
Genome analysis

Nanopore base-calling from a perspective of
instance segmentation
Yao-zhong Zhang 1,∗, Arda Akdemir 1, Georg Tremmel 1, Seiya Imoto 1, Satoru
Miyano 1, Tetsuo Shibuya 1 and Rui Yamaguchi 2,∗

1Institute of Medical Science, the University of Tokyo, Tokyo, 108-0071, Japan
2Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan

∗To whom correspondence should be addressed.

Abstract

Background Nanopore sequencing is a rapidly developing third-generation sequencing technology, which
can generate long nucleotide reads of molecules within a portable device in real time. Through detecting
the change of ion currency signals during a DNA/RNA fragment’s pass through a nanopore, genotypes
are determined. Currently, the accuracy of nanopore base-calling has a higher error rate than short-read
base-calling. Through utilizing deep neural networks, the-state-of-the art nanopore base-callers achieve
base-calling accuracy in a range from 85% to 95%.
Result In this work, we proposed a novel base-calling approach from a perspective of instance
segmentation. Different from the previous sequence labeling approaches, we formulated the base-calling
problem as a multi-label segmentation task. Meanwhile, we proposed a refined U-net model which we call
UR-net that can model sequential dependencies for a one-dimensional segmentation task. The experiment
results show that the proposed base-caller URnano achieves competitive results compared to recently
proposed CTC-featured base-caller Chiron, on the same amount of training and test data for in-domain
evaluation. Our results show that formulating the base-calling problem as a one-dimensional segmentation
task is a promising approach.
Availability: The source code and data are available at https://github.com/yaozhong/URnano
Contact:yaozhong@ims.u-tokyo.ac.jp
Supplementary information: Supplementary data are available at attachment online.

1 Background
Nanopore sequencing, a third-generation sequencing technique, has
achieved impressive improvement in the past several years [1, 2]. A
nanopore sequencer measures currency changes during the transit of a
DNA or an RNA molecule through a nanoscopic pore and can be equipped
in a portable size. For example, MinION is such a commercially available
device produced by Oxford Nanopore Technologies (ONT). One key merit
of nanopore sequencing is its ability to generate long reads on the order
of tens of thousands of nucleotides. Besides the sequencing application,
it is actively used in more and more fields, such as microbiology and
agriculture.

Base-calling is usually the initial step to analyze nanopore sequencing
signals. A base-caller translates raw signals (referred to as squiggle) into
nucleotide sequences and feeds the nucleotide sequences to downstream
analysis. It is not a trivial task, as the currency signals are highly complex
and have long dependencies. ONT provides established packages, such as
Scrappie and Guppy. Currently, nanopore base-calling still has a higher
error rate when compared with short-read sequencing. Its error rate ranges
from 5% to 15%, while the Illumina Hiseq platform has an error rate of

around 1%. More and more work is now focusing on solving challenges
to further improve base-calling accuracy.

Early-stage base-callers require first splitting raw signals into event
segments and predict k-mer (including blanks) for each event. Sequential
labeling models, such as hidden Markov model (HMM) [3] and recurrent
neural network (RNN) [4] are used for modeling label dependencies
and predicting nucleotide labels. It is widely considered that a two-
stage pipeline usually brings about an error propagation issue that wrong
segments affect the accuracy of base-calling. Recently, end-to-end deep
learning models are used to avoid pre-segmentation of raw signals,
which enables base-callers to directly process raw signals. For example,
BasecRAWller [5] puts the event segmentation step in a later stage after
initial feature extraction by a RNN. Chiron [6] and recent ONT base-
callers use a Connectionist Temporal Classification (CTC) module to avoid
explicitly segmentation for base-calling from raw signals. With CTC, a
variant length base sequence can be generated for a fixed-length signal
window through output-space searching.

On the other hand, even though those base-callers can translate
raw signals to bases directly, segmentation and explicit correspondence
between squiggles and nucleotide bases are also informative. It can provide
information for detecting signal patterns of target events, such as DNA

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 8, 2019. ; https://doi.org/10.1101/694919doi: bioRxiv preprint 

https://doi.org/10.1101/694919
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Zhang et al.

