE levels 1 & 2 with >=50% coverage and
754		identity and full RNA-seq support
755	•	Pig IsoSeq models with protein support >= 50% coverage and identity which may
756		have retained an intron
757	Layer	9:
758	•	Pig UniProt proteins from PE levels 1 & 2 & 3 with >=80% coverage and identity
759	•	All vertebrate UniProt proteins from PE levels 1 & 2 with >=80% coverage and
760		identity
761		

- 762 Layer 10:
- Pig UniProt proteins from PE levels 1 & 2 & 3 with >=50% coverage and identity
- All vertebrate UniProt proteins from PE levels 1 & 2 with >=50% coverage and
- 765 identity

766 **3.3.10 Addition of UTR to coding models**

The set of coding models was extended into the untranslated regions (UTRs) using RNAseq, cDNA and Iso-Seq sequences. The source of the UTRS was prioritised with UTR coming from cDNAs and Iso-Seq, then RNA-seq.

770 **3.3.11 Generating multi-transcript genes**

The steps described above generated a large set of potential transcript models, many of which overlapped one another. Redundant transcript models were collapsed and the remaining unique set of transcript models were clustered into multi-transcript gene where each transcript in a gene has at least one coding exon that overlaps a coding exon from another transcript within the same genes. At this stage the gene set comprised 23,025 genes with 46,511 transcripts.

777 **3.3.12 Pseudogenes**

- The Pseudgene module was run to identify pseudogenes from within the set of gene
- models. A total of 178 genes were labelled as pseudogenes or processed pseudogenes.

780 **3.3.13 Small ncRNAs**

- 781 Small structured non-coding genes were added using annotations taken from RFAM
- (Griffiths-Jones *et al.*, 2003) and miRBase (Griffiths-Jones *et al.*, 2006). BLAST+ was run for
- these sequences and models built using the Infernal software suite (Eddy, 2002).

784 **3.3.14 lincRNAs discovery**

Using the transcriptomic data set, we tried to predict long intergenic non-coding RNAs (lincRNAs). We used the RNA-seq and Iso-Seq data which were filtered against the proteincoding gene set. Candidate lincRNAs that overlapped a protein-coding gene were discarded. The Pfam analysis of InterProScan was run against the filtered gene set. Candidate lincRNAs with a Pfam domain were also discarded.

790 **3.3.15 Cross-referencing and stable identifiers**

- 791 Before public release the transcripts and translations were given external references (cross-
- references to external databases). Stable identifiers were assigned to each gene, transcript,
- exon and translation. As earlier pig genome sequences have been annotated by Ensembl
- previously a comparison was made to the previous gene set and as many stable identifiers
- as possible were mapped between the two annotations.

796 **3.3.16 Gene expression**

The Illumina RNA-Seq data (Supplementary Table ST7) were also processed by the EBI 797 798 Gene Expression Atlas (GXA) team (Papatheodorou et al.. 2018) 799 (https://www.ebi.ac.uk/gxa/home) to generate a baseline gene expression atlas (Expression Atlas release 25, August 2017). These gene expression data can be visualised in the 800 801 Ensembl genome browser from the gene page.

802 **3.3.17 Comparison of Ensembl and NCBI annotation**

- 803 The Sscrofa11.1 assembly was also annotated independently by the NCBI
- 804 (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Sus_scrofa/106/). We have
- 805 compared these two annotations (Supplementary Table ST14).
- 806 **Supplementary Table ST14:** Comparison of Ensembl and NCBI annotation of Sscofa11.1

Ensembl		NCBI				
		missing (relative location)				
		in common	(intragenic)	(intergenic)	other	
Protein-coding	22,452	18,772	270	1,785	*1,625	
Non-coding	3,250	811	1,158	1,281		
Pseudogenes	178	121	1	56		

NCB	31	Ensembl			
		missing (relative location)			
		in common	(intragenic)	(intergenic)	other
Protein-coding	20,790	18,772	119	1,899	
Non-coding	6,460	811	541	3,730	**1,378
Pseudogenes	3,084	121	124	1,214	*1,625

