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Abstract 

Objective: To determine (i) the association between long-term impairment of 

consciousness after severe brain injury, spontaneous brain oscillations, and underlying 

subcortical damage, and (ii) whether such data can be used to aid patient diagnosis, a 

process known to be susceptible to high rates of error.  

Methods: Cross-sectional observational sample of 116 patients with an acquired 

disorder of consciousness secondary to brain injury, collected prospectively at a 

tertiary center between 2011 and 2013. Multimodal analyses relating clinical 

measures of impairment, electroencephalographic measures of spontaneous brain 

activity, and magnetic resonance imaging data of subcortical atrophy were conducted 

in 2018. 

Results: Systematic associations were found between electroencephalographic power 

spectra and subcortical damage. Specifically, the ratio of beta-to-delta relative power 

was negatively associated with greater atrophy in regions of the bilateral thalamus and 

globus pallidus (both left > right) previously shown to be preferentially atrophied in 

chronic disorders of consciousness. Power spectrum total density was also negatively 

associated with widespread atrophy in regions of the left globus pallidus, right caudate, 

and in brainstem. Furthermore, we showed that the combination of behavioral, 

encephalographic, and imaging data in an analytic framework can be employed to aid 

behavioral diagnosis. 

Interpretation: These results associate, for the first time, electroencephalographic 

presentation, as detected with routine clinical techniques – thus grounding them in the 
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underlying brain pathology of disorders of consciousness – and demonstrate how 

multimodal combination of clinical, electroencephalographic, and imaging data can be 

employed in potentially mitigating the high rates of misdiagnosis typical of patients in 

this cohort. 

 

Keywords: Consciousness, Electroencephalography, Magnetic Resonance Imaging, 

Severe Brain Injury 
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Introduction 

Electroencephalography (EEG) and magnetic resonance imaging (MRI) are 

increasingly employed to monitor patient neurological status 1, 2, residual cognitive 

function 3-5, state of awareness 6-9, and potential for recovery 10-13 in patients with a 

disorder of consciousness (DOC; i.e., Coma, Vegetative State, VS; Minimally 

Conscious State ‘minus,’ MCS-; Minimally Conscious State ‘plus,’ MCS+; 14, 15). In the 

context of bedside EEG, analysis of the magnitude of oscillations at different 

frequencies (i.e., power spectrum analysis), has shown capable of differentiating DOC 

patients from patients with severe neurocognitive disorder but no disorder of 

consciousness 16, as well as clinical categories of chronic DOC (i.e., VS, MCS), with 

depth of impairment being correlated with slower, and larger amplitude, oscillations 17, 

18. While this technique has been shown to be sensitive to different injury etiologies 19, 

it is blind to the underlying anatomical damage. At a theoretical level, the mesocircuit 

theory of recovery of consciousness after brain injury predicts a relationship between 

the slowing and amplitude of electrocortical oscillations and the degree of pathologic 

changes taking place after trauma, hypoxia, or multifocal ischemia 20. In particular, 

under this view, the evolving damage occurring after severe brain injury results in a 

reduction of thalamo-cortical and thalamo-striatal excitatory outflow, due to 

deafferentation and loss of neurons in central thalamus, which leads to a net decrease 

in excitatory input to the forebrain and striatum 20. While indirect evidence exists in 

support of this model, with in vivo and post-mortem works demonstrating a 

relationship between damage to thalamus, loss of thalamo-cortical structural 
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connectivity, and depth of impairment 21-23, there is virtually no data directly uniting 

the patterns of EEG power spectra at the scalp in bedside recordings and patterns of 

subcortical damage in long-term DOC patients, a gap which is not only problematic 

for the clinician’s interpretation of the observed EEG data, but also hampers our ability 

to monitor, through an unexpensive, repeatable technique, easily applicable at the 

patient's bedside, interventions and their effects. In what follows, we address, in a 

large cohort of patients with chronic DOC, the heretofore untested relationship 

between observed electrocortical rhythms, patterns of subcortical brain atrophy 

(including thalamus, brainstem, and basal ganglia), and behavioral measures of 

awareness and arousal, as indexed by the Coma Recovery Scale-revised (CRS-R; 24). 

