1	A co-expression network in hexaploid wheat reveals mostly balanced expression and
2	lack of significant gene loss of homeologous meiotic genes upon polyploidization.
3	
4	Abdul Kader Alabdullah ^{1*} , Philippa Borrill ² , Azahara C. Martin ¹ , Ricardo H. Ramirez-Gonzalez ¹ , Keywan Hassani-Pak ³
5	Cristobal Uauy ¹ , Peter Shaw ¹ and Graham Moore ¹ .
6	
7	¹ John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
8	² School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
9	³ Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
10	
11	* <u>AbdulKader.Alabdullah@jic.ac.uk</u>
12	
13	
14	Abstract
15	Polyploidization has played an important role in plant evolution. However, upon polyploidization the
16	process of meiosis must adapt to ensure the proper segregation of increased numbers of chromosomes
17	to produce balanced gametes. It has been suggested that meiotic gene (MG) duplicates return to a
18	single copy following whole genome duplication to stabilise the polyploid genome. Therefore, upon
19	the polyploidization of wheat, a hexaploid species with three related (homeologous) genomes, the
20	stabilization process may have involved rapid changes in content and expression of MGs on
21	homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate MGs were
22	identified in wheat using co-expression network analysis and orthology informed approaches. In total,
23	130 RNA-Seq samples from a range of tissues including wheat meiotic anthers were used to define
24	co-expressed modules of genes. Three modules were significantly correlated with meiotic tissue
25	samples but not with other tissue types. These modules were enriched for GO terms related to cell
26	cycle, DNA replication and chromatin modification, and contained orthologs of known MGs. Overall
27	74.4 % of genes within these meiosis-related modules had three homeologous copies which was
28	similar to other tissue-related modules. Amongst wheat MGs identified by orthology, rather than co-
29	expression, the majority (93.7 %) were either retained in hexaploid wheat at the same number of

copies (78.4 %) or increased in copy number (15.3%) compared to ancestral wheat species.
Furthermore, genes within meiosis-related modules showed more balanced expression levels between
homeologs than genes in non-meiosis-related modules. Taken together our results do not support
extensive gene loss nor changes in homeolog expression of MGs upon wheat polyploidization. The
construction of the MG co-expression network allowed identification of hub genes and provided key
targets for future studies.

36

37 Author summary

38 All flowering plants have undergone a polyploidization event(s) during their evolutionary history. One of the biggest challenges faced by a newly-formed polyploid is meiosis, an essential event for sexual 39 40 reproduction and fertility. This process must adapt to discriminate between multiple related 41 chromosomes and to ensure their proper segregation to produce fertile gametes. The meiotic mechanisms responsible for the stabilisation of the extant polyploids remain poorly understood except 42 in wheat, where there is now a better understanding of these processes. It has been proposed that 43 44 meiotic adaptation in established polyploids could involve meiotic gene loss following the event of 45 polyploidization. To test this hypothesis in hexaploid wheat, we have computationally predicted sets 46 of hexaploid wheat meiotic genes based on expression data from different tissue types, including 47 meiotic anther tissue, and orthology informed approaches. We have calculated homeolog expression 48 patterns and number of gene copies for the predicted meiotic genes and compared them with proper 49 control gene sets. Our findings did not support any significant meiotic gene loss upon wheat 50 polyploidization. Furthermore, wheat meiotic genes showed more balanced expression levels between 51 homeologs than non-meiotic genes.

52

53 Introduction

54 Meiosis is a specialized mode of cell division which generates haploid gametes. Prior to meiosis,

55 chromosomes are replicated. On entry into meiosis, homologous chromosomes (homologs) locate

56 each other, and intimately align (synapse) along their length. Within this paired structure,

57 chromosomes recombine and crossover before being accurately segregated [1-3]. This complex and 58 dynamic process is essential to maintain genome stability and integrity over sexual life cycles and to generate genome variation, which is a major evolutionary driving force [4,5]. The genetic variation 59 created by meiotic recombination underpins plant breeding to improve crop species [6-8]. 60 61 Polyploidization has played an important role in the evolution and speciation of flowering plants [9,10], although the resultant multiplicity of related genomes poses a major challenge for the meiotic 62 63 process. Segregation of the chromosomes to produce balanced gametes requires correct pairing, 64 synapsis and recombination between only true homologs, rather than any of the other highly related 65 chromosomes (homeologs) [10-12].

66

67 In the last two decades, there have been significant advances in our understanding of plant meiosis. 68 Since the isolation of the first meiosis-specific cDNA from lily in the mid-1990s [13,14], more than 69 110 plant meiotic genes (MGs) have been identified, mainly from studies of the model diploid plants 70 Arabidopsis and rice [2,15,16]. Although 25-30% of flowering plants are extant polyploids [9], the 71 meiotic mechanisms responsible for their stabilisation remain poorly understood. An exception is 72 hexaploid wheat (*Triticum aestivum* L.), where there is now better understanding of these processes 73 [17]. Despite possessing multiple related genomes, durum wheat, a tetraploid (AABB) and bread 74 wheat, a hexaploid (AABBDD) behave as diploids during meiosis. Thus, most of the meiotic studies 75 conducted in hexaploid wheat have focused on providing better understanding of the meiotic 76 processes required to stabilise this polyploid species [18-22]. An emphasis has been to characterise 77 the role of the *Ph1* locus in the suppression of recombination between homeologs [23-31]. Recent 78 studies have defined this phenotype to a ZIP4 gene which duplicated and diverged on polyploidization [31-33]. This event resulted in the suppression of homeologous crossover, and promotion of 79 homologous synapsis. 80 81 Although all flowering plants have undergone at least one event of whole genome duplication during

their evolutionary history [34], it has been suggested that MG duplicates return to a single copy
following whole genome duplication, more rapidly than the genome-wide average [35]. Therefore, it
has been assumed that the stabilisation process upon the polyploidization of wheat also involved rapid

changes in the content and expression of the genes on homeologs. This process would facilitate the
correct pairing and synapsis of homeologs during meiosis. The recent development of an expression
atlas for hexaploid wheat revealed that 70% of homeologous genes in syntenic triads showed balanced
expression [36]; however, this study did not include analysis of the genes expressed during meiosis.

Here, we assessed whether the level of expression of all genes in triads was balanced between 90 homeologs during meiosis. Analysis indicated similar balanced expression to that observed in other 91 wheat tissues. However, it could be argued that only meiotic specific genes might show differential 92 93 expression between homeologs. Sets of candidate MGs were identified using co-expression network 94 analysis and orthology informed approaches, allowing us to evaluate the effect of polyploidization on 95 wheat MG copy number and expression. The combination of co-expression network analysis, in 96 conjunction with orthologue information, will now contribute to the discovery of new MGs and 97 greatly empower reverse genetics approaches to validate the function of candidate genes in wheat.

98

99 **Results and Discussion**

100 An initial assessment of the homeolog expression pattern in triads during meiosis in hexaploid wheat 101 was undertaken. Relative expression abundance of 19,801 triads (59,403 genes) was calculated for 8 tissues, including meiotic anther tissue, according to published criteria [36]. This analysis revealed 102 103 that the percentage of balanced triads was slightly higher in meiotic anther tissue (77.3%) than in other type of tissues (ranging from 67.3% in floral organs and 76.6% in leaves) (S1 Fig). The copy 104 105 number of genes expressed during meiosis was also investigated. This involved the definition of 19801 triads (59403 genes), 7565 duplets (15130 genes), 15109 monads (single-copy genes) and 106 107 18250 genes from the "Others" group with various copy numbers, based on the EnsemblPlants 108 database for the HC genes of hexaploid wheat [37] (IWGSC v1.1 gene annotation; S1 Table). 109 Comparison of copy number of genes expressed in the 8 different tissues showed that 70.9% of the 110 genes expressed during meiosis belonged to triads. This percentage ranged between 66.5% and 72.5% 111 for the genes expressed in floral organs and stem tissues, respectively (S2 Fig). These results were

112 consistent with a previous study reporting significant balanced expression between homeologous genes in tissues other than meiotic anthers [36]. However, the observations were not in agreement 113 with the hypothesis that stabilisation of polyploidization involved significant changes in gene content 114 and expression between homeologs [35,38,39]. Considering that not all genes expressed in meiotic 115 116 anther tissue are directly involved in the meiosis process, it is possible that meiotic specific genes exhibit a different pattern. Therefore, a co-expression gene network was developed to compare the 117 118 expression pattern of homeologous genes in meiosis-related modules, which potentially represent 119 meiosis specific genes, and other tissue-related modules.