⁸⁰⁷

^{*} 1,625 genes annotated as protein-coding by Ensembl are annotated as pseudogenes by NCBI

^{**} 1,378 genes annotated as non-coding by NCBI are annotated as protein-coding by Ensembl

809 **3.3.18** Annotation of the USMARCv1.0 assembly

Annotation for USMARCv1.0 was carried out using the Ensembl pipeline and the same key 810 steps as outlined for Sscrofa11.1. To help with the consistency of annotation, the same set 811 of long and short read transcriptomic data were used in the annotation of USMARCv1.0. As 812 813 the annotations were done two years apart there was some variance in terms of the underlying code base used to generate the annotations. We plan to update the Sscrofa11.1 814 annotation in future to take advantage of these upgrades, though the effect on the overall 815 geneset is likely to be marginal due to the amount of high quality transcriptomic data 816 available for the original annotation. 817

819 **4. References**

- Anderson, S. I. *et al.* (2000) 'A large-fragment porcine genomic library resource in a BAC
- 821 vector', *Mammalian Genome*, 11(9), pp. 811–814. doi: 10.1007/s003350010155.
- Bao, W., Kojima, K. K. and Kohany, O. (2015) 'Repbase Update, a database of repetitive
- elements in eukaryotic genomes', *Mobile DNA*, 6(1). doi: 10.1186/s13100-015-0041-9.
- Benson, G. (1999) 'Tandem repeats finder: A program to analyze DNA sequences', *Nucleic*

Acids Research, 27(2), pp. 573–580. doi: 10.1093/nar/27.2.573.

- Bickhart, D. M. et al. (2017) 'Single-molecule sequencing and chromatin conformation
- capture enable de novo reference assembly of the domestic goat genome', *Nature Genetics*, 49(4), pp. 643-650. doi: 10.1038/ng.3802.
- Bolger, A. M., Lohse, M. and Usadel, B. (2014) 'Trimmomatic: A flexible trimmer for Illumina
 sequence data', *Bioinformatics*, 30(15), pp. 2114–2120. doi:
- 831 10.1093/bioinformatics/btu170.
- Burge, C. and Karlin, S. (1997) 'Prediction of complete gene structures in human genomic
- 833 DNA', *Journal of Molecular Biology*, 268(1), pp. 78–94. doi: 10.1006/jmbi.1997.0951.
- 834 Camacho, C. et al. (2009) 'BLAST+: Architecture and applications', BMC Bioinformatics, 10:
- 835 421. doi: 10.1186/1471-2105-10-421.
- Chin, C. S. *et al.* (2013) 'Nonhybrid, finished microbial genome assemblies from long-read
 SMRT sequencing data', *Nature Methods*, 10(6), pp. 563–569. doi:
- 838 10.1038/nmeth.2474.
- 839 Down, T. A. and Hubbard, T. J. P. (2002) 'Computational detection and location of
- 840 transcription start sites in mammalian genomic DNA', *Genome Research*, 12(3), pp.
- 841 458–461. doi: 10.1101/gr.216102.
- Eddy, S. R. (2002) 'A memory-efficient dynamic programming algorithm for optimal
- alignment of a sequence to an RNA secondary structure', *BMC Bioinformatics*, 3: 18.
- 844 doi: 10.1186/1471-2105-3-18.
- 845 English, A. C. et al. (2012) 'Mind the Gap: Upgrading Genomes with Pacific Biosciences RS

Long-Read Sequencing Technology', *PLoS ONE*, 7(11): e47768. doi:

847 10.1371/journal.pone.0047768.

Goujon, M. *et al.* (2010) 'A new bioinformatics analysis tools framework at EMBL-EBI',

849 *Nucleic Acids Research*, 38(SUPPL. 2): W695-699. doi: 10.1093/nar/gkq313.

850 Grabherr, M. G. et al. (2011) 'Full-length transcriptome assembly from RNA-Seq data

without a reference genome', *Nature Biotechnology*, 29(7), pp. 644–652. doi:

- 852 10.1038/nbt.1883.
- Griffiths-Jones, S. *et al.* (2003) 'Rfam: An RNA family database', *Nucleic Acids Research*,
 pp. 439–441. doi: 10.1093/nar/gkg006.