 

Methods 

 

Participants 

A consecutive sample of 116 patients was recruited from a larger database (n = 153) of 

adult chronic DOC patients with acquired acute severe brain injury, who underwent a 

1-week program of clinical multimodal assessments during 2011-2013 at the Coma 

Research Centre (CRC) of the Neurological Institute C. Besta in Milan, Italy. The 

assessment included (i) clinical evaluation with the CRS-R 24, (ii) a multiple 

neurophysiological evaluation including a long-lasting EEG, and (iii) 

neuroradiological assessment including a structural T1-weighted MRI. The patient 

cohort was also described in previous works of our group 25-28. 
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Table 1: Analyzed sample summary statistics of demographic, clinical, and 

electroencephalographic data per diagnostic group. (Abbreviations: VS, Vegetative State; 

MCS- Minimally conscious State “minus”; MCS+, Minimally Conscious State “plus”; 

MPI, months post-injury; T, traumatic; NT, non-traumatic; H, hemorrhagic injury, I, 

ischemic injury, A, anoxic; Orom/Verb, oromotor/verbal; Communic, communication.) 

 

 

VS MCS- MCS+ 

Age (mean, SD, y) 53 (±14.21) 54 (±18.77) 46 (±16.77) 

MPI (mean, SD, mo) 23 (±16.05) 44 (±37.17) 53 (±64.97) 

Sex 14F, 23M 11F, 6M 0F, 7M 

Etiology 12T, 9H, 1I, 1HI, 14TA 5T, 7H, 1I, 0HI, 4TA 3T, 3H, 1I, 0HI, 0TA 

Coma Recovery Scale Revised (CRS-R) 

Total score 6.24 (1.01) 9.24 (1.25) 10.43 (1.90) 

Auditory 1.03 (0.50) 1.41 (0.51) 2.00 (1.15) 

Visual 0.76 (0.43) 2.59 (0.71) 2.43 (1.40) 

Motor 1.92 (0.28) 2.12 (0.33) 2.14 (0.90) 

Orom/Verb 1.00 (0.33) 1.24 (0.56) 1.43 (0.98) 

Communic 0.00 (0.00) 0.12 (0.33) 0.57 (0.53) 

Arousal 1.54 (0.56) 1.76 (0.56) 1.86 (0.90) 

Electroencephalography (Total power & frequency relative power) 

Total power (μV2) 138.22 (140.35) 229.20 (261.81) 178.96 (148.15) 

Delta (1–4Hz) 49.46% (13.46%) 41.51% (14.35%) 42.57% (16.97%) 

Theta (4–8Hz) 30.21% (11.09%) 34.09% (9.73%) 33.23% (11.58%) 

Alpha (8–13Hz) 9.71% (5.64%) 11.89% (6.08%) 8.33% (4.48%) 

Beta (13–30Hz) 7.78% (7.09%) 9.59% (8.22%) 13.89% (17.23%) 

Gamma (>30Hz) 2.84% (3.00%) 2.91% (3.21%) 1.98% (1.63%) 
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The acquisition of both EEG and structural MRI (T1-weighted) datasets, constituted 

the inclusion criteria for each patient. Experienced raters independently assessed each 

patient 4 times with the Italian version of the CRS-R 29; the best recorded performance 

was used to classify the patient as VS or MCS. As described below, 55 patients were 

discarded due to the low quality of the MRI data (e.g. motion during the data acquisitions) 

in agreement with the procedure described previously 21. The final sample was constituted 

by 61 patients with DOC (median age= 53 years, range age = 20-82 years, 36 males): 37 

patients were classified as VS and 24 as MCS. In regard to the etiology of DOC, 33% of 

the patients (n = 20) suffered from traumatic brain injury (TBI), while 67% (n = 41) from 

non-traumatic brain injury (non-TBI). In particular, among non-TBI patients, 30% (n = 18) 

suffered from anoxic brain injury and 37% (n = 23) from haemorrhagic brain injury and/or 

ischemic brain injury. The median disease duration at the time of the study was 24 

months (range = 5-198 months). (See Table S1). The local Ethics Committee 

approved all aspects of this research and written informed consent was obtained from 

the legally authorized representative of the patients prior to their inclusion in the study. 