Fig. 1: Overall structure of URnano baser-caller. Block 1© is the UR-net deep neural network structure. Block 2© is the post-processing part that transforms
the UR-net’s output to final base-calls.

modifications [7]. In a re-squiggle algorithm, base-calling and event
detection are also required.

In this paper, we performed base-calling from the point of view of
instance segmentation and developed a new base-caller named URnano.
Distinguished from previous work that treats base-calling as a sequence
labeling task, we formalize it as a multi-label segmentation task that
splits raw signals and assigns corresponding labels. Meanwhile, we avoid
making the assumption that each segment is associated with a k-mer
(k ≥ 2) and directly assign nucleotide masks for each currency sampling
point. On model-level, based on the basic U-net model [8], we proposed
an enhanced model called UR-net that is capable of modeling sequential
dependencies for a one-dimensional (1D) segmentation task. Our base-
caller is also an end-to-end model that can directly process raw signals. Our
experiment results show that the proposed URnano achieves competitive
results when compared with current base-callers using CTC decoding on
the same dataset, while retains speed advantage with its model architecture.

2 Methods
The overall structure of URnano is described in Figure 1. URnano
contains two major components: 1© UR-net for signal segmentation and
base-calling. 2© Post-processing. For streaming signals generated by a
nanopore sequencer, URnano scans signals in a fixed window length L
(e.g., L = 300) and slides consequently with a step length s (e.g.,
s = 30). Given signal input X = (x1, x2, ..., xi, ..., xL), UR-net
predicts segment label masks yi for each xi. The output of UR-net
Y = (y1, y2, ..., yi, ...yL) has exactly the same length as the inputX and
yi ∈ {A1, A2, C1, C2, G1, G2, T1, T2}. Here, {A1, C1, G1, T1} and
{A2, C2, G2, T2} are alias label names, which is designed to process
homopolymer repeats (described in section 2.3). After label mask Y

is generated, we conduct a post-processing step that transforms Y to
Y ′ ∈ {A,C,G, T}N , where N is the length of the final basecall. The
post-processing contains two simple steps. First, it collapses consecutive
identical label masks as one label. Second, the collapsed labels in alias

namespace are transformed back to bases in {A,C,G, T}. Y ′ is the final
base-calls of the URnano.

Besides predicting base-calls, URnano also generates a signal segment
for each base. In previous work [5, 4], signal segments are assumed to be
associated with k-mers of a fixed k (e.g., k=2,4,5). Every base is read as
a part of k consecutive events. In URnano, we avoid making the k-mer
assumption and directly assign label masks for signals.

2.1 UR-net: enhanced U-net model for 1D sequence
segmentation

The key component of the URnano is UR-net and its network structure is
shown in Figure 1. In general, UR-net is based on the U-net model [8]
and is enhanced to model sequential dependencies1. The original U-net
is designed for image data in two dimensional (2D) and has achieved the-
state-of-the-art performances in many image segmentation tasks. Although
the model can be directly applied for 1D data, the 1D segmentation
task has its own characteristics that are distinguished from the 2D image
segmentation task. In a sequence segmentation task, one segment may
not only relate with its adjacent segments but also depends on non-
adjacent segments that are long-distance away. Such dependencies were
not considered in the original U-net model, which mainly focuses on
detecting object regions and boundaries.

The UR-net has a similar U-shape structure as U-net, in which left-U
side encodes inputsX through convolution and max pooling, and right-U
side decodes through up-sampling or de-convolution. We make two major
enhancements in the UR-net model, which are highlighted in the green
color shown in Figure 1 and described as follows:

• For the left-U side encoding part, we add an RNN layer right after each
CONV-BN-RELU block to model sequential dependencies of hidden
variables in different hierarchical levels. Those RNN layers are then
concatenated with CONV and UP-Sample layer in the right-U side
decoding part.

1 “R" represents a refinement of U-net and the integration of RNN
modules.

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 8, 2019. ; https://doi.org/10.1101/694919doi: bioRxiv preprint 

https://doi.org/10.1101/694919
http://creativecommons.org/licenses/by-nc-nd/4.0/


U-net Nanopore 3

• We add three bi-directional RNN layers in final layers.

Those changes are motivated to enhance the sequential modeling ability
for the U-net.