855 Griffiths-Jones, S. et al. (2006) 'miRBase: microRNA sequences, targets and gene

- nomenclature.', *Nucleic Acids Research*, 34(suppl_1), pp. D140–D144. doi:
- 857 10.1093/nar/gkj112.
- Groenen, M. A. M. *et al.* (2012) 'Analyses of pig genomes provide insight into porcine
 demography and evolution', *Nature*, 491(7424), pp. 393–398. doi:

860 10.1038/nature11622.

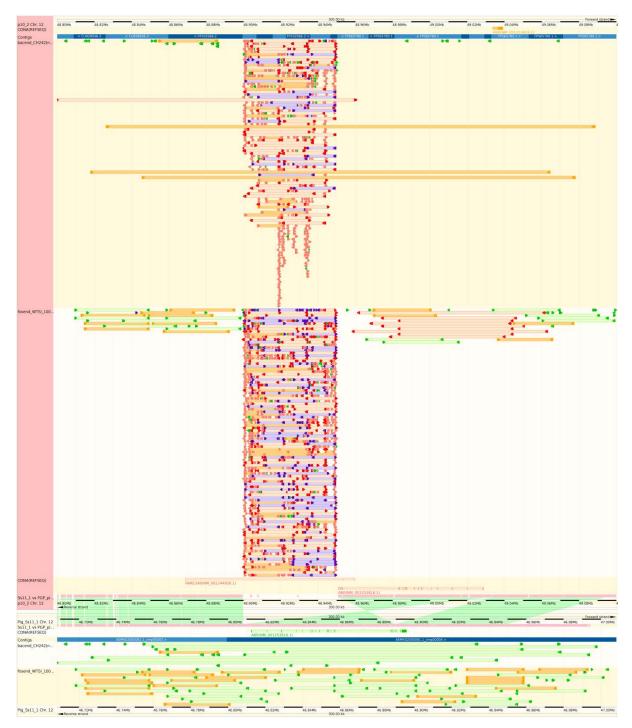
- Hackl, T. *et al.* (2014) 'Proovread: Large-scale high-accuracy PacBio correction through
- iterative short read consensus', *Bioinformatics*, 30(21), pp. 3004–3011. doi:
- 863 10.1093/bioinformatics/btu392.
- Hubley, R. *et al.* (2016) 'The Dfam database of repetitive DNA families', *Nucleic Acids Research*, 44(D1), pp. D81–D89. doi: 10.1093/nar/gkv1272.
- Humphray, S. J. *et al.* (2007) 'A high utility integrated map of the pig genome.', *Genome Biology*, 8(7), p. R139.
- Koren, S. *et al.* (2017) 'Canu: Scalable and accurate long-read assembly via adaptive κ-mer
- weighting and repeat separation', *Genome Research*, 27(5), pp. 722–736. doi:
- 870 10.1101/gr.215087.116.
- Koren, S. et al. (2018) 'De novo assembly of haplotype-resolved genomes with trio binning',
- 872 *Nature Biotechnology*, 36, pp. 1174-1182. doi: 10.1038/nbt.4277.
- Kurtz, S. et al. (2004) 'Versatile and open software for comparing large genomes.', Genome

- 874 *Biology*, 5(2), p. R12. doi: 10.1186/gb-2004-5-2-r12.
- Lefranc, M. P. *et al.* (2015) 'IMGT R, the international ImMunoGeneTics information system
 R 25 years on', *Nucleic Acids Research*, 43(D1), pp. D413–D422. doi:

877 10.1093/nar/gku1056.