Data acquisition and analysis 

EEG data acquisition and processing 

As described previously 28, patients underwent polygraphic recordings between 2 p.m. 

and 9 a.m. on the following day. Recordings included electrooculography (EOG), 

electromyography (EMG) from the sub-mental muscle, a bipolar precordial 

electrocardiogram (ECG) derivation and an impedance thoracic pneumogram. EEG 

recordings were made with Ag/AgCl surface electrodes (impedance was kept < 5kΩ) 
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and acquired at a sampling rate of 256 Hz using a computerized system (Micromed 

SpA, Mogliano Veneto, Treviso, Italy). The raw EEG signals were recorded against a 

common reference electrode in order to allow off-line data reformatting, using a 19 

EEG electrode array placed according to the 10-20 International System (including 

frontal (Fp1, Fp2, F3, F4), central (C3, C4), parietal (P3, P4), and occipital (O1, O2) 

electrodes). The spectral EEG analysis was performed on 5-minutes, consecutive, 

artifact-free awake EEG epochs starting from 10 s after the end of the response to an 

arousal stimuli, when the EMG artifacts had virtually disappeared and the patients had 

closed their eyes, but in the absence of any change in the EEG or polygraphic 

parameters suggesting sleep. The EEG epochs with continuous epileptiform activities 

(e.g. periodic lateralized epileptiform discharges) were discarded. The selected EEG 

epochs were filtered (1-70 Hz, 12 db/octave) followed by a 50 Hz notch filter to 

suppress the noise of the electrical power line, were reformatted against the linked ear-

lobe reference, and analyzed using the fast Fourier transform. Then, the selected EEG 

activity was analyzed by dividing it into 90 non-overlapping 2 s segments. Absolute 

total power and relative power were evaluated in the delta (1-4 Hz), theta (4-8 Hz), 

alpha (8-13 Hz), beta (13-30 Hz) and gamma (>30 Hz) bands, and averaged within 

each EEG channel. 

MRI data acquisition and processing 

Neuroimaging data were obtained with a 3T MR scanner (Achieva, Philips Healthcare 

BV, Best, NL) equipped with a 32-channel head coil. The MRI protocol comprised a 

high resolution 3D-TFE T1-weighted sequence (185 sagittal slices, TR = 9.781 ms, TE 
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= 4.6 ms, FOV = 240 × 240 mm2, voxel size = 1 × 1 × 1 mm3, flip angle = 8◦). 

Analysis of subcortical structures was conducted using a technique known as shape or 

vertex analysis, part of the FMRIB software library (FSL; FMRIB, Oxford, UK), 

following a previously established pipeline 13, 21. Briefly, MR images were brain-

extracted using optiBET 30, then the thalamus, caudate, putamen, globus pallidus, 

hippocampus, and brainstem were segmented using FSL FIRST 31, for each patient and 

structure separately, and then reconstructed into 3-dimensional vertex meshes, as 

depicted in Figure 1. In addition, the intracranial volume (ICV), a measure of global 

atrophy including white and gray matter volume, was calculated for each patient using 

a modified FSL SIENA algorithm 32. 

 

Figure 1: Sample structure extraction (left) and 3-dimensional triangle vertex mesh (right). 

(Abbreviations: A, anterior; BrStem, brain stem; Caud, caudate; GP, globus pallidus; Hipp, 

hippocampus; L, left; P, posterior; Putm, putamen; R, right; Thal, thalamus. Figure from21.) 

Statistical Analyses 

In what follows, we describe the four analyses we performed. First, we assessed the 

EEG spectral data and their association with depth of the DOC. Following, we assessed 
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how the MRI measures of subcortical atrophy are related to the EEG power spectral data 

and to the behavioral presentation (i.e., CRS-R). Finally, we brought together 

demographic, MRI and EEG data into an analytic model (i.e., binary logistic 

regression) attempting to separate VS from MCS patients. 

EEG analysis 

To assess the relationship between EEG spectral power and its relation to clinical 

grouping, we ran a mixed-model linear analysis with EEG (relative) power as the 

dependent variable, laterality (left, right, middle), channel position (Fp, F, C, P, O), 

and EEG features (total power, delta, theta, alpha, beta, gamma bands) as the repeated 

measures, diagnosis (VS, MCS-, MCS+), etiology (TBI, non-TBI), sex, frequency, 

age, and months post-injury as fixed variables and subjects as the random variable. As 

described below, the significant interaction between EEG features and diagnosis was 

followed up with one mixed-model analysis per each EEG feature (using the same 

model, albeit without the EEG feature as repeated variable). Individual mixed-models 

were followed up with pairwise post-hoc comparisons between diagnostic groups (i.e., 

VS, MCS-, MCS+), with Sidak correction for multiple comparisons. 

EEG – MRI analysis 

We related relative EEG spectral features to subcortical local shape change measures. 