2.2 Model training

Given D = {(Xi, Yi)|i = 1...n}, we train UR-net with an interpolated
loss function that combines dice loss and categorical entropy loss. The task
loss of edit distance can not be directly optimized. For each sample, the
dice loss (DL) and categorical entropy loss (CE) are defined as follows:

loss =

n∑
i=1

α ∗ CEi + (1− α) ∗DLi (1)

DLi =
2 ∗

∑L
t=1

∑8
j=1 ptj ∗ gtj∑L

t=1

∑L
j=8 gtj +

∑L
t=1

∑L
j=8 ptj

(2)

CEi =
L∑

t=1

8∑
j=1

gtj ∗ log(ptj) (3)

, where pij is the j-th softmax value for the i-th sample. We use Adam
[9] to optimize the above loss function.

2.3 Homopolymer repeats processing

Fig. 2: Histogram of homopolymer repeats from 400 E. coli and λ-phage
reads.

In genomes, homopolymer repeats (e.g., AAA and TTTT) exists.
Figure 2 demonstrates a histogram of homopolymer repeats 2 on randomly
sampled 200 E. coli reads and 200 λ-phage reads. From the figure, we can
observe that majority homopolymer repeats have lengths less than 5 base-
pairs. For the original U-net model, adjacent bases in a homoploymer can
not be distinguished and are merged as one base. This brings about deletion
errors if training model directly. To solve this problem, we use an alias
trick to differentiate adjacent identical labels. For example, homopolymer
repeat “AAAAA" in the training data is converted to “A1A2A1A2A1"
for training UR-net model. In the inference stage, those new labels are
transformed into the original representation through post-processing.

2 non-repeats are treated as one time repeat for reference

Fig. 3: An example on merging base-calls of overlapped slide window for
a whole read.

2.4 Merge base-calls in sliding window into a whole read

In the training phase, a read is split into the non-overlapping windows
of fixed length. In the testing phase, for calculating read accuracy, read
signals are scanned with overlapping windows. The sliding window takes
a small step s (s < L). For each time step t, xt and xt−1 have L − s
overlaps on the signal content. Thus, for a read signal of length N we
have bN−L

s
cwindows and each overlap with its neighbors byL− s. The

base-calls for each input at neighboring positions are merged in pair-wise
fashion consequently. We find the start index of the longest consecutive
overlap between subsequent nucleotide sequences, and concatenate two
predictions from that starting point. After doing the concatenation for all
neighboring segments, we count the number of the occurrence of each
nucleotide for each position and use the most frequent ones as the final
prediction. An example is shown in Figure 3. In the training, the start
position of each nucleotide in the signal is known. But in streaming
decoding mode, signals near start or end position of the window may
be incomplete signals for one nucleotide. Therefore, we clip the first and
last base calls of each window before they are used in merging a whole
read.

3 Experiments

3.1 Experiment settings

3.1.1 Data
We compared URnano with recently proposed base-callers: Chiron3 and
ONT base-callers, such as Scrappie (raw) and Guppy. For comparing
model performances, we used publicly accessible curated data set provided
by Teng et al. [6]. The training set contains a mixture of randomly selected
2000 E. coli reads and 2000 λ-phage reads generated using nanopore’s 1D
protocol on R9.4 flowcells. The test set contains the same amount of reads
from E. coli and λ-phage. To assess read accuracy across species, we use
1000 randomly selected reads from Chromosome 11 of human benchmark
sample NA12878 (1D protocol on R9.4 flowcells)4.

The input signals are normalized using median shift and
median absolute deviation scale parameters Norm_signal =
Raw_signal−Shift

Scale
. The Norm_signal usually has values in a range

of [−2, 2]. For training deep learning models, signals of a read are split
into non-overlapping window segments of a fixed length L (L = 300 by
default). For those samples containing Norm_signal larger than 10, we
filtered them out for training. In total, we have 830,796 training samples.
For evaluating read accuracy of a whole read, a sliding window takes a
step of 30 for generating overlapped base-calls.

3.1.2 Evaluation metric
We evaluated a base-caller’s performance according to the following three
metrics:

3 https://github.com/haotianteng/Chiron
4 https://github.com/nanopore-wgs-consortium/NA12878

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 8, 2019. ; https://doi.org/10.1101/694919doi: bioRxiv preprint 

https://doi.org/10.1101/694919
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Zhang et al.