- Lewis, S. E. *et al.* (2002) 'Apollo: a sequence annotation editor.', *Genome Biology*, 3(12), p.
 RESEARCH0082. doi: 10.1186/gb-2002-3-12-research0082.
- Li, H. and Durbin, R. (2009) 'Fast and accurate short read alignment with Burrows-Wheeler
 transform', *Bioinformatics*, 25(14), pp. 1754-1760. doi: 10.1093/bioinformatics/btp324
- Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA MEM. *ArXiv:1303.3997v1 [q-bio.GN]*.
- Lowe, T. M. and Eddy, S. R. (1996) 'TRNAscan-SE: A program for improved detection of
- transfer RNA genes in genomic sequence', *Nucleic Acids Research*, 25(5), pp. 955–
- 886 964. doi: 10.1093/nar/25.5.0955.
- 887 Meyers, S. N. et al. (2005) 'Piggy-BACing the human genome: II. A high-resolution,
- physically anchored, comparative map of the porcine autosomes', *Genomics*, 86(6),
- 889 pp.739-752. doi: 10.1016/j.ygeno.2005.04.010.
- Miller, J. R., Hindkjær, J. and Thomsen, P. D. (1993) 'A chromosomal basis for the
- 891 differential organization of a porcine centromere-specific repeat', *Cytogenetic and*

892 *Genome Research*, 62(1), pp. 37–41. doi: 10.1159/000133441.

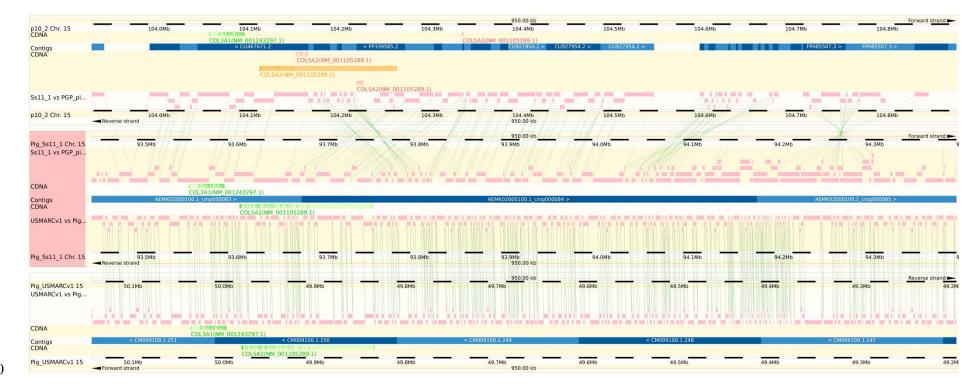

- Nattestad, M. and Schatz, M. C. (2016) 'Assemblytics: A web analytics tool for the detection
- of variants from an assembly', *Bioinformatics*, 32(19), pp. 3021-3023. doi:
- 895 10.1093/bioinformatics/btw369.
- Nguyen, D. T. et al. (2012) 'The complete swine olfactory subgenome: expansion of the
- 897 olfactory gene repertoire in the pig genome', *BMC Genomics*, 13(1), 584. doi:
- 898 10.1186/1471-2164-13-584.
- 899 Papatheodorou, I. et al. (2018) 'Expression Atlas: Gene and protein expression across
- 900 multiple studies and organisms', *Nucleic Acids Research*, 46(D1), pp. D246-D251. doi:
- 901 10.1093/nar/gkx1158.