Prior to performing this analysis, however, because of significant correlations among 

spectral characteristics across electrodes and frequency bands, spectral data were 

entered into a principal component analysis (PCA; performed in SAS), with varimax 

rotation . The PCA performed on EEG power data returned 8 components with 
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eigenvalue greater than 1, cumulatively explaining 91.8% of the total variance. The first 

three components presented a similar pattern, each loading negatively on all the delta 

band electrodes and positively on beta, alpha, and theta electrodes bands respectively 

(henceforth, β/δ ratio component, α/δ ratio component, and θ/δ ratio component, 

respectively). The fourth component loaded positively on all gamma frequency 

electrodes (henceforth, gamma component), while the fifth component loaded 

positively on the total power for each electrode (henceforth, total power component). 

Finally, the last three components appeared to capture diffuse statistical covariance 

between electrodes, although with a preference for loading positively upon the right 

hemispheric delta band channels and negatively on the right hemispheric alpha band 

channels (henceforth, δ/αRH ratio component), loading positively on delta band in Fp 

channels and negatively on the alpha band channels in those same electrodes 

(henceforth, δ/αFp ratio component), and loading negatively on both the alpha and theta 

band in the parietal and occipital electrodes (henceforth, αθ(P,O)[Neg.]). EEG 

components were then entered, as independent variables, in a general linear model 

attempting to capture associations with localized shape patterns (e.g., atrophy). The 

analysis also included, as covariates, sex, age, time-post-injury, etiology (i.e., TBI vs 

non-TBI), and ICV (to ensure that observed tissue displacement reflect local 

subcortical shape changes independent of overall brain atrophy). Group-level 

significance was assessed with a non-parametric permutation test at a level of p < 0.05 

corrected for multiple comparisons using a family-wise cluster correction and 

threshold free cluster enhancement (TFCE) as implemented in FSL randomize 33, 34. 
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CRS-R – MRI analysis 

In this analysis, we related the patients’ behavioral presentation, as captured by the 

CRS-R subscales, with subcortical atrophy. Because of significant correlations 

between the subscales of the CRS-R (i.e., the desired independent variables), 

behavioral data were entered into a PCA performed analogously to the one described 

above. The analysis returned 3 components with an eigenvalue greater than 1, 

cumulatively explaining 69.57% of the variance. The three components were loaded 

upon by, respectively, the auditory, visual, and arousal subscales (henceforth, audio-

video-arousal component), the motor subscale (henceforth, motor component), and the 

oromotor and communication subscales (henceforth, oromotor-communication 

component). As in the previous analysis, the three components were entered in a general 

linear model, as independent variables, attempting to capture systematic associations 

with shape patterns, along with the same covariates described above. Group-level 

significance was assessed similarly to the previous analysis. 

Predicting DOC level from EEG spectral features 

Finally, we employed a binary logistic regression to evaluate the degree to which 

global atrophy and EEG measures related to diagnosis (i.e., VS vs. MCS). With a 3-

block model, we attempt to predict diagnosis from a model including demographic 

variables only (i.e., age, sex, months post injury, etiology (TBI vs. non-TBI)), a model 

including demographic and a measure of global atrophy (including global white matter 

and gray matter), and a model including demographics, global atrophy, and EEG 

variables (i.e., the 8 EEG components). 
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Results 

 EEG results 

The mixed-model analysis revealed a significant interaction (F (10, 1309.055) = 16.599, 

p < 0.001) between diagnostic group (i.e., VS, MCS-, MCS+) and EEG features (i.e., 

total power, delta, theta, alpha, beta, gamma frequency bands; see Figure 2 and Table 

3), along with a significant main effect of diagnosis (F (2, 4389.124) = 5.158, p = 

0.006), EEG features F (5, 1309.055) = 6.368, p < 0.001), and months post-injury (F 

(2, 4220.566) = 5.407, p = 0.020). Follow-up mixed-model analyses (one per EEG 

feature) revealed a significant effect of diagnosis on total power (F (2, 594.374) = 

19.115, p < 0.001; with pairwise-comparisons revealing that VS patients show 

significantly less total power than both MCS groups), delta (F (2, 770.006) = 4.620, p 

= 0.010; with VS patients having the most relative delta power, significantly more than 

MCS- patients), theta (F (2, 779.789) = 12.268, p < 0.001; with VS showing 

significantly less relative theta power than both MCS groups, and MCS- showing 

marginally (p = 0.077) less relative theta power than MCS+), alpha (F (2, 748.766) = 