• Normalized edit distance (NED) between gold nucleotides and base-
calls in non-overlapping windows

• Read accuracy (RA) evaluates the difference between a whole read
and its reference.

RA =
M

M + U + I +D

Where M is the number of bases identical to reference. U , I and
D are the number of mismatches, inserts and deletions, respectively,
according to the reference read. Following the evaluation scheme in
Chiron, we used GraphMap [10] to align base-calls of a read to the
reference genome. The error rates of the aligned reads are calculated
using the publicly available Japsa tool5.

• Assembly identity and relative length. We assembled genomes using
the base-calls from each basecaller. The details of the assembling
process are given in the ‘Read assembly results’ section.

identity = 1− (deletion_rate+mismatch_rate)

relative_length =
Lpred

Lref

where Lpred is the length of the assembled base-call and Lref is the
length of the reference genome.

3.1.3 Model and base-caller settings
The URnano is implemented using Keras (v2.2.4) with Tensorflow backend
(v 1.8.0). The source code is available on github6. Chiron (v0.3 clean
branch) is evaluated using their provided model. The model is trained on
the same data set as URnano. The Beam search version of Chiron is used
here, with a beam size of 50. ONT base-callers (Scrappie and Guppy) are
used with the provided models. Those models are trained on a large data
set, which contains more species, such as H.sapiens.

3.2 Base-calling results on non-overlapping segments

Different base-callers and variant deep network architectures are first
evaluated using normalized edit distance (NED). In total, 847,201 samples
of 300-length window are evaluated. In general, the lower NED is, the more
accurate a base-caller is.

Table 1. NED of different base-callers and network architectures for non-
overlapping window in the test set.

Category Model Mean Std
with CTC Chiron 0.2084 0.1247

no CTC

Unet 0.3528 0.2448
3GRU 0.2808 0.1631

Unet+3GRU 0.1800 0.1296
URnano 0.1665 0.1329

Based on whether a model using Connectivist Temporal Classification
(CTC), we categorized base-callers into two types: with CTC and without
CTC. Chiron is the first published work using CTC decoding for raw
signals. In our segmentation-based models, CTC is not used. The URnano
performs better than Chiron with a relative 20% smaller NED. This shows
the potential of modeling base-calling as an instance segmentation task. For
the NED variance, URnano has a higher value of 0.1329, when compared
with 0.1247 of Chiron.

5 https://japsa.readthedocs.io/en/latest/license.html
6 https://github.com/yaozhong/URnano

For base-callers without CTC, we compared the performance of
different neural network architectures. The original U-net performs the
worst of 0.3528, while URnano achieves the best of 0.1665. As the
sequential dependencies are not modeled in the U-net, these results indicate
the importance of sequential information in the 1D segmentation task.

To take into account the sequential dependencies, we initially added 3
layers of bi-directional gated recurrent units (GRU) for the output of the
U-net. This gives about 0.1728 absolute reduction on the NED compared
with the U-net. Meanwhile, we observed that the Unet+3GRU performs
significantly better than only using 3GRU (0.1 absolute NED reduction).
In addition, we incorporated GRU layers in different hierarchical levels
of convolutional layers. It gives a further 7.5% relative reduction of NED,
when comparing URnano with Unet+3GRU.

3.3 Segmentation results

In this section, we investigated event segments for each predicted
nucleotide. Figure 4 demonstrates an example of base-calling and
segmentation by URnano and Chiron. For URnano, the signal segment
for each base can be directly derived through label masks. As in the
post-process of URnano, consecutive identical masks are merged as one
base, a region of consecutive identical masks is just an event segment. For
Chiron, it is a bit tricky to generate event segments from predictions, as
the model does not explicitly provide segmentation information. In order
to compare our results with the Chiron, we use a heuristic approach to
generate segments based on Chiron’s results. Based on the base-calling
prediction, segmentation points can be found by observing the softmax
probabilities fed to the CTC decoder. From the start, we find the next
significant peak for the current nucleotide as the segmentation point and
repeat this for the rest. A significant peak in the probabilities is determined
by a threshold (0.2 in our case). For example, as shown in the Chiron
prediction in Figure 4, after mapping ‘T’ to the first peak (shown in green),
this algorithm searches for the next significant peak for ‘G’ (shown in blue).
The search stops after reaching a significant peak and we move to the next
iteration.