120

121 Weighted co-expression network construction

122 Network-based approaches have been proved useful in systems biology, to mine gene function from 123 high-throughput gene expression data. Gene co-expression analysis has become a powerful tool to 124 build transcriptional networks of genes involved in common biological events in plants [40-45]. The 125 use of co-expression networks has uncovered candidate genes to regulate biological processes in 126 many plants including wheat [37], rice [46,47] and Arabidopsis thaliana [48,49]. The recently 127 published high-quality genome reference sequence [37] and a developmental gene expression atlas 128 [50,36], together with the gene expression data collected from meiotic samples, were used to build a 129 co-expression gene network. One hundred and thirty samples from different tissue types were 130 included in this co-expression analysis (S2 Table; Fig 1A). A set of 60,379 genes out of the total 131 107,892 HC genes was considered expressed during meiosis (transcript per million (TPM) > 0.5 in at 132 least one meiosis sample) and used to run the co-expression analysis. Using the "WGCNA" package in R [51,52], genes with similar expression patterns were grouped into modules via the average 133 linkage hierarchical clustering of normalized count expression values (Fig 1E). The power of $\beta = 7$ 134 (scale free topology $R^2 = 0.91$) was selected as the soft threshold power to emphasize strong 135 136 correlations between genes and penalize weak correlations to ensure a scale-free network (Fig 1B-C). Based on this analysis, 50,387 out of 60,379 genes (83.5% of expressed genes) could be assigned to 137 66 modules. Module size ranged from 52 to 7541 genes (mean 763 genes; median 429 genes) (Fig 138 139 1D). Detailed information about gene number and gene IDs in each module is shown in S3 Table.

140	The expression patterns of all genes within a single module were summarized into a Module
141	Eigengene (ME; representative gene of the module) to minimize data size for subsequent analyses.
142	Expression patterns of modules are shown as a heatmap by plotting ME values in relation to tissue
143	samples (Fig 2).
144	
145	Fig 1. The weighted gene co-expression networks analysis (WGCNA). (A) Clustering dendrogram
146	of 130 samples from different types of tissues. The sample clustering was based on the expression
147	data of the genes expressed in at least one meiosis sample. (B) Determination of soft-thresholding
148	power (β). The soft power threshold used in constructing the weighted gene co-expression networks
149	was chosen as the first power to exceed a scale-free topology fit index of 0.9 (then $\beta = 7$). (C)
150	Analysis of the mean connectivity for various soft-thresholding powers. (D) Number of genes in the
151	modules with their frequency. (E) Blockwise dendrogram of the analysed genes (60,379 genes)
152	clustered based on a dissimilarity measure of topological overlap matrices (TOM).
153	
154	Fig 2. Heatmap plotting of MEs values in relationship to tissue samples. n indicates number of
155	samples.
156	
157	Identification of meiosis-related modules

A correlation analysis was conducted using the 66 MEs and the 8 different tissue types. A module was considered as meiosis-related when there was a strong correlation (*r*) with the 17 meiosis samples, and a weak or negative correlation with other tissue types. Accordingly, three meiosis-related modules were identified: module 2 (containing 4,940 genes); module 28 (544 genes); and module 41 (313 genes). Module 41 showed the strongest correlation with meiotic tissue (r = 0.73, FDR =2.7 x 10⁻²⁰), compared to module 2 (r = 0.61, FDR =9.2 x 10⁻¹³) and module 28 (r = 0.52, FDR =2.1 x 10⁻⁸). (Fig 164 3).

165

Fig 3. Co-expression network modules in relationship to tissues samples. Each row corresponds to a module; each column corresponds to a tissue type; Each cell contains the correlation value and, in parentheses, its corresponding FDR adjusted P value. n indicates number of samples. Only modules that have correlation value > 0.5 with meiotic anther tissue are shown.

170

Two other modules (modules 11 and 25) also showed significantly positive correlation with meiotic 171 172 samples (r = 0.68 and 0.65, respectively), however they were not considered meiosis-related because 173 they also correlated with samples from floral organs (at stages other than meiosis) and spike tissues, 174 as shown in **Fig 3**. Therefore, our analysis focused on the three modules (2, 28 and 41), exhibiting a 175 strong correlation with meiotic tissues and not with other floral organs, while modules 11 and 25 were 176 considered as non-meiosis specific modules (referred to in this paper as non-meiotic modules). Other 177 tissue-related modules (the top three correlated modules) were also identified to be used as controls 178 for the meiosis-related modules in the subsequent analysis. These modules were: grain-related 179 modules 5, 13 and 32 (r = 0.89, 0.89 and 0.85, respectively); leaves-related modules 1, 45 and 60 (r =0.72, 0.68 and 0.71, respectively); and roots-related modules 7, 9 and 64 (r = 0.70, 0.76 and 0.85, 180 181 respectively) (S3 Fig).

182

183 Biological significance of expression similarity in modules

Several approaches were undertaken to validate the meiosis-related modules. The three modules (2, 184 28 and 41), strongly correlated with meiotic tissue expression, were found to be significantly enriched 185 186 with the gene ontology (GO) slim terms "cell cycle", "DNA metabolic process", "nucleobase-187 containing compound metabolic process" and "nucleus" (Fig 4). Among the top five enriched GO slim terms in each of the 66 modules, the term "cell cycle" was significant only in the three meiosis-188 related modules, suggesting this was not a general property of all modules, and was instead specific to 189 190 the meiosis modules. Module 2 in particular was significantly enriched with GO terms related to many biological processes occurring during meiosis such as "DNA replication", "histone 191 methylation", "cytokinesis", "nucleosome assembly" and "chromatin silencing" (Table 1; S4 Table). 192 193 The term "double-strand break repair via homologous recombination", an important process during 194 meiosis, was the primary enriched Biological Processes GO term in module 41 (FDR ≤ 0.05). The 195 biological processes mediated by genes in module 28 included "protein deneddylation", "positive regulation of G2/M transition of mitotic cell cycle", "COP9 signalosome" and other terms related to 196 protein deneddylation and cell cycle control (Table 1). GO terms of meiosis-related modules were 197 198 compared with those of modules highly correlated with other tissues. The GO terms "chloroplast", "plastids", "thylakoid", "photosystem" were significantly enriched in module 1, the most highly 199 correlated module with leaves. The terms related to protein ubiquitination and protein binding were 200 enriched in module 5 (the most highly correlated module with grain), while the terms "lignin 201 biosynthetic process", "phenylpropanoid metabolic process" and "response to wounding" were 202 enriched in module 7, the largest module correlated with roots (S4 Fig). This indicated that our co-203 204 expression module-tissue correlation was meaningful both from the biological and physiological point 205 of view. Detailed information of the enriched GO and GO slim terms in all modules is listed in the 206 supplementary table S4 Table. In summary, GO analysis confirmed that the three modules (2, 28 and 207 41) were enriched for genes associated with meiotic processes.

208

Fig 4. Enriched GO slim terms in the meiosis-related modules. Top 5 enriched GO terms in each
module are shown. BP indicates Biological Processes and CC Cellular Component. No Molecular
Function (MF) GO terms appear among the top 5 GO slim terms. Black bars indicate the number of
genes in the GO term.

213

Table 1. Top 5 enriched GO terms in the meiosis-related modules for each ontology group.

		GO term			
	(FDR adjusted P value)				
	Biological Process	Molecular Function	Cellular Components		
	cell proliferation	protein heterodimerization activity	nucleosome		
le 2	(2.2 x 10 ⁻²²²)	(1.5 x 10 ⁻⁹³)	(9.3 x 10 ⁻¹⁶²)		
Modul	DNA replication	DNA binding	nuclear chromatin		
E1	(4.8 x 10 ⁻¹⁵¹)	(1.8 x 10 ⁻⁶⁹)	(2 x 10 ⁻¹⁰⁰)		

	histone H3-K9 methylation	microtubule binding	chromosome	
	(1.6 x 10 ⁻¹³⁷)	(1.3 x 10 ⁻⁴¹)	(3.5 x 10 ⁻⁹⁵)	
	DNA-dependent DNA replication	DNA-dependent ATPase activity	pericentric heterochromatin	
	(5.4 x 10 ⁻¹³⁵)	$(1.6 \text{ x } 10^{-32})$	(3.2 x 10 ⁻⁸⁸)	
	regulation of DNA replication	motor activity	heterochromatin	
	(2.4 x 10 ⁻¹²⁷)	(4.4 x 10 ⁻³¹)	(6.7 x 10 ⁻⁸⁴)	
	-	apurinic or apyrimidinic site)	COP0 signalosome	
	(3.6×10^{-16})	endonuclease activity	(3.3×10^{-21})	
	(3.0×10^{-5})	(3.3×10^{-05})	(3.5 x 10)	
	positive regulation of G2/M transition of	RNA can binding	nucleus	
	mitotic cell cycle	(1.8×10^{-03})	$(6.8 \text{ M x } 10^{-10})$	
80	$(5.4 \text{ x } 10^{-11})$			
dule 2	COP9 signalosome assembly	NADH activity	nuclear cap binding complex	
Mo	$(1.2 \text{ x } 10^{-7})$	(3.2×10^{-3})	(1.5×10^{-6})	
	mitotic recombination	enoyl-[acyl-carrier-protein] reductase	protein-containing complex	
	(1.5×10^{-7})	activity	(1.9×10^{-6})	
		(3.2×10^{-3})	(1.) X 10)	
	photomorphogenesis	signaling receptor activity	cortical cytoskeleton	
	$(1.7 \text{ x } 10^{-7})$	(3.9×10^{-3})	$(1.5 \text{ x } 10^{-3})$	
	double-strand break repair via homologous	methyl-CpG binding	nuclear euchromatin	
	recombination	(1×10^{-4})	(7.3×10^{-5})	
	$(3.9 \text{ x } 10^{-5})$			
	somatic cell DNA recombination	siRNA binding	nucleus	
	(1.1 x 10 ⁻⁴)	(1.6×10^{-3})	(1 x 10 ⁻⁴)	
lle 41	megasporocyte differentiation	SUMO transferase activity	RNA polymerase IV complex	
Modu	(4.3×10^{-4})	(2.1×10^{-3})	(1.1×10^{-3})	
	gene silencing by RNA	DNA binding	RNA polymerase II, core complex	
	(5.5 x 10 ⁻⁴)	(5.7×10^{-3})	(4 x 10 ⁻³)	
	positive regulation of sulfur metabolic process	cytosine C-5 DNA demethylase activity	proteasome regulatory particle, base	
	(1.1 x 10 ⁻³)	(1 x 10 ⁻²)	subcomplex	
	(()	(4.4 x 10 ⁻³)	

