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ABSTRACT 30 

Chronic pancreatitis is a complex disease that involves many factors, both genetic and 31 

environmental. Over the past two decades, molecular genetic analysis of five genes that are highly 32 

expressed in human pancreatic acinar cells, namely PRSS1, PRSS2, SPINK1, CTRC and 33 

CTRB1/CTRB2, has established that a trypsin-dependent pathway plays a key role in the etiology 34 

of chronic pancreatitis. Since Ca2+ deregulation can lead to intracellular trypsin activation in 35 

experimental acute pancreatitis, we analyzed STIM1 (encoding stromal interaction molecule-1, the 36 

main regulator of Ca2+ homeostasis in pancreatic acinar cells) as a candidate modifier gene in 37 

French, German and Chinese patients with chronic pancreatitis. The French and German subjects 38 

were analyzed by Sanger sequencing whereas the Chinese subjects were analyzed by targeted 39 

next-generation sequencing confirmed by Sanger sequencing. A total of 37 rare coding variants (35 40 

missense and 2 nonsense) were identified, which were enriched in patients as compared with 41 

controls [2.28% (47/2,057) vs. 0.99% (33/3,322); odds ratio = 2.33, P = 0.0001]. This is the first 42 

large case-control study to demonstrate a putative association of rare STIM1 coding variants with 43 

chronic pancreatitis. Functional analysis will be required to clarify whether or not the rare STIM1 44 

variants detected predispose to pancreatitis.  45 

 46 

INTRODUCTION 47 

Chronic pancreatitis is a complex disease that is defined as “a pathologic fibro-inflammatory 48 

syndrome of the pancreas in individuals with genetic, environmental and/or other risk factors who 49 

develop persistent pathologic responses to parenchymal injury or stress” (Whitcomb et al., 2016). 50 

Over the past two decades, molecular genetic analysis of five genes that are highly expressed in 51 

human pancreatic acinar cells, namely PRSS1 encoding cationic trypsinogen (Le Maréchal et al., 52 

2006; Whitcomb et al., 1996), PRSS2 encoding anionic trypsinogen (Witt et al., 2006), SPINK1 53 

encoding pancreatic secretory trypsin inhibitor (Witt et al., 2000), CTRC encoding chymotrypsin C 54 

(Masson et al., 2008; Rosendahl et al., 2008) and CTRB1-CTRB2 encoding chymotrypsin B1 and 55 

B2 (Rosendahl et al., 2018), has established a trypsin-dependent pathway in the etiology of chronic 56 

pancreatitis (Hegyi and Sahin-Toth, 2017). 57 

The majority of patients with chronic pancreatitis had prior clinically recognized acute 58 

pancreatitis (LaRusch et al., 2015), an acute inflammatory disease of the pancreas postulated to be 59 

an autodigestive disease triggered by prematurely activated trypsin within the pancreas (Chiari, 60 

1896). The association of gain-of-function PRSS1 variants with both recurrent acute pancreatitis 61 

and chronic pancreatitis (Gorry et al., 1997; Whitcomb et al., 1996) not only provided support for 62 

Chiari’s original hypothesis (Chiari, 1896) but has also contributed to the Sentinel Acute 63 

Pancreatitis Event model for the development of chronic pancreatitis (Whitcomb, 1999). 64 
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Importantly, successive developments of spontaneous acute pancreatitis and chronic pancreatitis 65 

have recently been observed in genetically modified mice that carried a heterozygous p.Asp23Ala 66 

mutation within the activation peptide of the mouse cationic trypsinogen (Prss1) T7 isoform (the 67 

p.Asp23Ala mutant autoactivates to trypsin 50-fold faster than wild-type) (Geisz and Sahin-Tóth, 68 