- 902 Pendleton, M. *et al.* (2015) 'Assembly and diploid architecture of an individual human
- 903 genome via single-molecule technologies', *Nature Methods*, 12(8), pp. 780–786. doi:
 904 10.1038/nmeth.3454.
- 905 Putnam, N. H. et al. (2016) 'Chromosome-scale shotgun assembly using an in vitro method
- 906 for long-range linkage', *Genome Research*, 26(3), pp. 342–350. doi:
- 907 10.1101/gr.193474.115.
- Quinlan, A. R. and Hall, I. M. (2010) 'BEDTools: A flexible suite of utilities for comparing
 genomic features', *Bioinformatics*, 26(6), pp. 841–842. doi:
- 910 10.1093/bioinformatics/btq033.
- 911 Ramos, A. M. et al. (2009) 'Design of a high density SNP genotyping assay in the pig using
- 912 SNPs identified and characterized by next generation sequencing technology', *PLoS*
- 913 ONE, 4(8), e6524. doi: 10.1371/journal.pone.0006524.
- Robinson, J. T. *et al.* (2011) 'Integrative genomics viewer', *Nature Biotechnology*, 29(1), pp.
 24–26. doi: 10.1038/nbt.1754.
- 916 Sayers, E. W. et al. (2010) 'Database resources of the National Center for Biotechnology
- 917 Information.', *Nucleic Acids Research*, 38(Database issue), pp. D5-16. doi:
- 918 10.1093/nar/gkp967.
- 919 Servin, B. et al. (2012) 'High-resolution autosomal radiation hybrid maps of the pig genome
- 920 and their contribution to the genome sequence assembly', *BMC Genomics*, 13(1), 585.
- 921 doi: 10.1186/1471-2164-13-585.
- 922 She, R. *et al.* (2011) 'genBlastG: Using BLAST searches to build homologous gene models',
- 923 *Bioinformatics*, 27(15), pp. 2141–2143. doi: 10.1093/bioinformatics/btr342.
- 924 Simão, F. A. et al. (2015) 'BUSCO: Assessing genome assembly and annotation
- 925 completeness with single-copy orthologs', *Bioinformatics*, 31(19), pp. 3210–3212. doi:
- 926 10.1093/bioinformatics/btv351.
- 927 Skinner, B. M. et al. (2016) 'The pig X and Y Chromosomes: structure, sequence, and
- 928 evolution', *Genome Research*, 26(1), pp. 130–139. doi: 10.1101/gr.188839.114.
- 929 Slater, G. S. C. and Birney, E. (2005) 'Automated generation of heuristics for biological

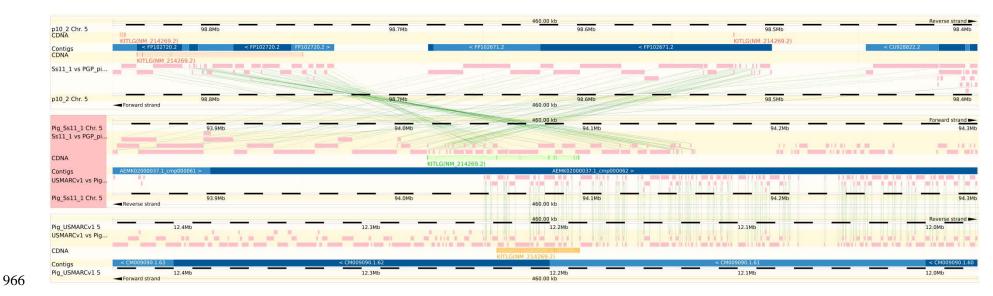
- 930 sequence comparison', *BMC Bioinformatics*, 6, 31. doi: 10.1186/1471-2105-6-31.
- Smit, A., Hubley, R & Green, P. (2013-2015). *RepeatMasker Open-4.0.* [Online]. Available:
 http://www.repeatmasker.org [Accessed 16/05/2016].
- 933 Smit, A.F.A. & Hubley, R. (2008-2015) *RepeatModeler Open-1.0.* 2008-2015
- 934 <u>http://www.repeatmasker.org</u>
- 935 Walker, B. J. et al. (2014) 'Pilon: An integrated tool for comprehensive microbial variant
- 936 detection and genome assembly improvement', *PLoS ONE*, 9(11), e112963. doi:
- 937 10.1371/journal.pone.0112963.
- 938 Warr, A. et al. (2015) 'Identification of Low-Confidence Regions in the Pig Reference
- 939 Genome (Sscrofa 10.2)', *Frontiers in Genetics*, 6, 338. doi: 10.3389/fgene.2015.00338.
- 940 Zhang, J. et al. (2014) 'PEAR: A fast and accurate Illumina Paired-End reAd mergeR',
- 941 *Bioinformatics*, 30(5), pp. 614–620. doi: 10.1093/bioinformatics/btt593.

943 **5. Further supplementary figures**

944 The following figures (Supplementary Figures SF12-16) illustrates improvements in the 945 assemblies as discussed in the main paper text.