215

216

217 Enrichment of meiosis-related modules for wheat orthologs of known MGs.

218 An assessment was undertaken to confirm that the meiosis-related modules were enriched for wheat

219 orthologs of known MGs. Although the first wheat meiotic cDNA clones were isolated concurrently

220 with the early discoveries of MGs in other plants [53], the identification of MGs in wheat has been 221 hampered by the large wheat genome size, its polyploid nature and the absence of a complete genome sequence. Thus, in comparison to model plants (Arabidopsis and rice), few MGs have been 222 functionally characterized in wheat. Characterised wheat MGs include TaASY1 [54,55], TaMSH7 223 224 [56], TaRAD51 [57,58], TaDMC1 [57,58], TaPSH1 [59], TaZIP4 [31-33] and RecQ-7 [60]. Given that, the assessment of whether the three modules contain known MGs was undertaken using 225 226 orthology informed approaches. A set of 1063 candidate MGs in wheat was identified and categorized based on the method used to identify the genes: the "Orthologs" group contained 407 genes (S5 227 228 Table: S6 Table) that correspond to wheat orthologs of 103 functionally characterized MGs in model plant species, and the "Meiotic GO" group contained 927 wheat genes annotated with one or more 229 230 meiotic GO terms (S7 Table). There were 271 genes overlapping between the two groups (Fig 5A), 231 that were considered in the "Orthologs" group when undertaking gene enrichment analysis. The 232 presence of each gene in the different modules was determined. A set of 848 genes was assigned to 233 modules in the co-expression network (Fig 5B), including 340 genes in meiosis-related modules. Genes from both groups were significantly over-represented (P < 0.05) in four modules, including 234 235 two meiosis-related modules (2 and 28). Module 2 in particular, was the most enriched for these 236 genes, possessing more than one third of the total candidate MGs assigned to modules. Module 2 had 237 142 wheat orthologs of MGs and 155 genes with meiotic GO terms, compared to the expected number 238 (based on module size) of 27 and 42, respectively. Module 41 (the third meiosis-related module) was 239 enriched only with genes from the "Orthologs" group, having 15 orthologs of known MGs, whereas 240 the expected number was 2 (Fig 5C). Consistent with this, genes from the "Orthologs" and/or "Meiotic GO" groups, were significantly under-represented in modules strongly correlated with other 241 types of tissue (modules 1, 7 and 9), and in modules with negative or no correlation with meiotic 242 tissue (modules 3, 8, 14, and 17) (S8 Table). 243

244

Fig 5. Enrichment of meiosis-related genes in the co-expression network modules. (A) Venn
diagram of overall genes in the meiosis-related modules (modules 2, 28 and 41), wheat orthologs of
MGs in model plant species and genes with meiotic GO terms. *n* indicates number of genes in each

248 group. Numbers in brackets refer to number of genes not included in the WGCNA analysis because 249 they are not expressed in meiotic anther tissue. (**B**) Total number of genes assigned to modules from 250 orthologs of MGs and genes with meiotic GO terms. (**C**) Gene enrichment in modules. Statistical 251 significance of gene enrichment in a module is colour coded (Red indicates over-represented, blue 252 under-represented and grey not significant; P < 0.05). Rhombus shape indicates the expected number 253 of genes in module.

254

In this study three co-expression gene modules were identified that are strongly correlated to meiotic 255 256 anther tissue and highly enriched with GO terms related to many processes occurring during meiosis, 257 orthologs of known MGs and genes having meiosis-specific GO terms. Although 67 (65%), out of the 258 103 wheat orthologs, had at least one gene copy assigned to one of the three meiosis-related genes, 259 there were 36 orthologs whose gene homeologs were assigned to other modules (S9 Table). Some of 260 those genes have essential meiotic functions, like: ASY1, which encodes a protein essential for 261 homologous chromosome synapsis [54,61,62]; and DMC1, a gene encoding a recombination protein 262 that acts only in meiosis [58,63]. Others are known to have both meiotic and mitotic functions, like: 263 BRCA2, a DNA repair gene required for double strand breaks repair by homologous recombination 264 [64] and SMC1 and SMC3, chromosome cohesion genes [65], thus they are expressed in both 265 reproductive and non-reproductive tissues. Assessment of these 36 orthologs showed that the 266 expression patterns of their gene copies did not allow them to be clustered in any of the meiosis-267 related modules (or allocated to module 0 that is composed of genes not forming part of a co-268 expressed module), either because they were expressed in most samples from all types of tissues, or 269 because they were expressed in a few samples of a specific tissue type (like meiotic anther tissue). The expression values (TPMs) of all gene copies of those 36 orthologs are summarized in S10 Table. 270 The number of meiotic anther samples (17) used in the present study, might not be enough to identify 271 all MGs being expressed in a specific meiotic stage. Such genes might be identified by WGCNA 272 analysis when a larger number of meiotic samples becomes available. However, the analysis 273 274 confirmed that the meiosis-related modules were indeed enriched for orthologs of known MGs, and 275 for GO terms associated with processes involved in meiosis.

276

277

278 Copy number of MGs

It has previously been suggested that MG duplicates return to a single copy following whole genome 279 280 duplication more rapidly than the genome-wide average in angiosperms [35]. The analysis of 19 meiotic recombination genes in hexaploid wheat and oilseed rape showed no evidence of gene loss 281 282 after polyploidization. However, a recent study in tetraploid oilseed rape showed that reducing the 283 copy number of MSH4, a key meiotic recombination gene involved in the ZMM pathway, prevents 284 meiotic crossovers between non-homologous chromosomes [66]. This led to the suggestion that 285 meiotic adaptation in polyploids could involve 'fine-tuning' the progression or the effectiveness of 286 meiotic recombination, which could be achieved through the loss of MG duplicates in the newly-287 formed polyploids [35,66]. This hypothesis was evaluated in hexaploid wheat. The gene copy number 288 was assessed for the genes in the three meiosis-related modules and compared with genes in all 289 modules and in other tissue-related modules. Analysis showed that the percentage of genes belonging 290 to triads was 74.4% in the meiosis-related modules, which was similar to this percentage in other 291 tissue-related modules (72.5%, 74.0% and 76.1% in leaves-, grain- and roots-related modules, 292 respectively); however, it was significantly higher than those of the non-meiotic modules (57.4%). 293 The highest percentage of genes with three homeologs (83.3%) and lowest percentage of genes with 294 single copy (2.7%) were observed in the group of genes identified as MG orthologs and/or possessing 295 a meiotic GO term (Fig 6A).

296

Fig 6. Copy number and homeolog expression pattern for genes from meiosis-related and other tissue-related modules. (A) Proportion of genes in each copy number category (triads, duplets, monads and others) for different sets of expressed genes during meiosis including: "Meiotic modules"

refers to the three meiosis-related modules 2, 28 and 41; "Non-meiotic modules" refers to the modules

- 301 11 and 25 that showed high correlation with meiotic anther but were not considered meiosis-related
- 302 because they were also correlated with spike and floral organs tissues; the top 3 correlated modules
- with each of leaves (modules 1, 45 and 60), grain (modules 5, 13 and 32) and roots (modules 7, 9 and

304 64) tissues; "All modules" contains all genes assigned to modules in the co-expression network and 305 "Orthologs & Meiotic GO" refers to the set of genes that are orthologs of known MGs in other plant 306 species and/or have meiotic GO terms. n number of genes in each set. (B) Proportion of genes from 307 each homeolog expression pattern category (balanced, dominant and suppressed) calculated for triads 308 in the previously mentioned sets of genes. n number of genes in each set. (C) Ternary plot showing 309 relative expression abundance in meiotic anther tissue of 2,366 triads to which the genes of meiosis-310 related modules (2, 28 and 41) belong. Each circle represents a gene triad with an A, B, and D 311 coordinate consisting of the relative contribution of each homeolog to the overall triad expression. 312 Triads in vertices correspond to single-subgenome-dominant categories, whereas triads close to edges 313 and between vertices correspond to suppressed categories. Box plots indicate the relative contribution 314 of each subgenome based on triad assignment to the seven categories (Balanced, A dominant, B 315 dominant, D dominant, A suppressed, B suppressed, D suppressed). Percentages between brackets 316 indicate the percentage of triad number in each category to the total number of triads.