13.231, p < 0.001; with MCS- patients showing significantly more relative alpha 

power than VS and MCS+, and VS showing greater relative alpha power than MCS+), 

and gamma (F (2, 746.625) = 5.416, p = 0.005; with MCS+ patients showing 

significantly less relative gamma power than MCS- and marginally (p = 0.058) less 

than VS patients). (For further description of the EEG data in this cohort see 28.) 
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Figure 2: Summary of EEG data. Total and relative power at each frequency band (to 

allow displaying on the same axis, values are normalized within each variable). (Error bars 

represent standard errors.) 

 

EEG – MRI analysis 

As shown in Figure 3, three of the EEG factors exhibited significant correlations with 

local atrophy measurements. Specifically, the β/δ ratio component was negatively 

associated with greater atrophy in bilateral thalamus (left: t = 3.28, p = 0.025, 1,007 

significant vertices [sig. vert.], right: t = 2.85, p = 0.041, 544 sig. vert.), bilateral 

globus pallidus (left: t = 4.26, p = 0.002, 491 sig. vert.; right: t = 3.42, p = 0.025, 356 

sig. vert.), left caudate (t = 3.37, p = 0.02, 793 sign. vert.), and right hippocampus (t = 

3.21, p = 0.02, 735 sig. vert.) (see Fig. 3a). The θ/δ component was negatively 

associated with increased atrophy in right putamen (t = 3.72, p = 0.037, 140 sig. vert.) 

and right globus pallidus (t = 3.89, p = 0.037, 30 sig. vert.) (see Fig. 3b). Finally, the 

total power component was negatively associated with widespread atrophy in the 

brainstem (including the 4th ventricle region; t = 4.41, p = 0.004, 3704 sig. vert.), as 
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well as the left globus pallidus (t = 4.00, p = 0.008, 365 sig. vert.) and right caudate (t 

= 5.48, p = 0.018, 193 sig. vert.) (see Fig. 3c). No significant associations were 

detected for any of the remaining components. 

     

  

Figure 3: Results for the rest EEG – MRI analysis. (a) Results for the β/δ ratio component; 

(b) results for the θ/δ component; (c) results for the total power component. Hot colors 

indicate regions with significant greater atrophy; gray indicates no significant effect. 
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CRS-R – MRI analysis 

As shown in Figure 4a,b, two of the CRS-R components exhibited significant 

correlations with local atrophy measurements. Specifically, the motor component was 

negatively associated with greater atrophy in broad regions of the brainstem (t = 3.69, 

p = 0.074, 4,301 sig. vert.; see Fig. 4a) while the oromotor-communication component 

was negatively associated with greater atrophy in regions of the brainstem (t = 2.74, p 

= 0.05, 943 sig. vert.), left putamen (t = 3.23, p = 0.023, 712 sig. vert.), and right 

globus pallidus (t = 2.38, p = 0.049, 108 sig. vert.). A large, but only marginally 

significant, clusters was also observed in left thalamus (t = 2.36, p = 0.06, 928 sig. 

vert.) (see Fig. 4b). 

 

 

Figure 4: Results for the CRS-R – MRI analyses. (a) results for the CRS-R motor 

component; (b) results for the CRS-R oromotor-communication component. (See Fig. 3 for 

color interpretation.) 
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Predicting DOC level from EEG spectral features 

As shown in Figure 5a and Table 2, diagnosis (i.e., VS vs. MCS) was predicted 

significantly better by the model including EEG components, overall brain atrophy 

(including both white matter and gray matter), and demographic components (i.e., age, 

sex, etiology (TBI vs. non-TBI), and months post injury; χ2(54) = 29.09, p < 0.001, 

Nagelkerke pseudo-R2
Nag= 0.51), compared to the model with demographics and 

brain atrophy (χ2(58)=16.66, p < 0.001, R2
Nag= 0.32), as well as the model with 

demographics only (χ2 (59) = 8.93, p = 0.003, R2
Nag= 0.18). Indeed, the full model 

achieved better performance as area under the curve (AUC = 0.87), sensitivity and 

specificity (sens/spec; 0.79, 0.81, respectively) than both other models (AUC = 

0.78, sens/spec 0.58/0.78 and AUC = 0.67, sens/spec 0.29/0.89 for the behavioral 

and atrophy and the behavioral only models, respectively). Notably, the 

contribution of increasingly complex model (i.e., adding brain atrophy and EEG 

components) is to increase the model’s sensitivity to MCS (at the cost of a decrease 

in specificity). Finally, in terms of individual variables, as shown in Figure 5b and 