2018).  69 

The above notwithstanding, our understanding of the early events leading to pancreatitis is still 70 

rather limited. In this regard, prolonged and global Ca2+ elevation (elicited by bile, alcohol 71 

metabolites and other causes) has been described to result in trypsin activation, vacuolization and 72 

necrosis of the pancreatic acinar cells in experimental acute pancreatitis (review in (Li et al., 2014)); 73 

and stromal interaction molecule-1 (STIM1) is a key regulator for Ca2+ homeostasis in both non-74 

excitable and excitable cells (Yuan et al., 2009). These findings suggest that variants in the STIM1 75 

gene may contribute to the early steps of pancreatitis by disturbing Ca2+ homeostasis within the 76 

pancreatic tissue. 77 

Variants in the STIM1 gene have been previously associated a number of diseases such as 78 

immunodeficiency and autoimmunity (Picard et al., 2009; Shaw et al., 2013), a novel syndrome of 79 

amelogenesis imperfecta and hypohidrosis (Parry et al., 2016), tubular-aggregate myopathy (Bohm 80 

et al., 2013; Nesin et al., 2014; Noury et al., 2017), or Stormorken syndrome (Misceo et al., 2014; 81 

Morin et al., 2014). Also, tubular aggregate myopathy and Stormorken syndrome patients carrying 82 

STIM1 variants additionally manifested psychiatric disorders (Harris et al., 2017). Moreover, Sofia 83 

and colleagues have recently analyzed the STIM1 gene (included within a panel of 70 genes 84 

related to six different pancreatic pathways) in 80 patients with idiopathic chronic pancreatitis (ICP) 85 

and found three missense mutations [i.e., c.1310G>A (p.Cys437Tyr), c.1589G>A (p.Arg530His), 86 

and c.2246G>A (p.Arg749His)] in different patients (Sofia et al., 2016). In addition to the relatively 87 

small number of patients analyzed, this study was limited by the lack of data from a corresponding 88 

control population. Herein, we report our findings from a comprehensive variant analysis of the 89 

STIM1 gene in three ICP cohorts.  90 

 91 

PATIENTS AND METHODS 92 

Patients 93 

This study included 436 French, 517 German and 1,104 Chinese patients with ICP (i.e., absence of 94 

both a positive family history and any of the following external precipitating factors, namely alcohol 95 

abuse, post-traumatic, hypercalcemic, hyperlipidemic and autoimmune) and corresponding healthy 96 

controls. The diagnosis of chronic pancreatitis was made as previously described (Witt et al., 2013; 97 

Zou et al., 2016). Informed consent was obtained from each patient and the study was approved by 98 

the respective ethics committees.  99 
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Variant screening 100 

The French and German subjects were analyzed by Sanger sequencing; three multiplex PCRs 101 

were designed to amplify the entire coding sequence and flanking intronic sequences of the STIM1 102 

gene (see additional file, Figures. S1 and S2). The Chinese subjects were analyzed by targeted 103 

next-generation sequencing followed by Sanger sequencing confirmation, essentially as previously 104 

described (Wu et al., 2017; Zou et al., 2018), the primer sequences are provided in Additional file, 105 

Figure S3. 106 

 107 

Variant nomenclature and reference sequences 108 

Variant nomenclature followed Human Genome Variation Society recommendations 109 

(http://www.hgvs.org/mutnomen/recs.html) (den Dunnen et al., 2016). GenBank accession number 110 

NM_003156.3 was used as the STIM1 mRNA reference sequence. STIM1 genomic sequence was 111 

obtained from human GRCh38/hg38 (https://genome.ucsc.edu/). 112 

 113 

Pathogenicity prediction 114 

This was performed using the Combined Annotation-Dependent Depletion (CADD) method (Kircher 115 

et al., 2014) available at https://cadd.gs.washington.edu/. 116 

 117 

Statistical analyses 118 

The assessment of statistical significance of the differences between the carrier frequencies of the 119 

STIM1 variants in patients and controls was performed by the 2x2 contingency table available at 120 

http://vassarstats.net/odds2x2.html. The difference was considered as being statistically significant 121 

when the P value was ≤ 0.05. 122 

 123 

RESULTS AND DISCUSSION 124 

Given the importance of Ca2+ signaling for the regulation of pancreatic zymogen activation and the 125 

key role of STIM1 in Ca2+ homeostasis, we analyzed the STIM1 gene as a candidate modifier gene 126 

for chronic pancreatitis. Employing Sanger sequencing, we first analyzed the entire coding 127 

sequence (2,058 bp; NM_003156.3) and exon/intron boundaries of the 12-exon STIM1 gene in 436 128 