317

The high percentage of meiosis-related genes present as triads provides evidence that polyploid wheat 318 did not experience significant gene loss (gene erosion) after polyploidization. However, this assumes 319 320 that these genes were originally present as single copy genes in each of the A-, B- and D-genome progenitor species which gave rise to polyploid wheat. Therefore, the copy number of the 103 wheat 321 MG orthologs in wheat progenitor species was investigated. All possible orthologs (high and low 322 323 confidence predicted orthologs) were retrieved from Ensembl Plants Genes 43 database for Triticum 324 *urartu* (ASM34745v1; **[67**]), the diploid progenitor of the wheat A-genome, the D-genome ancestor 325 Aegilops tauschii (Aet_v4.0; [68]), the diploid progenitor of the wheat D-genome and Triticum 326 dicoccoides (WEWSeq_v.1.0; [69]), the tetraploid progenitor of the hexaploid wheat (genome 327 AABB). There was no change in copy number of 78.4% of genes, while 6.3% and 15.3% of genes had 328 a lower and greater number of copies, respectively (Table 2 and S11 Table). Regardless of genome of 329 origin, the percentage of MGs with more copies was always greater than the percentage of genes with 330 fewer copies. Comparing the A-genome MGs copy number in hexaploid wheat with the relevant

335	[70].
334	<i>dicoccoides</i> being a more recent wheat progenitor (~10,000 years) than <i>T. urartu</i> (> 5 million years)
333	copy number in <i>T. urartu</i> . This is consistent with the evolutionary history of hexaploid wheat, with <i>T</i> .
332	copy number in <i>T. dicoccoides</i> as in hexaploid wheat, while only 64 genes (63.1%) had the same gene
331	orthologs copy number in the corresponding A-genome ancestor, 86 genes (84.5%) had the same gene

336

337 Table 2. Changes in copy number of wheat MGs in comparison with their orthologs in wheat

338 progenitors. Comparison was done for two sets of genes: wheat orthologs of MGs (n = 103) and

339 wheat meiotic recombination genes (n = 64).

	Number of meiotic genes (%)			Number of meiotic recombination genes (%)			
	Lower copy Greater copy		Equal copy	Lower copy	greater copy	Equal copy	
	number	number	number	number	number	number	
A genome	0(8.7%)	20 (28 2%)	61 (63 1%)	3 (17%)	21 (32.8%)	10 (62 5%)	
(T. urartu)	9 (0.770)	29 (28.2%) 04 (03.1%		5 (4.170)	21 (32.070)	40 (02.370)	
A genome	5 (1.00)					50 (01.07)	
(T. dicoccoides)	5 (4.9%) icoccoides)		86 (84.5%)	3 (4.7%)	9 (14.1%)	52 (81.3%)	
B genome	((5 .00)	10 (11 77)	04 (00 50)	2 (1 7 6)	((0.401)	55 (05 0%)	
(T. dicoccoides)	6 (5.8%)	12 (11.7%)	84 (82.5%)	3 (4.7%)	6 (9.4%)	33 (83.9%)	
D genome	((5 .00)	11 (10 70)	05 (02.59)	A (C 201)	5 (7.00)	55 (05 0%)	
(Ae. tauschii)	6 (5.8%)	11 (10.7%)	85 (83.5%)	4 (0.3%)	5 (7.8%)	SS (8S.9%)	
Average per all	7 ((201)					51 (79.001)	
genomes	/ (6.3%)	16 (15.3%)	81 (78.4%)	5 (5.1%)	10 (16.0%)	51 (78.9%)	

340

341

An analysis on a subset of wheat genes, which were expected to be involved in meiotic recombination based on the function of their orthologs in model plants (64 genes; **S11 Table**), was conducted. Again, results showed that the majority (94.9%) of those genes had greater or no change in number of copies (**Table 2**). Given it has been suggested that the reduction in the copy number of ZMM pathway genes could stabilize meiosis in Brassica [66], the copy number of the wheat orthologs of seven ZMM genes was evaluated. Five of the seven ZMM genes (*MER3*, *MSH5*, *ZIP4*, *PTD* and *SHOC1*) had equal or
greater number of copies. However, *TaMSH4* gained one A-genome copy (comparing with *T. urartu*)
and lost one D-genome copy (compared with *Ae. tauschii*), while *TaHEI10* lost A-genome copy and
gained a D-genome copy (S11 Table). In conclusion, our findings did not support any significant
gene loss upon the polyploidization of hexaploid wheat, as suggested for other polyploids [35,66,71].

353 Homeolog expression patterns in triads of MGs

354 Initial analysis revealed that most genes expressed during meiosis showed balanced expression 355 between homeologs (S1 Fig). The analysis was repeated using gene expression within the validated 356 meiosis modules. Genes from all modules were assigned to three categories (balanced, dominant and 357 suppressed) (see Materials and Methods; **S12 Table**). Homeolog expression patterns in triads showed 358 that meiosis-related modules 2, 28 and 41 had the highest percentage (87.3%) of genes with balanced 359 expression (belong to balanced triads), compared to the top three tissue-related modules for grain, 360 leaves and roots (Fig 6B). Surprisingly, the group of candidate MGs selected for being orthologs of 361 known MGs in other plant species and/or having meiotic GO terms had a higher percentage of genes 362 from balanced triads (88.3%); whereas the modules not considered meiosis-specific (having high 363 correlation with meiotic anther tissue and with spike and floral organs) contained only 68.3% genes 364 with balanced expression (Fig 6B). The majority (84.19%) of triads with genes in meiosis-related 365 modules (2,366 triads) showed balanced expression in meiotic anther tissue (Fig 6C).

366

367 In wheat, meiotic recombination and gene evolution rates are strongly affected by chromosome position, with relatively low recombination rates in the interstitial and proximal regions (genomic 368 compartments R2a, C and R2b) but notably higher rates toward the distal ends of the chromosomes 369 (genomic compartments R1 and R3) [72,73]. The lack of significant changes in gene content and 370 371 more balanced expression between homeologs, suggested that these genes might be more prevalent in the proximal genomic compartments [36,37]. The distribution of MGs was therefore assessed across 372 373 the genomic compartments compared with the distribution of all HC genes across chromosomes (S13 374 Table). Analysis showed that genes from the meiotic modules (modules 2, 28 and 41), were

- significantly over-represented in the genomic compartments R2a, C and R2b ($P = 2.4 \times 10^{-5}$, 3.1×10^{-5})
- 6 and 1 x 10⁻⁵, respectively), while they were under-represented in the R1 and R3 genomic
- 377 compartments ($P = 1.7 \times 10^{-8}$ and 1.7×10^{-10} , respectively) (Fig 7A). Enrichment in the R2a genomic
- 378 compartment region was not observed for genes from any of the other top three tissue-related modules
- 379 (Fig 7B), since 21.7% of genes from the meiosis-related modules were assigned to R2a, while this
- percentage ranged between 18.2% and 19.5% in other tissue-related modules (**Table 3**). Interestingly,
- the set of the genes identified through orthology approaches had also similar high percentage (21%) of
- 382 genes assigned to R2a genomic compartment (**Table 3**).
- 383

384 Fig 7. Enrichment of genes from different tissue-related modules in the wheat genomic

385 compartments. (A) Number of genes (actual and expected) from the three meiosis-related modules in

ach genomic compartment. (B) Comparison of number of genes from different tissue-related

387 modules in genomic compartments. Statistical significance of gene enrichment in modules is colour

388 coded (Red indicates enriched, blue depleted and grey not significant; P < 0.05). Black dots indicate

- the expected number of genes in groups.
- 390

391 Table 3. Number of genes from different groups in the wheat genomic compartments.

Modules		R1	R	2a		С	R	2b	I	83
Mounts	No.	%	No.	%	No.	%	No.	%	No.	%
Meiotic modules	625	10.9%	1246	21.7%	531	9.3%	1823	31.8%	1515	26.4%
Non-meiotic modules	158	10.5%	292	19.5%	123	8.2%	469	31.3%	456	30.4%
Grain modules	338	10.2%	649	19.5%	287	8.6%	1144	34.4%	903	27.2%
Leaves modules	838	10.8%	1466	18.9%	853	11.0%	2557	33.0%	2037	26.3%
Roots modules	270	10.3%	479	18.2%	177	6.7%	951	36.1%	754	28.7%
All modules	5147	10.3%	9880	19.9%	4507	9.1%	16491	33.1%	13738	27.6%
Orthologs & Meiotic GO	78	6.5%	253	21.0%	164	13.6%	387	32.1%	324	26.9%

392

393 Our analysis reveals that homeologous MGs on homeologs mostly show balanced expression and lack

a significant change in MG content following polyploidization. The majority of homeologous genes

395 (not only MGs) on homeologs also show over 95% sequence identity to each other [37,74]. Given