Table 2, the full model selected one behavioral component (age/sex; β = 1.44, OR = 

1.06, p = 0.002), overall brain atrophy (β = 1.27, OR = 3.56, p < 0.001), as well as the 

EEG total power (β = 0.66, OR = 1.94, p = 0.017), and, though only marginally 

significant, the EEG θ/δ  ratio component (β = 0.61, OR = 1.84, p = 0.06). 
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Figure 5: (a) ROC curve for the three binary logistic models classifying patient diagnosis 

(i.e., VS versus MCS) on the basis of behavioral components alone (M1), behavioral 

components and overall brain atrophy (M2), and behavioral components, brain volume, 

and EEG components (M3). (b) Conditional estimate plots for each of the significant 

variables selected in the full model; top row: Behavioral age and sex component, brain 

overall atrophy (i.e., ICV); bottom row: EEG total power component, EEG theta/delta 

component). 
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Model df ΔΧ² p R2 AUC Sensitivity Specificity Precision 

Intercept 60               

BEH 59 8.93 0.003 0.18 0.67 0.29 0.89 0.64 

BEH+Brain 58 16.66 <0.001 0.32 0.78 0.58 0.78 0.64 

BEH+Brain+EEG 54 29.09 <0.001 0.51 0.87 0.79 0.81 0.73 

                  95% CI 

Parameter b SE β OR z p LB UB 

(Intercept) -1.92 0.50 -0.79 0.15 -3.86 <0.001 -2.89 -0.95 

BEH: Sex-Age 0.05 0.02 1.44 1.06 3.15 0.002 0.02 0.09 

Normalized Brain 1.27 0.37 1.27 3.56 3.44 <0.001 0.55 1.99 

EEG: Total power 0.66 0.28 0.66 1.94 2.39 0.017 0.12 1.21 

EEG: δ/α(RH)  0.63 0.57 0.63 1.88 1.11 0.269 -0.49 1.75 

EEG: θ/δ 0.61 0.32 0.61 1.84 1.88 0.060 -0.03 1.25 

EEG: 

αθ(P,O)[Neg.] 
0.59 0.36 0.59 1.80 1.65 0.100 -0.11 1.29 

 

Table 2: Binary logistic regression results. Top: comparison of the AUC, sensitivity, 

specificity, and precision of the model with behavioral components only, the model with 

behavioral components and the brain normalization factor, and the model with behavioral 

components, brain normalization factor, and EEG components. Bottom: Individual 

predictors selected for the full model (i.e., BEH+Brain+EEG). 
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Discussion 

In this work we report three main findings addressing the relationship between severity 

of the impairment of consciousness EEG spectral profile, and sub- cortical atrophy. 

First, our results show that spectral profiles recorded with conventional EEG map onto 

specific patterns of subcortical brain pathology (as observed with MRI), in line with a 

recent proposal. 20, 35 Indeed, we find that the ratio of fast (i.e., beta) to slow (i.e., delta) 

frequencies is related to atrophy in thalamic regions well known to be associated with 

severity of impairment after brain injury, as shown in post-mortem 36 and in vivo 21, 37, 38 

studies, putatively secondary to delayed injury. Damage within thalamus, along with 

functional 4 and/or structural disconnection of thalamo-cortical projections 23, is indeed 

central to current theories of recovery from severe brain injury 35, and might be key to 

the network dysfunction and inferred loss of information processing measured with 

advanced neuroimaging approaches 6, 7, 26, 28, 39, 40. Furthermore, a recent cross-modal 

study in the acute and sub-acute patients has shown that EEG spectral profiles 

dominated by slow frequencies (i.e., delta) are predictive of poor outcome and 

increased thalamic atrophy at 6 months post injury in moderate-to-severe TBI patients 

recovering from coma 13. Indeed, interventions aimed at up-regulating thalamic 

activity have been shown to be capable of enhancing (to different degrees) behavioral 

responsiveness in patients suffering from severe brain injury 41-45. 