Figure 4 demonstrates the segmentation results generated by URnano
for a randomly selected input. From the gold segmentation, we can observe
the signals for a nucleotide is not evenly distributed across time. This
is mainly due to the fact that, the speed at which a molecule passes through
a pore changes over time. The speed issue makes the segmentation a
non-trivial task. Traditional statistical approaches without considering the
speed changes may not work. Here, the proposed URnano is designed
to learn segmentation from the data, which implicitly considers the speed
changes embedded in signals. For example, events of ‘T’s around 150 time-
step tend to have short lengths than that in 200 time-step. The URnano can
distinguish such speed changes as shown in the third row of the figure. For
Chiron, the speed changes can also be detected as shown in the Figure,
yet the boundaries are not as accurate as segmentation oriented URnano
in this example.

For the beginning part of the signal in this example, both Chiron and
URnano generate correct base predictions, but the segments of ‘TT’ shift
a bit compared to the gold standard. In general, URnano provides a more
intuitive and easier interpretable segmentation result when compared to
Chiron.

3.4 Base-calling results on read accuracy

We evaluated read accuracy for the whole reads on the test set. For in-
domain evaluation, we tested on 2000 E. coli and 2000 λ-phage reads,
separately. In both species, URnano has a lower Deletion and Mismatch
rate, when compared with Chiron. But Insertion rate of URnano is 0.0153
higher in E. coli and 0.0032 in λ-phage than corresponding values in
Chiron. Overall, URnano achieves better identity score and read accuracy

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 8, 2019. ; https://doi.org/10.1101/694919doi: bioRxiv preprint 

https://doi.org/10.1101/694919
http://creativecommons.org/licenses/by-nc-nd/4.0/


U-net Nanopore 5

Fig. 4: An segmentation example An example of base-calling results by Chiron and URnano for the sequence of
“TACTTACTCAACAATGCGTTAAATTTCGACTGTTTA”. A dotted vertical line indicates the start position of a nucleotide segment.

Table 2. Results of read accuracy on the test set. Note that ONT base-callers in gray-color line is trained on a larger dateset, which are used as references. We mainly
compared the performances of Chiron and URnano.

Species Base-caller Deletion Insertion Mismatch Identity unaligned Read Accuracy

E. coli

Chiron 0.0725 0.0304 0.0554 0.8721 76/2000 0.8417
URnano 0.0585 0.0457 0.0452 0.8963 10/2000 0.8506
Scrappie 0.0448 0.0343 0.0352 0.9200 8/2000 0.8857
Guppy 0.0459 0.0192 0.0270 0.9271 4/2000 0.9079

λ-phage

Chiron 0.0841 0.0333 0.0586 0.8573 303/2000 0.824
URnano 0.0662 0.0365 0.0395 0.8943 11/2000 0.8578
Scrappie 0.0503 0.0391 0.0394 0.9102 7/2000 0.8712
Guppy 0.0516 0.0247 0.0327 0.9156 3/2000 0.891

Species Base-caller Deletion Insertion Mismatch Identity unaligned Read Accuracy

Human

Chiron 0.0903 0.0587 0.0663 0.8434 422/1000 0.7847
URnano 0.1055 0.0650 0.0776 0.8169 380/999 0.7519
Scrappie 0.0543 0.0703 0.0513 0.8943 349/1000 0.8241
Guppy 0.0671 0.0499 0.0549 0.8780 292/973 0.8281

in those two species than Chiron. Although it is not fair to directly
compare with ONT base-callers trained on a larger data set, performances
of Scrappie and Guppy here are used as relative references for Chiron and
URnano results. For cross-species, we tested on 1000 randomly selected

reads from chromosome 11 of human benchmark sample NA12878.
Chiron performs better than URnano on identity and read accuracy, but
has more reads that are not aligned.

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 8, 2019. ; https://doi.org/10.1101/694919doi: bioRxiv preprint 

https://doi.org/10.1101/694919
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Zhang et al.

Table 3. Evaluation with assembly on the test set. Note that ONT base-callers
in gray-color line is trained on a larger dateset, which are used as references.