French ICP patients and 1,005 controls, and then repeated this analysis with 517 German ICP 129 

patients and 1,121 controls. Our subsequent analysis was limited to coding sequence variants that 130 

resulted in amino acid changes and intronic variants that affected canonical donor/acceptor splice 131 

sites. Eight such variants were identified in the French cohort and ten in the German cohort; all 132 

these variants were single nucleotide substitutions and all were predicted to result in missense 133 

substitutions (Additional file, Tables S1 and S2). Since all detected variants were rare variants 134 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/691899doi: bioRxiv preprint 

http://www.hgvs.org/mutnomen/recs.html
https://genome.ucsc.edu/
https://cadd.gs.washington.edu/
http://vassarstats.net/odds2x2.html
https://doi.org/10.1101/691899
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

(defined as having a minor allele frequency of <0.5% in the control population as previously 135 

described (Manolio et al., 2009; Tennessen et al., 2012), we first performed aggregate association 136 

analysis in the context of each cohort. A significant enrichment of rare variants in patients as 137 

compared to controls was noted in the French cohort (odds ratio (OR) = 4.04, P = 0.002) but not in 138 

the German cohort (OR = 1.64, P = 0.26) (Table 1). 139 

We also analyzed the STIM1 gene in 1,104 Chinese ICP patients and 1,196 controls by means 140 

of targeted sequencing followed by Sanger sequencing validation. A total of 24 rare variants were 141 

identified (Additional file, Table S3), which when taken together were significantly overrepresented 142 

in patients as compared to controls (OR = 2.03, P = 0.03; Table 1). A Breslow-Day test for 143 

homogeneity of the ORs (https://www.prostatservices.com/) between the French, German and 144 

Chinese cohorts showed no significant difference (P = 0.14). We therefore combined data from 145 

these three cohorts (Table 2), the carrier frequency of the aggregated rare variants being 146 

significantly higher in patients than in controls (OR = 2.33, P = 0.0001; Table 1).  147 

Our comprehensive analysis of the STIM1 gene in three ICP cohorts identified a significant 148 

enrichment of rare coding STIM1 variants in patients as compared to controls by means of 149 

aggregate association analysis (Table 1). Notably, none of the identified 37 rare STIM1 variants 150 

correspond to those previously reported to cause or predispose to other diseases (Lacruz and 151 

Feske, 2015), potentially strengthening the notion of the tissue-specific effects of different STIM1 152 

variants. However, pathogenicity prediction by means of the CADD method yielded similar findings 153 

among the three groups of variants namely, (i) variants found in only patients, (ii) variants found in 154 

both patients and controls and (iii) variants found in only controls (Table 2). 155 

In summary, this is the first large case-control study to demonstrate a putative association of 156 

rare STIM1 coding variants with chronic pancreatitis. Functional analysis will be required to clarify 157 

whether or not rare coding STIM1 variants predispose to pancreatitis. 158 

 159 
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Table 1. Prevalence of STIM1 variants in ICP patients versus controls in the French, German and 303 

Chinese Populations 304 

Population Cases Controls Odds 

ratio 

95% 

confidence 

interval 

P value 

+/n (%) +/n (%) 

French 12/436 (2.75) 7/1,005 (0.70) 4.04 1.58-10.32 0.002 

German 9/517 (1.74) 12/1,121 (1.07) 1.64 0.69-3.91 0.26 

Chinese 26/1,104 (2.36) 14/1,196 (1.17) 2.03 1.06-3.92 0.03 

All three 

combined 

47/2,057 (2.28) 33/3,322 (0.99) 2.33 1.49-3.65 0.0001 

 305 
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Table 2. STIM1 variants in the combined French, German and Chinese cohorts 

Exon Nucleotide 

change 

Amino acid 

change 

Patients 

(n = 2,057) 

Controls 

(n = 3,322) 

rs number Allele 

frequency in 

gnomAD 

CADD 

score 

   + (%) Population(s) + (%) Population(s)    