946

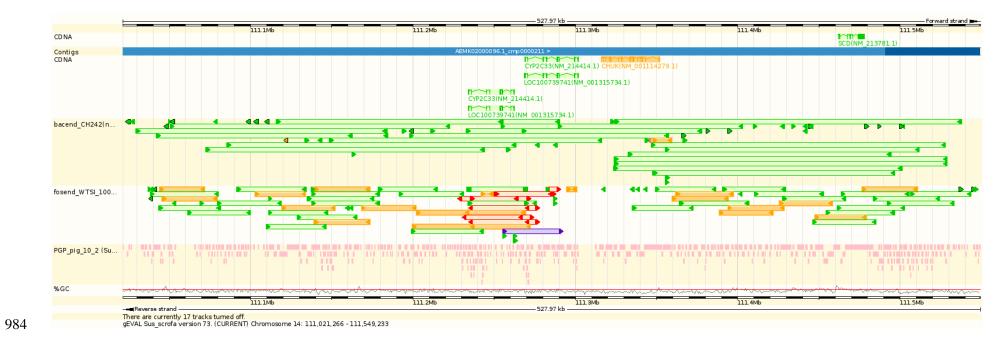
947 Supplementary Figure SF12: Illustration of improvement in local order and orientation and
 948 reduction in sequence redundancy


The alignment of isogenic CH242 BAC end and WTSI_1005 fosmid end sequences with theSscrofa10.2 (upper panel with pink bar on left hand side) and Sscrofa11.1 (lower panel).

Red arrows indicate incorrect orientation of the paired end sequences, purple arrows are sequences which are present multiple times, green and orange arrows indicate the end sequences are correctly oriented. The distances between correctly oriented end sequences are as expected (green) or either greater or less than expected (orange) for the clone insert size for the fosmid or CH242 BAC libraries.

958 Supplementary Figure SF13: gEVAL comparison of Sscrofa10.2, Sscrofa11.1 and USMARCv1.0 at COL3A1, COL5A2 loci.

In the new assembly (Sscrofa11.1, middle row marked with pink vertical block) an improved gene model for COL5A2 can be annotated; in the previous assembly (Sscrofa10.2, upper row) the order and orientation of sequence contigs within BAC clone CH242-40P12 (ENA: FP339585.2) are not resolved. There is good agreement between the Sscrofa11.1 (middle row) and the USMARCv1.0 (lower row) although the USMARCv1.0 assembly of SSC15 is inverted relative to Sscrofa11.1.


965 **Supplementary Figure SF14:** gEVAL comparison of Sscrofa10.2, Sscrofa11.1 and USMARCv1.0 at the *KITLG* locus.

The new assembly (Sscrofa11.1, middle row with pink vertical block at left hand side) resolves the sequences encoding *KITLG* which were split across two small scaffolds in Sscrofa10.2 (upper row). Although there is good agreement between Sscrofa11.1 (middle row) and USMARCv1.0 (lower row) assemblies in the right hand half of the region on SSC5 above, there is additional sequence present in the Sscrofa11.1 assembly between *DUSP6* and *KITLG*, the gene model for *KITLG* appears incomplete in the USMARCv1.0 assembly. Again the USMARCv1.0 is inverted relative to Sscrofa11.1.

Supplementary Figure SF15: gEVAL comparison of Sscrofa10.2, Sscrofa11.1 and USMARCv1.0 across the ST7, CAPZA2 and MET loci on
 SSC18

The new assembly (Sscrofa11.1, middle row with pink block at left hand side) resolves the coding sequences for i) *ST7* that were previously split across two small scaffolds; *CAPZA2* that was similarly split across two small scaffolds; and iii) the *MET* sequences that were previously split as a result of an error in the orientation of the sequence drawn from BAC clone CH242-385N7 (ENA: CU633583.14) with respect to the sequence from BAC clone CH242-150K23 (ENA: CU694675.2) that harbours parts of the *MET* locus. This error in the incorporation of the CH242-385N7 (ENA: CU633583.14) in the Sscrofa10.2 assembly (upper row) is particularly unfortunate as this BAC had been sequenced to finish quality. There is good agreement between the Sscrofa11.1 (middle row) and USMARCv1.0 (lower row) assemblies with both SSC18 assemblies also being in the same orientation.

983 Supplementary Figure SF16: Absence of *ERLIN1* gene, duplication of *CYP2C33*