Dataset Base-caller Identity Rate Relative Length

E. coli

Chiron 92.1475 98.0440
URnano 97.8479 100.0391
Scrappie 98.2768 99.7171
Guppy 98.5797 99.0118

λ-phage

Chiron 99.3726 99.6612
URnano 99.5774 100.0467
Scrappie 99.7802 100.0275
Guppy 99.8651 99.9450

Human

Chiron 87.1140 96.4275
URnano 93.3288 100.6724
Scrappie 95.9599 101.1212
Guppy 96.5646 98.9046

3.5 Read assembly results

We also evaluated the quality of the assembled genomes using the reads
generated by each base-caller on the test set. We make use of the same
evaluation pipeline of Teng et al. [6] in order to produce consistent results.
We used minimap and miniasm [11] tools to first map the reads against
each other to find raw contigs and further polished them for 10 rounds by
using Racon [10]. Then the polished contigs are shredded into 10K long
read fragments and each fragment is aligned to the reference genome and
we calculated the identity rates and the relative lengths. The mean identity
rate is calculated by taking the average of the identity rates for each contig
aligned to the reference. The identity rate for a single contig is the average
of the identity rates of each aligned part. If the total length of the aligned
parts is smaller than half of the read length we assume it to be unaligned
and the identity rate for that contig is 0. The mean relative length is also
calculated in a similar way.

We used the E. coli, λ-phage and Human test set to evaluate the quality
of the contigs assembled. Table 3 gives the results for assembly quality
comparison. On all the test sets, URnano outperforms Chiron for both
identity rate and relative length. Also the gap between URnano and ONT
basecallers is reduced when compared to that in the raw read accuracy
task. Although the read accuracy results of Chiron for human data is better
compared to URnano, the higher number of unaligned reads (shown in
Figure 2) harms the assembly results.

As for the time issue, URnano does not contain CTC decoding step,
which makes it around 2x faster on average over all test data (Avg. 1165
bp/s) than Chiron (Avg. 590 bp/s) using Nvidia Tesla V100. We give the
average over all input signals as it is a more robust metric compared to
giving the maximum speed.

4 Discussion
To compare with related deep-learning base-callers, we analyzed 5
base-callers and enumerated their key modules including network input,
network structure, network output and post-process of each one, shown in
Table 4. For all the 5 base-callers except DeepNano, raw signals can be
directly processed. DeepNano requires raw signals to be segmented into
events before base-calling.

For neural network architectures, convolutional layer (CNN) and
recurrent layer (RNN) are commonly used modules. CNN is generally
used to extract features from raw signals and prepares input for RNN. RNN
module is used to learn dependencies among hidden units. In URnano,
our experiment also demonstrates the usefulness of using RNN for 1D
segment mask prediction. Besides using RNN in final layers, URnano also

demonstrates the combination of CNN and RNN layers in the encoding
stage can further improve the base-calling performance.

For the output of neural networks, Scrappie, DeepNano and
BasecRAWller predict k-mers (k ≥ 2). Therefore, a k-mer merging step
requires post-processing to generate final base-calls for ONT Scrappie and
BasecRAWller. For DeepNano that predicts 2-mer with blanks, a blank
collapse step is applied instead. Chiron uses CTC decoding to generate
base-calls of variant length through beam searching hidden unit spaces.
The output of Chiron also includes blank labels, which are collapsed in
the CTC decoding stage.

In a real physical process, the speed of a molecule passing through a
nanopore changes over time. This can be observed in the Figure 4. A k-mer
assumption using fixed k may not hold over time. Although incorporating
blank labels can deal with low-speed case, the high-speed one that involves
more bases for the same signal length could exceed the limit of the fixed
k. For Chiron and URnano, the fixed k-mer assumption is avoided in base-
calling. Chiron uses CTC decoding, while URnano uses label masks that
are smaller units than 1-mer.

To curate the data for training a base-caller, a re-squiggle algorithm is
usually applied. In a re-squiggle algorithm, raw signal and associated base-
calls are refined through alignment to a reference. After re-squiggling, a
new assignment from squiggle to a reference sequence is defined. In the
previous re-squiggle algorithms, such as Tombo7, event detection and
sequence to signal assignment are performed in sequence, separately. We
think the proposed URnano can be used as the base-caller in a re-squiggle
algorithm, as it can do base-calling, event detection and sequence to signal
assignment jointly in an end-to-end manner.