396 these observations, such homeologs could synapse and recombine during meiosis. However, in 397 allohexaploid wheat, homologs rather than homeologs synapse and recombine during meiosis ensuring the stability and fertility of this species, and the *Ph1* locus, in particular the *TaZIP4* gene 398 copy inside this locus, has been identified as the main locus controlling this process. The wheat ZIP4, 399 400 an ortholog of ZIP4/Spo22 in A. thaliana and rice, is a member of the ZMM genes involved in the synaptonemal complex formation and class I crossovers pathway [75,76]. Moreover, wheat lacking 401 402 *Ph1* exhibits extensive genome rearrangements, including translocation, duplications, and deletions 403 [33]. Thus, the evolution of *Ph1* during wheat polyploidization may explain why wheat has largely 404 maintained a similar gene content and balanced expression of its homeologs. How meiosis has 405 adapted to cope with allopolyploidy in other species is still to be resolved; however, it has been 406 suggested that reduction in the copy number of meiotic genes may stabilize the meiotic process after 407 polyploidization [35,66]. The present study shows that this is not the case in wheat. It is possible that 408 the presence of *Ph1* in wheat enabled the retention of multiple copies of meiotic genes as an 409 alternative mechanism to ensure proper segregation of chromosomes during meiosis. In any case, the 410 identification of the TaZIP4 gene within the Ph1 locus as the gene responsible for the Ph1 effect on 411 recombination and the observed effects of *Ph1* in wheat suggests that it may have more of a central 412 role in meiosis than originally suspected from studies on model systems [75,76]. It has recently been suggested that ZIP4 might acts as a scaffold protein facilitating physical interactions and assembly of 413 different proteins complexes [75,76,77]. Therefore, our co-expression network was used to identify 414 the wheat orthologs of known MGs connected with TaZIP4. The analysis indicates that the three 415 416 TaZIP4 homeologs on group 3 (TraesCS3A02G401700, TraesCS3B02G434600 and TraesCS3D02G396500) were clustered in module 2, the largest meiosis-related module, and strongly 417 connected to many orthologs of MGs with various meiotic functions (Fig 8). However, the TaZIP4 418 copy responsible for *Ph1* phenotype (TraesCS5B02G255100) did not cluster in the same module, 419 420 reflecting its different expression profile from the other homeologs, being expressed in most tissues 421 [31-33]. TaZIP4 was connected to wheat orthologs of genes known to be involved in crossover 422 formation such as MSH2, SHOC1, FANCM, FLIP, EME1B, MUS81 [2]. This suggests that there may 423 be an interplay between TaZIP4 and genes from the anti-crossover pathway. The TaZIP4 sub-network 424 supports a more central role of ZIP4 in meiosis than originally suspected from studies on model

425 species.

426

Fig 8. The wheat MG orthologs connected to *TaZIP4*. The alluvial diagram shows the connected
genes to the *TaZIP4* homeologs *TaZIP4-A1*, *TaZIP4-B1* and *TaZIP4-D1*. Edge weight > 0.05 was
used as threshold to visualise connected genes. Black bars indicate the number of homeologs for each
connected gene.

431

432 Further characterisation of the wheat meiotic co-expression network

433 1) Identification of hub genes in the meiosis-related modules

Hub genes were identified within our meiosis-related modules by calculating the correlation between 434 expression patterns of each gene and the module eigengene: the most highly correlated genes to the 435 436 eigengene being the hub genes. The top 10 hub genes of each module with their functional annotation 437 are shown in **Table 4**. The top 10 hub genes in module 2 were core histone genes, supporting the strong contribution of histones in this meiosis-related module. For further verification of histone 438 involvement in module 2 and other modules in general, all wheat genes annotated as core histories or 439 440 having GO terms related to histone modification, were retrieved for enrichment analysis. Analysis showed that the five types of histones (H1, H2A, H2B, H3 and H4) were enriched only in module 2 441 $(P = 3.6 \times 10^{-4}, 1.2 \times 10^{-22}, 1.1 \times 10^{-19}, 9.4 \times 10^{-21}, and 3.3 \times 10^{-26}, respectively), having 433 genes$ 442 (85% of all core histone genes in all modules), compared to an expected number of genes of 39 (Fig 443 444 9). Similar results were obtained for histone modification genes. Module 2 was the most enriched module with this group of genes ($P = 9.3 \times 10^{-52}$), containing 438 genes (30% of all histone 445 modification genes in all modules). The histone modification genes were also enriched in 11 other 446 447 modules, including the other meiosis-related modules (modules 28 and 41), however, with much 448 lower numbers of enriched genes (Fig 9). Detailed information about genes included in this analysis is 449 provided in S14 Table. The strong enrichment of histone modification genes in module 2 (the largest 450 meiosis-related module) supports the important role of histone modifications in meiosis [78-83].

453	Fig 9. Histone genes enrichment in the gene co-expression network modules. The analysis
454	included all the genes annotated as core histones (H1, H2A, H2B, H3 and H4) in the wheat genome
455	and the genes with GO terms related to histone modification. Statistical significance of gene
456	enrichment in a module at $P < 0.05$ is colour coded (Red indicates enriched, blue depleted and grey
457	not significant). Rhombus shape indicates the expected number of genes in module.
450	

Table 4. The top 10 hub genes of each meiosis-related module with their functional annotation.

	Gene	Functional annotation	GO terms
	TraesCS1B02G192500	Histone H2B	nucleosome; DNA binding; protein
			heterodimerization activity
	TraesCS1D02G286600	Histone H4	nucleosome; DNA binding; nucleosome
			assembly; protein heterodimerization activity
	TraesCS3A02G534100	Histone H2A	nucleosome; DNA binding; protein
			heterodimerization activity
	TraesCS6A02G034300	Histone H2A	nucleosome; DNA binding; protein
			heterodimerization activity
	TraesCS6A02G034600	Histone H2A	nucleosome; DNA binding; protein
le 2			heterodimerization activity
lodul	TraesCS6B02G048300	Histone H2A	nucleosome; DNA binding; protein
R			heterodimerization activity
	TraesCS6B02G049000	Histone H2A	nucleosome; DNA binding; protein
			heterodimerization activity
	TraesCS6D02G326800	Histone H2B	nucleosome; DNA binding; protein
			heterodimerization activity
	TraesCS7B02G408400	Histone H2A	nucleosome; DNA binding; nucleus; protein
			heterodimerization activity
	TraesCSU02G095700	Histone H3	nucleosome; DNA binding; protein
			heterodimerization activity
~	TraesCS1A02G263400	Zinc finger CCCH domain protein	DNA binding; protein binding; zinc ion binding
lule 2	TraesCS2B02G281900	Receptor kinase	protein kinase activity; protein binding; ATP
Mod			binding; protein phosphorylation