Variants detected in patients only 

1 c.91G>C p.Ala31Pro 1 (0.05) F 0 (0)  rs368091975 1.19e-5 16.10 

1 c.107C>T p.Ser36Leu 1 (0.05) G 0 (0)  rs200907515 3.18e-5 13.72 

1 c.112G>C p.Ala38Pro 1 (0.05) F 0 (0)  rs774499633 No 14.95 

1 c.113C>T p.Ala38Val 1 (0.05) C 0 (0)  No No 13.93 

4 c.454G>A p.Glu152Lysa 3 (0.15) C (1), F (2)  0 (0)  rs143916878 1.16e-4 23.2 

6 c.747G>C p.Glu249Asp 1 (0.05) C 0 (0)  No No 18.57 

9 c.1231A>G p.Thr411Ala 1 (0.09) C 0 (0)  No No 18.54 

11 c.1498C>T p.Arg500Trp 1 (0.05) C 0 (0)  rs772902514 1.59e-5 33 

12 c.1562C>T p.Ser521Leu 2 (0.10) C (1), G (1) 0 (0)  rs745539009 1.59e-5 24.5 

12 c.1595G>A p.Arg532His 1 (0.05) C 0 (0)  rs771442242 7.96e-6 26.5 

12 c.1615C>T p.Gln539Ter 1 (0.05) C 0 (0)  No No 41 

12 c.1668C>G p.Ser556Arg 5 (0.24) C 0 (0)  rs201543900 4.24e-5 22.6 

12 c.1801C>T p.Pro601Ser 1 (0.05) G 0 (0)  rs200960094 3.98e-5 16.68 

12 c.1808C>T p.Ala603Val 1 (0.05) C 0 (0)  rs749622475 1.19e-5 19.32 

12 c.1843C>T p.Arg615Cys 3 (0.15) C 0 (0)  rs560566339 1.19e-5 28.5 

12 c.2012G>A p.Arg671Gln 1 (0.05) C 0 (0)  rs779204802 8.04e-6 24.3 

Variants detected in patients and controls 

4 c.458C>T p.Thr153Ile 3 (0.15) F (1), G (2) 1 (0.03) F rs144602692 1.94e-4 23.8 
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11 c.1511C>T p.Thr504Met 2 (0.10) C 1 (0.03) C rs146873551 8.28e-4 20.8 

12 c.1571C>T p.Ser524Phe 5 (0.24) F (2), G (3) 8 (0.24) F (4), G (4) rs141215990 1.78e-3 29.1 

12 c.1589G>A p.Arg530His 6 (0.29) C 3 (0.09) C rs746517083 3.18e-5 24.5 

12 c.1612C>T p.Pro538Ser 4 (0.19) F 1 (0.03) F rs35960304 5.95e-3 20.2 

12 c.1636G>A p.Glu546Lys 2 (0.10) F (1), G (1) 2 (0.06) G rs371443357 3.54e-5 23.9 

Variants detected in controls only 

4 c.408G>C p.Glu136Asp 0 (0)  1 (0.03) C rs200648767 1.77e-4 13.79 

4 c.472C>G p.Gln158Glu 0 (0)  1 (0.03) C No No 21.3 

5 c.530C>T p.Thr177Ile 0 (0)  1 (0.03) C rs761973338 3.18e-5 24.6 

7 c.826G>C p.Glu276Gln 0 (0)  1 (0.03) C No No 23.0 

8 c.1010C>T p.Ser337Phe 0 (0)  1 (0.03) G No No 27.6 

11 c.1499G>A p.Arg500Gln 0 (0)  1 (0.03) C rs760242778 7.97e-6 29.4 

11 c.1505G>A p.Arg502His 0 (0)  1 (0.03) C rs555016539 1.19e-5 27.3 

12 c.1583G>A p.Ser528Asn 0 (0)  1 (0.03) C rs200078549 2.39e-5 24.0 

12 c.1601C>A p.Ala534Asp 0 (0)  1 (0.03) F No No 14.12 

12 c.1624C>T p.Arg542Cys 0 (0)  1 (0.03) C rs370846246 3.58e-5 28.3 

12 c.1673G>A p.Arg558Gln 0 (0)  1 (0.03) C rs199503470 1.59e-5 24.4 

12 c.1681G>A p.Glu561Lys 0 (0)  1 (0.03) G rs200557274 1.99e-5 31 

12 c.1928G>A p.Arg643His 0 (0)  3 (0.09) G rs140080199 7.57e-4 31 

12 c.1960G>A p.Ala654Thr 0 (0)  1 (0.03) G rs201466902 1.41e-4 21.8 

12 c.2053A>T p.Lys685Ter 0 (0)  1 (0.03) C No No 42 

Total   47 (2.28)  33 (0.99)     

All variants were found in the heterozygous state. C, Chinese. F, French. G, Germany. 
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