In the read accuracy evaluation, URnano performs worse than Chiron in
the cross-species human data, but works better in both in-domain species.
This indicates URnano may be over-trained for the data in the species.
This is also reflected in the training parameters that we trained 100 epochs,
while Chiron was trained in 3 epochs. To solve this issue, on one hand, we
can incorporate more regularization modules in the network. On the other
hand, it would be more effective to incorporate more training data covering
various species. We intend to further refine URnano as future work.

5 Conclusion
In this paper, we proposed a novel base-calling approach from the
perspective of instance segmentation. We formalized base-calling as a
multi-label segmentation task and developed an end-to-end solution that
can perform base-calling from raw signals and generate signal segments
for base-calls at the same time. In addition, we proposed an enhanced
deep neural network architecture called UR-net for 1D sequence data.
The proposed URnano achieves better performances in normalized edit
distance, read accuracy and identity when compared with Chiron on in-
domain data. For read assembly on the same test set of low depth coverage,
URnano outperforms Chiron for both identity rate and relative length.
Without using CTC, the decoding speed of the URnano achieves about
two times faster than Chiron.

7 https://github.com/nanoporetech/tombo

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 8, 2019. ; https://doi.org/10.1101/694919doi: bioRxiv preprint 

https://doi.org/10.1101/694919
http://creativecommons.org/licenses/by-nc-nd/4.0/


U-net Nanopore 7

Table 4. A brief summary of related deep-learning base-callers

Module Scrappie Chiron BasecRAWller DeepNano URnano
Input Raw Raw Raw Event Raw
Networks RGRGR CNN+RNN+CTC 2xRNN RNN UR-net

(CNN+RNN) (separately)
Output 5-mer bases 4-mer 2-mer base masks
Post-process k-mer merge N/A k-mer merge blank collapse label transform

References
[1]Alberto Magi, Roberto Semeraro, Alessandra Mingrino, Betti Giusti, and

Romina DâŁ™aurizio. Nanopore sequencing data analysis: state of the art,
applications and challenges. Briefings in bioinformatics, 19(6):1256–1272,
2017.

[2]Franka J Rang, Wigard P Kloosterman, and Jeroen de Ridder. From squiggle
to basepair: computational approaches for improving nanopore sequencing read
accuracy. Genome biology, 19(1):90, 2018.

[3]Matei David, Lewis Jonathan Dursi, Delia Yao, Paul C Boutros, and Jared T
Simpson. Nanocall: an open source basecaller for oxford nanopore sequencing
data. Bioinformatics, 33(1):49–55, 2016.

[4]Vladimír Boža, Broňa Brejová, and Tomáš Vinař. Deepnano: deep recurrent
neural networks for base calling in minion nanopore reads. PloS one,
12(6):e0178751, 2017.

[5]Marcus Stoiber and James Brown. Basecrawller: streaming nanopore
basecalling directly from raw signal. bioRxiv, page 133058, 2017.

[6]Haotian Teng, Minh Duc Cao, Michael B Hall, Tania Duarte, Sheng Wang,
and Lachlan JM Coin. Chiron: Translating nanopore raw signal directly into

nucleotide sequence using deep learning. GigaScience, 7(5):giy037, 2018.
[7]Marcus H Stoiber, Joshua Quick, Rob Egan, Ji Eun Lee, Susan E Celniker,

Robert Neely, Nicholas Loman, Len Pennacchio, and James B Brown. De novo
identification of dna modifications enabled by genome-guided nanopore signal
processing. BioRxiv, page 094672, 2016.

[8]Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[9]Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[10]Ivan Sović, Mile Šikić, Andreas Wilm, Shannon Nicole Fenlon, Swaine Chen,
and Niranjan Nagarajan. Fast and sensitive mapping of nanopore sequencing
reads with graphmap. Nature communications, 7:11307, 2016.

[11]Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics, 32(14):2103–2110, 2016.

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 8, 2019. ; https://doi.org/10.1101/694919doi: bioRxiv preprint 

https://doi.org/10.1101/694919
http://creativecommons.org/licenses/by-nc-nd/4.0/