	TraesCS2D02G000100	Histone deacetylase complex subunit SAP30	protein binding
	TraesCS2D02G263500	Receptor kinase	protein kinase activity; protein binding; ATP
			binding; protein phosphorylation
	TraesCS5B02G379400	Vacuolar protein sorting-associated 2-2-like	vacuolar transport
		protein	
	TraesCS5D02G070800	Aminotransferase	catalytic activity; biosynthetic process; pyridoxal
			phosphate binding
	TraesCS5D02G386000	Vacuolar protein sorting-associated 2-2-like	vacuolar transport
		protein	
	TraesCS6A02G253900	High mobility group protein	chromatin assembly or disassembly; chromatin
			binding; chromatin remodelling; DNA binding
	TraesCS6B02G271600	High mobility group protein	chromatin assembly or disassembly; chromatin
			binding; chromatin remodelling; DNA binding
	TraesCSU02G072600	Vacuolar protein sorting-associated 2-2-like	vacuolar transport
		protein	
	TraesCS1D02G003800	Serine/threonine-protein kinase ATM	NA
	TraesCS1D02G003800 TraesCS1D02G072800	Serine/threonine-protein kinase ATM Chaperone protein dnaJ	NA cytoplasm ; protein folding; unfolded protein
	TraesCS1D02G003800 TraesCS1D02G072800	Serine/threonine-protein kinase ATM Chaperone protein dnaJ	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to
	TraesCS1D02G003800 TraesCS1D02G072800	Serine/threonine-protein kinase ATM Chaperone protein dnaJ	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress
	TraesCS1D02G003800 TraesCS1D02G072800 TraesCS2A02G120400	Serine/threonine-protein kinase ATM Chaperone protein dnaJ adenine nucleotide transporter 1	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress NA
	TraesCS1D02G003800 TraesCS1D02G072800 TraesCS2A02G120400 TraesCS2D02G401100	Serine/threonine-protein kinase ATM Chaperone protein dnaJ adenine nucleotide transporter 1 High mobility group family	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress NA Nucleus; DNA binding; transcription factor
e 41	TraesCS1D02G003800 TraesCS1D02G072800 TraesCS2A02G120400 TraesCS2D02G401100	Serine/threonine-protein kinase ATM Chaperone protein dnaJ adenine nucleotide transporter 1 High mobility group family	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress NA Nucleus; DNA binding; transcription factor activity; sequence-specific DNA binding
1odule 41	TraesCS1D02G003800 TraesCS1D02G072800 TraesCS2A02G120400 TraesCS2D02G401100 TraesCS3A02G162200	Serine/threonine-protein kinase ATM Chaperone protein dnaJ adenine nucleotide transporter 1 High mobility group family Zinc finger CCCH domain-containing protein 4	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress NA Nucleus; DNA binding; transcription factor activity; sequence-specific DNA binding metal ion binding
Module 41	TraesCS1D02G003800 TraesCS1D02G072800 TraesCS1D02G072800 TraesCS2A02G120400 TraesCS2D02G401100 TraesCS3A02G162200 TraesCS3D02G127500	Serine/threonine-protein kinase ATM Chaperone protein dnaJ adenine nucleotide transporter 1 High mobility group family Zinc finger CCCH domain-containing protein 4 Ankyrin repeat protein-like	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress NA Nucleus; DNA binding; transcription factor activity; sequence-specific DNA binding metal ion binding protein binding
Module 41	TraesCS1D02G003800 TraesCS1D02G072800 TraesCS2A02G120400 TraesCS2D02G401100 TraesCS3A02G162200 TraesCS3D02G127500 TraesCS4D02G284200	Serine/threonine-protein kinase ATM Chaperone protein dnaJ adenine nucleotide transporter 1 High mobility group family Zinc finger CCCH domain-containing protein 4 Ankyrin repeat protein-like F-box family protein	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress NA Nucleus; DNA binding; transcription factor activity; sequence-specific DNA binding metal ion binding protein binding protein binding
Module 41	TraesCS1D02G003800 TraesCS1D02G072800 TraesCS1D02G072800 TraesCS2A02G120400 TraesCS2D02G401100 TraesCS3A02G162200 TraesCS3D02G127500 TraesCS4D02G284200 TraesCS5A02G170400	Serine/threonine-protein kinase ATM Chaperone protein dnaJ adenine nucleotide transporter 1 High mobility group family Zinc finger CCCH domain-containing protein 4 Ankyrin repeat protein-like F-box family protein F-box protein	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress NA Nucleus; DNA binding; transcription factor activity; sequence-specific DNA binding metal ion binding protein binding protein binding protein binding
Module 41	TraesCS1D02G003800 TraesCS1D02G072800 TraesCS1D02G072800 TraesCS2A02G120400 TraesCS2D02G401100 TraesCS3A02G162200 TraesCS3D02G127500 TraesCS4D02G284200 TraesCS5A02G170400 TraesCS7A02G233900	Serine/threonine-protein kinase ATM Chaperone protein dnaJ adenine nucleotide transporter 1 High mobility group family Zinc finger CCCH domain-containing protein 4 Ankyrin repeat protein-like F-box family protein F-box protein Poor homologous synapsis 1 protein	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress NA Nucleus; DNA binding; transcription factor activity; sequence-specific DNA binding metal ion binding protein binding protein binding protein binding Nucleus; synapsis; intracellular signal
Module 41	TraesCS1D02G003800 TraesCS1D02G072800 TraesCS1D02G072800 TraesCS2A02G120400 TraesCS2D02G401100 TraesCS3A02G162200 TraesCS3D02G127500 TraesCS4D02G284200 TraesCS5A02G170400 TraesCS7A02G233900	Serine/threonine-protein kinase ATM Chaperone protein dnaJ adenine nucleotide transporter 1 High mobility group family Zinc finger CCCH domain-containing protein 4 Ankyrin repeat protein-like F-box family protein F-box protein Poor homologous synapsis 1 protein	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress NA Nucleus; DNA binding; transcription factor activity; sequence-specific DNA binding metal ion binding protein binding protein binding protein binding Nucleus; synapsis; intracellular signal transduction; kinase activity
Module 41	TraesCS1D02G003800 TraesCS1D02G072800 TraesCS1D02G072800 TraesCS2A02G120400 TraesCS2D02G401100 TraesCS3A02G162200 TraesCS3D02G127500 TraesCS4D02G284200 TraesCS5A02G170400 TraesCS7A02G233900 TraesCS7D02G181800	Serine/threonine-protein kinase ATM Chaperone protein dnaJ adenine nucleotide transporter 1 High mobility group family Zinc finger CCCH domain-containing protein 4 Ankyrin repeat protein-like F-box family protein F-box protein Poor homologous synapsis 1 protein Interleukin-6	NA cytoplasm ; protein folding; unfolded protein binding; heat shock protein binding; response to stress NA Nucleus; DNA binding; transcription factor activity; sequence-specific DNA binding metal ion binding protein binding protein binding protein binding Nucleus; synapsis; intracellular signal transduction; kinase activity NA

460

Hub genes such as "*Poor homologous synapsis 1*" (*PHS1*) were also identified with module 41, the module most highly correlated to meiotic samples. This gene has been previously reported to have a key role in homologous chromosome pairing, synapsis, DNA recombination and accurate chromosome segregation during meiosis in maize [84], Arabidopsis [85] and wheat [59]. Other hub

genes identified in modules 28 and 41 encoded for the high mobility group proteins [86-90], histone
deacetylase [91-94], and F-box proteins [95].

467

468 2) Analysis of Transcription factors within the meiosis-related modules

469 Many transcription factors (TFs) have been reported as key regulators of meiosis from studies on animals [96,97], yeast [98-101] and protozoa [102]. However, very little is known about the 470 involvement of TFs in plant meiosis. The meiotic co-expression network was therefore exploited to 471 472 identify potential meiosis-specific TFs. An assessment was undertaken of the enrichment of 473 previously identified TF families in hexaploid wheat in the meiosis-related modules 2, 28 and 41. A total of 4889 high confidence genes belonging to 58 TF families were predicted from the annotation 474 475 of the wheat genome sequence. Of these, 2439 TFs from 57 families could be assigned to the 66 476 modules in the gene co-expression network. Modules 2, 28 and 41 (meiosis-related modules) had 225, 477 25 and 17 TFs belonging to 31, 13 and 9 TF families, respectively (S15 Table). Compared to the 478 expected number of TF families genes in each module, only 5 TF families were significantly enriched 479 in module 2: Mitochondrial transcription termination factor (mTERF); Growth-Regulating Factor 480 (GRF); abscisic acid-insensitive protein 3/Viviparous1 (ABI3/VP1); Forkhead-associated domain 481 (FHA) and E2F/ Dimerization Partner (DP). On the other hand, 4 TF families were significantly 482 depleted (Fig 10). The TF family NAC was the only TF family significantly enriched in module 41, 483 containing 5 NAC genes (expected number 0.6; P < 0.05). Module 28 was not enriched with any TF 484 family, although E2F/DP transcription factors were enriched in this module with borderline statistical 485 significance (P = 0.06), with 4 genes in this module (the expected number was 0.2). Except in module 486 2, E2F/DP and FHA transcription factors families were not enriched in any other modules in the gene co-expression network (S16 Table). E2F/DP plays an important role in regulating gene expression 487 necessary for passage through the cell cycle in mammals and plants [103-105]. Members of FHA 488 contain the forkhead-associated domain, a phosphopeptide recognition domain found in many 489 regulatory proteins. Genes belonging to the FHA group are reported to have roles in cell cycle 490 491 regulation [106-108], DNA repair [109-112] and meiotic recombination and chromosome segregation 492 [113-115]. A previous meiotic transcriptome study identified up-regulation of TFs belonging to the

493	MADS-box, bHLH, bZIP, and NAC families in Arabidopsis and maize meiocytes at early meiosis
494	[116]. Zinc finger-like TFs have also been suggested to be regulators of maize MG expression [117]
495	The present study indicates that TF families known to have roles in cell cycle and meiosis processes
496	are over-represented in the meiosis-related modules (module 2 in particularly). Those TF families
497	contain about 20 meiosis-specific candidate TF genes whose function can be validated using the
498	available reverse genetics resources in polyploid wheat [118].
499	
500	Fig 10. Transcription factor families in the meiosis-related modules. Statistical significance of
501	gene enrichment in the modules is colour coded (Red indicates over-represented, blue under-
502	represented and grey not significant; $P < 0.05$). Rhombus shape indicates the expected number of
503	genes in module.
504	
505	3) Visualisation of networks and identification of candidate MGs
FOC	Having identified maioric related madules, the Naturaly within such modules can be viewalized

Having identified meiosis-related modules, the Networks within such modules can be visualised, 506 highlighting genes for future studies. Edge files were created with gene annotation for the three 507 508 meiosis-related modules 2, 28 and 41. Those files can be used to investigate the relation between 509 orthologs of MGs within a module and ranked based on the strength of the connection (weight value). 510 Another application of co-expression networks is the identification of previously uncharacterised 511 genes regulating biological processes [37,40,42-49]. Cytoscape 3.7.1 software [119] was therefore used to visualise our network and to show connections between different orthologs of MGs in 512 meiosis-related modules. Wheat MG orthologs in meiosis-related modules were used as "guide genes" 513 514 to construct co-expression subnetworks containing only genes with direct connections to the guide 515 genes. One such subnetwork is shown in **Fig 11**, where the following wheat orthologs of MGs in 516 module 41 were selected and used to construct a meiotic subnetwork: Poor Homologous Synapsis 1 (TaPHS1; [59]); Argonaute (AGO9/AGO104; [120,121] Replication protein A2c (OsRPA2c; [122]; 517 Meiotic nuclear division protein 1 (AtMND1; [123,124]); MMS and UV Sensitive 81 (AtMUS81; 518 [125,126]); and Parting Dancers (AtPTD; [127,128]) (guide genes; red circles in Fig 11). The 519

520 network complexity was reduced using an edge weight > 0.05. The visualized subnetwork contained 521 53 gene IDs including 9 guide gene copies. The gene TraesCS7A02G233900 (TaPHS1), a hub gene in module 41, was central in the network having the highest number of direct edges (41 direct edges; 522 connected with 77.4% of the genes in the subnetwork). This subnetwork allowed identification of 523 524 other genes with putative roles in meiosis (pink circles): a) RNA recognition motifs-containing gene (TraesCS5A02G319000) similar to Mei2, a master regulator of meiosis and required for premeiotic 525 526 DNA synthesis as well as entry into meiosis in *Schizosaccharomyces pombe* [129,130]; b) the gene 527 TraesCS4D02G050000 showed similarity to Male meiocyte death 1 (MMD/DUET), a PHD-finger 528 protein plays role in chromatin structure and male meiotic progression in A. thaliana [131,131]; c) the 529 gene TraesCS5D02G454900, a possible TF belonging to the FHA family known to have function in 530 cell cycle regulation [106-108], DNA repair [109-112] and meiotic recombination and chromosome 531 segregation [113-115]. The meiotic subnetwork contained genes with similarity to cell cycle like F-532 box family proteins, high mobility family proteins, and chromatin remodelling genes. The subnetwork 533 also contained a group of genes connected to most of our guide genes, which thus might be involved 534 with them in similar biological processes. Examples of such genes are TraesCS3A02G101000, 535 TraesCS1A02G292700 and TraesCS1D02G291100 which encode for zinc finger CCCH domain-536 containing proteins (Fig 11). Other meiotic subnetworks were also constructed using other guide 537 genes from modules 2 and 28.