Second, similarly to results obtained in a different (large) cohort of chronic DOC 

patients 21, subscales of the CRS-R mapped onto different underlying patterns of 

atrophy, with oromotor/verbal and communication subscales component loading on left 
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thalamic and bilateral putamen, as well as subregions of brainstem, and the motor 

component loading mainly on extensive brainstem atrophy. While the present results 

are generally similar to those reported previously 21, there also are important 

differences. For example, no brainstem atrophy was observed in the previous work, and 

the pattern of thalamic atrophy in the two studies is not fully overlapping. It is difficult, 

however, to fully evaluate the meaning of these differences since the PCA components 

extracted in the two studies loaded differently on each CRS-R subscale. So although 

we do find a consistent set of regions correlating with CRS-R communication subscale 

in the two studies, spanning left thalamus and putamen, the details of the associations 

between the full panel of subscales and subcortical brain pathology remain to be fully 

characterized. Finally, and most crucially from the clinical point of view, we have 

shown that EEG spectral features are relevant to diagnosing a patient’s chronic state of 

consciousness (i.e., VS versus MCS), a decision known to be susceptible to a relatively 

high misdiagnosis rate 4, 46-48. Specifically, EEG components, together with 

demographic information, could correctly classify patients across the 

conscious/unconscious line (as behaviorally defined) with ∼87% success, leveraging 

on behavioral information (i.e., sex, age), overall brain atrophy, and EEG features (i.e., 

total power and θ/δ components). Despite the good concordance between behavior-

based diagnosis and the classification based on demographic, brain atrophy, and EEG 

variables, the two approaches still disagree over one third of the cases. Specifically, 

seven MCS patients were classified as being in VS and seven VS patients were 

classified as being MCS. The MCS patients classified as VS by our analysis could 
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either reflect the fact that the patient was transiently unconscious at the time of EEG 

data acquisition, as characteristic of MCS patients 15, or the fact that behavioral 

diagnoses compress very different EEG profiles into the same clinical category. 

Similarly, the VS patients classified as MCS by our algorithm could either be a 

reflection of the variance in the spectrum of oscillations that are compatible with a 

state of unconsciousness, or a genuine misdiagnosis 4, 9, 49. In evaluating the above 

results, the reader should be mindful of some limitations in our approach. First, as is 

often the case in the context of chronic DOC, our results are skewed by survivor bias 

effects; we might thus be representing a spectrum of impairment which, while severe, 

excludes the even greater damage present in patients who do not survive until over a 

year post injury. Second, due to significant correlations across channels within and 

across power bands, in order to perform the regression analyses presented above we 

had to first reduce the independent variables by means of a PCA. While this is 

conventional, it does affect the interpretation of our results in as much as we cannot 

directly assess whether the effects we report in mixed component (e.g., the β/δ 

component) are principally due to either frequency or to their combination. Third, 

gamma frequencies are known to often contain residual muscle artifacts; a reason why 

they are often excluded in analyses. Here we decided to keep them mainly because, 

even if they do contain artefacts, including the gamma component still contributes to 

explaining variance in the signal (even if we cannot tell if their variance is due to brain 

processes, motion, or a combination of the two). Had we not included it, any variance 

across patients due to motion would have de facto been subsumed by the unexplained 
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variance term thereby making our statistical estimates more conservative. In this sense, 

our approach is analogous, to give an example, to the conventional inclusion of motion 

parameters in functional MRI studies. Finally, we stress that while we report 

associations between brain damage in subcortical regions and EEG spectral features, 

this does not necessarily imply that the pinpointed areas are, themselves, the generators 

of specific oscillatory rhythms at rest. 

In conclusion, the present work begins bridging very different levels of analysis of 

patients surviving severe brain injury, uniting brain pathology in subcortical regions 

considered to be key to DoC 35, clinical evaluation 24, and power spectral features 1, 13, 

19. Furthermore, our data show that such multimodal approaches are not only important 

from the point of view of basic research, but can also be employed in the context of 

diagnosis, something that is known to be particularly challenging in this patient cohort 

46-48.  

Importantly, our techniques – while novel in their current multimodal application – are 

entirely based on conventional clinical data (for both EEG and MRI) and on analysis 

pipelines that have been well validated in populations with severe brain pathology 30 

and are freely available, implying that the methods we presented are relevant and 

directly translatable to clinical practice. Furthermore, the present data also show that 

the pattern of association between spectral profile, brain damage, and clinical variables 

observed in the acute setting 13 persist through the chronic time frame, in line with the 

idea that brain injury is best thought of as a long-term disease as opposed to an “event” 

50. 
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