538

Fig 11. A meiotic co-expression subnetwork in hexaploid wheat. This subnetwork was constructed using 9 guide genes in module 41. Guide genes are wheat orthologs of MGs in other plant species (red circles); pink circles represent genes with putative meiosis function. Edge weight 0.05 was used as threshold to visualise genes in the subnetwork using Cytoscape 3.7.1 software.

543

544 4) The meiotic co-expression network is accessible in a larger biological contest

545 Our WGCNA co-expression network and GO enrichment data has been integrated with the wheat

546 knowledge network [132] to make it publicly accessible in a larger biological context and to make it

searchable through the KnetMiner web application (http://knetminer.rothamsted.ac.uk; [133].

548 KnetMiner can be searched with keywords (incl. module ID and GO terms) and wheat gene

549 identifiers. The gene knowledge graphs generated contain many additional relation types such protein-

protein interactions, homology and links to genome wide association studies and associated literature

- 551 placing the co-expression networks generated here in a wider context.
- 552

553 Conclusion

In summary, the present study shows that most MGs in wheat are retained as three homeologous

genes, which are expressed during meiosis at similar levels, suggesting that they have not undergone

extensive gene loss nor sub/neo-functionalisation. Meiosis-related modules have been used to create

networks and identify hub genes providing targets for future studies. The network containing the ZIP4

gene, recently defined as *Ph1* [31-33] for example, highlights potential interacting partners. Finally,

the networks highlight genes such as ZIP4 and "Poor homologous synapsis 1", which may play a

560 more central role in meiosis than previously thought. The co-expression network analysis combined

561 with orthologue information will contribute to the discovery of new MGs and greatly empowers

reverse genetics approaches to validate the function of candidate genes [118]. Ultimately this will lead

- to better understanding of the regulation of meiosis in wheat (and other polyploid plants) and
- subsequently improve wheat fertility.

565

566

567 Materials and Methods

568

569 RNA-Seq data collection

570 For co-expression network analysis we included 130 samples, containing 113 samples previously

571 described in Ramírez-González et al. [36] and 17 samples from anthers during meiosis (9 samples

from Martin *et al.* [33]), and 8 samples downloaded from

573 (https://urgi.versailles.inra.fr/files/RNASeqWheat/Meiosis/). Samples were selected to represent all

main tissue types: grain (n = 37 samples), leaves (n = 21 samples), roots (n = 20 samples), anther at

meiosis (n = 17 samples), spike (n = 12 samples), floral organs (anther, pistil and microspores) at stages other than meiosis (n = 10 samples), stem (n = 7 samples) and shoots (n = 6 samples). All samples were under nonstress conditions and mostly from the reference accession Chinese Spring. Detailed information about the used samples are listed in the supplementary materials (**S2 Table**).

580 Mapping of RNA-Seq reads to reference

581 Kallisto v0.42.3 [134] was used to map all RNA-Seq samples to the Chinese Spring transcriptome

reference IWGSC RefSeq Annotation v1.1 [37], following default parameters previously shown to

result in accurate homeolog-specific read mapping in polyploid wheat [36,50]. Tximport v1.2.0 was

then used to summarise expression levels from transcript to gene level (S1 Text).

585

586 **Co-expression network construction**

587 The WGCNA package in R [51,52] was used to construct the scale-free co-expression network.

588 Metadata for all samples were assigned with 8 tissue types (average 16.25; median 14.5 replicates per

factor). Only high confidence (HC) genes [37] with expression > 0.5 TPM in at least one meiosis

sample were retained for co-expression network construction using the R Package WGCNA (version

591 1.66) [51,52]. Using the varianceStabilizingTransformation() function from DESeq2 [135], the count

592 expression level of selected genes was normalised to eliminate differences in sequencing depth

between different RNA-Seq studies (S2 Text). To select a soft power threshold (β) for adjacency

594 calculation (as $a_{ij} = |s_{ij}|^{\beta}$; where s_{ij} is the correlation between gene *i* and gene *j*), the Scale-free

595 Topology Criterion was used [136]. Using the pickSoftThreshold() function to calculate β values, the

soft power threshold emphasising strong correlations between genes and penalising weak correlations

597 was selected as the first power to exceed a scale-free topology fit index of 0.9 [36] (S3 Text). The

598 correlation type used to calculate adjacency matrices was biweight midcorrelation (bicor). The

- adjacency matrices were transformed into a topological overlap matrix (TOM), measuring the
- 600 network connectivity of a gene defined as the sum of its adjacency with all other genes for network

601 generation. The blockwiseModules() function was used to calculate matrices and construct blockwise

602 networks considering the following parameters: network type (networkType) = "signed hybrid",

603	maximum block size (maxBlockSize) = 46,000 genes, soft power threshold (power) = 7, correlation
604	type (corType) = "bicor" (biweight midcorrelation with maxPOutliers set to 0.05 to eliminate effects
605	of outlier samples), topological overlap matrices type (TOMType) = "unsigned" with the
606	mergeCutHeight = 0.15 and the minModuleSize = 30 to classify genes with similar expression
607	profiles into gene modules using average linkage hierarchical clustering, according to the TOM-based
608	dissimilarity measure with a minimum module size of 30 genes (S4 Text). Module Eigengene (MEs),
609	summarising the expression patterns of all genes within a given module into a single characteristic
610	expression profile, were calculated as the first principal component in the Principal Component
611	Analysis (PCA) using the moduleEigengenes() function (S4 Text).
612	
613	Identifying meiosis-related modules
614	The module eigengenes was used to test correlations between gene modules and traits (8 tissue types)

using the cor() function. To assess the significance of correlations, Student asymptotic P values for

correlations were calculated using the function corPvalueStudent(), and corrected for multiple testing

Yekutieli [137] method. We considered a module meiosis-related when its correlation was strong with

meiosis samples (r > 0.5 and FDR < 0.05) and weak (r < 0.3) or negative with other type of tissues

by calculating FDR (false discovery rate) using a p.adjust() function following the Benjamini &

620 621 (S5 Text).

615

616

617

618

619

622 Analysis of GO term enrichment in modules

623 GO term enrichment was calculated using the "goseq" package [138]. Gene ontology (GO)

annotations of IWGSC RefSeq v1.0 genes were retrieved from the file "FunctionalAnnotation.rds" in

625 <u>https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-</u>

626 <u>Transcriptome-Landscape/data/TablesForExploration/FunctionalAnnotation.rds</u> [36] by filtering for

627 ontology "IWGSC+Stress". GO data was then converted to IWGSC RefSeq Annotation v1.1 by

629 > 90% coverage in the v1.0 and v1.1 annotation versions (as determined by blastn of the cDNAs)

630 (called "all_go"). *P* values for GO term enrichment were calculated using the goseq() function (using

631	the following parameters: the pwf object was created using the nullp() function which calculated a
632	Probability Weighting Function for the genes v1.1 based on their length, the gene2cat = all_go, and
633	test.cats = "GO:BP", to specify the Biological Process GO term category to test for over
634	representation amongst the inquired genes) and corrected using the FDR method [139]. A GO term
635	was considered enriched in a module when FDR adjusted P value < 0.05 (S6 Text). All figures shown
636	for enriched GO terms in the modules were produced using RAWGraphs software [140].
637	
638	Orthologs of MGs in wheat
639	A comprehensive literature search was performed for MGs in model plant species (mainly A. thaliana
640	and rice; S17 Table), identifying gene IDs based on the "Os-Nipponbare-Reference-IRGSP-1.0" for
641	rice (Oryza sativa Japonica Group) and "TAIR10" for A. thaliana. Wheat orthologs of MGs were then
642	retrieved from Ensembl Plants Genes 43 database through BioMart (in;
643	http://plants.ensembl.org/biomart) where orthologs calculated according to Vilella et al. [141] using
644	the following gene datasets: "Triticum aestivum genes (IWGSC)", "Oryza sativa Japonica Group
645	genes (IRGSP-1.0)" and "Arabidopsis thaliana genes (TAIR10)" for wheat [37], rice [142,143] and
646	Arabidopsis [144], respectively. For genes with no orthologs identified using this method, potential
647	wheat orthologs were identified by searching for amino acid sequence similarity using BLASTP [145]
648	in <i>Ensembl</i> Plants according to the following criteria: E-value < 1e-10; ID% > 25% with Arabidopsis
649	and > 70% with rice; then only wheat genes for which <i>Ensembl</i> Plants did not list any orthologs in rice
650	and Arabidopsis were considered as orthologs of MGs. Finally, 407 wheat gene IDs were identified as
651	orthologs of 103 plant MGs (listed in S5 Table). This group of genes was referred to in this study as
652	"Orthologs".

653

654 Wheat genes with MG ontology (GO)

A total number of 46,909 GO terms used by Ramírez-González et al. [36] to calculate GO term

accessions for wheat genes (IWGSC v1.0 gene annotation) were filtered for meiosis-related GO

657 terms, using 15 meiosis-specific keywords ("meiosis", "meiotic", "synapsis", "synaptonemal",

658 "prophase I", "metaphase I", "telophase I", "leptotene", "zygotene", "pachytene",

659	"diplotene", "chiasma", "crossover" and "homologous chromosome segregation"). A total of 284
660	meiosis GO accessions were identified and used to retrieve 927 wheat genes with potential roles
661	during meiosis (S7 Table). All genes identified by gene orthologs and gene ontology methods were
662	then filtered to retain only genes had expression > 0.5 TPM in at least one meiosis sample. This group
663	of genes was referred to in this paper as "Meiotic GO". Enrichment analysis for the genes from
664	"Orthologs" and "Meiotic GO" groups in all module was conducted (S7 Text). The number of genes
665	from each group was assessed in all modules and compared with the expected number based on the
666	module size. There was a set of genes overlapping between "Orthologs" and "Meiotic GO" groups,
667	which was considered in the "Orthologs" group when undertaking gene enrichment analysis. Fisher's
668	exact test was used to calculate significant enrichment in the modules. Gene group considered over-
669	or under-represented in a module when $P < 0.5$.
670	
671	Identifying highly connected hub genes
672	Hub genes within each module were identified using the WGCNA R package function signedKME()
673	to calculate the correlation between expression patterns of each gene and the module eigengene. Hub
674	genes were considered those more highly correlated to the eigengene (S8 Text).
675	
676	Assessment of TF families in modules
677	A total of 4889 wheat HC genes (IWGSC RefSeq Annotation v1.1; [37]) belonging to 58 TF families
678	were predicted from the annotation of the wheat genome sequence (https://github.com/Borrill-
679	Lab/WheatFlagLeafSenescence/blob/master/data/TFs_v1.1.csv). The number of TFs from each family
680	was assessed in all modules and compared with the expected number based on the module size.
681	Fisher's exact test was used to calculate significant enrichment of TFs in the modules. TF family
682	considered over- or under-represented in a module when $P \le 0.5$ (S9 Text).
683	
684	Defining gene categories based on number of homeologs
685	A list of homeologs for all HC hexaploid wheat genes (IWGSC v1.1 gene annotation; [37]) was

686 retrieved from *Ensembl* Plants Genes 43 database through BioMart (in;

687	http://plants.ensembl.org/biomart). Based on number of homeologs from each of the A-, B- and D-
688	sub-genomes, genes were assigned to four groups: triads that refer to 1:1:1 triads (with a single copy
689	from each of the A-, B- and D-sub-genomes); duplets referring to 1:1:0, 1:0:1 and 0:1:1 duplets;
690	monads group containing genes with no homeologs (e.g. 0:0:1); and "others" containing genes with
691	more than two homeologs, in conjunction with genes from the homeologous groups 0:1:2, 0:2:1,
692	1:0:2, 2:0:1, 1:2:0, 2:1:0, 2:0:0, 0:2:0 and 0:0:2. Accordingly, 19801 triads (59403 genes), 7565
693	duplets (15130 genes), 15109 monads (single-copy genes) and 18250 genes from the "Others" group
694	were identified (S1 Table).
695	
696	Defining gene categories based on homeolog expression patterns in triads
697	Homeolog expression pattern in triads was determined for each of the eight tissue types (S10 Text,
698	first part). For triads it was calculated according to Ramírez-González et al. [36] where a triad can be
699	described as balanced, A dominant, A suppressed, B dominant, B suppressed, D dominant or D
700	suppressed, based on the relative expression contribution of its A, B and D homeologs. Triads were
701	defined as expressed when one of its homeologs was expressed according to the criterion used in our
702	WGCNA analysis (S18 Table). This insured that all triads contain genes from modules were included
703	in the homeolog expression bias analysis (S10 Text, second part). Genes from a triad might not
704	belong to the same module due to dissimilarity of their expression patterns. Thus, to allow the
705	assessment of the expression pattern of genes in each module, each homeolog (A, B and D
706	homeologs) in a triad was assigned to one of the three categories "Balanced", "Dominant" and
707	"Suppressed" based on the homeolog origin (A, B and D sub-genome) and the triad description
708	(balanced, A dominant, A suppressed, B dominant, B suppressed, D dominant or D suppressed) as
709	shown in S19 Table . The values of the relative contributions of each homeolog per triad were used to
710	plot the ternary diagrams using the R package ggtern [146].

711

712 Co-expression gene network visualisation

713 Cytoscape software (version 3.7.1; [119]) was used to visualise the network described in this study.

Firstly, the "exportNetworkToCytoscape" function was used to create edge files which could be used

715	to visualize the network, then depending on network complexity, different weight value thresholds
716	were used to filter genes to be visualised (S11 Text,). The term 'weight value' in the input files for
717	Cytoscape refers to the connection strength between two nodes (genes) in terms of correlation value
718	obtained from the topological overlap matrices (TOM). The co-expression network data has also been
719	integrated with the wheat knowledge network [132] to make it publicly accessible through the
720	KnetMiner web application (http://knetminer.rothamsted.ac.uk; [133]. The data was semantically
721	modelled as nodes of type Gene, Co-Expression-Module, Co-Expression-Study, GOterm; connected
722	by relations of type part-of and enriched. Each module was given a unique identifier composed of the
723	module number and the prefix "AKA". KnetMiner can be searched with keywords (incl. module ID
724	and GO terms) and wheat gene identifiers.
725	
726	Data availability
727	All data files used in this manuscript are deposited in the Earlham Institute Open Data Platform
728	(https://opendata.earlham.ac.uk/wheat/under_license/toronto/Martin_etal_2018_Alabdullah_etal_201
729	9_wheat_meiosis_transcriptome_and_co-expression_network/). All R scripts are provided as .text
730	files in the Supporting Information. The Gene network data will become accessible and searchable
731	through the public plant website, KnetMiner (http://knetminer.rothamsted.ac.uk) with its next update
732	this August.
733	
734	Acknowledgements
735	This work was supported by the UK biotechnology and Biological Sciences Research Council
736	(BBSRC) through a grant as part of Designing Future Wheat (DFW) Institute Strategic Programme
737	(BB/P016855/1) and response mode grant (BB/R007233/1).
738	

739 Author Contributions

740 Conceptualization: Abdul Kader Alabdullah, Philippa Borrill, Azahara C. Martin, Cristobal Uauy,
741 Graham Moore.

- 742 Data curation: Abdul Kader Alabdullah, Azahara C. Martin, Ricardo H. Ramirez-Gonzalez, Keywan
- 743 Hassani-Pak.
- 744 Formal analysis: Abdul Kader Alabdullah
- 745 **Funding acquisition:** Graham Moore, Peter Shaw.
- 746 Methodology: Abdul Kader Alabdullah, Philippa Borrill, Cristobal Uauy, Graham Moore.
- 747 Software: Abdul Kader Alabdullah, Philippa Borrill, Ricardo H. Ramirez-Gonzalez, Keywan
- 748 Hassani-Pak.
- 749 **Supervision:** Graham Moore, Peter Shaw.
- 750 Writing original draft: Abdul Kader Alabdullah
- 751 Writing review & editing: Abdul Kader Alabdullah, Philippa Borrill, Azahara C. Martin, Ricardo
- H. Ramirez-Gonzalez, Keywan Hassani-Pak, Cristobal Uauy, Peter Shaw and Graham Moore.
- 753
- 754

755 **References**

- 1. Kleckner N. Meiosis: how could it work?. Proc Natl Acad Sci USA. 1996;93: 8167–8174.
- 2. Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The Molecular Biology of
- Meiosis in Plants. Annu Rev Plant Biol. 2015;66: 297-327. doi: 10.1146/annurev-arplant050213-035923.
- 7603. Zickler D. and Kleckner N. Recombination, Pairing, and Synapsis of Homologs during
- 761 Meiosis. Cold Spring Harb Perspect Biol 2015;7:a016626. doi: 10.1101/cshperspect.a016626
- 762 4. Capilla L, Garcia Caldés M, Ruiz-Herrera A. Mammalian Meiotic Recombination: A Toolbox
 763 for Genome Evolution. Cytogenet Genome Res. 2016;150: 1-16.
- 764 5. Melamed-Bessudo C, Shilo S, Levy AA. Meiotic recombination and genome evolution in
 765 plants. Curr Opin Plant Biol. 2016;30: 82–87.
- 766 6. Wijnker E, de Jong H. Managing meiotic recombination in plant breeding. Trends Plant
 767 Sci. 2008;12: 640-6. doi: 10.1016/j.tplants.2008.09.004.

768	7.	Choi K. Advances towards Controlling Meiotic Recombination for Plant Breeding. Mol
769		Cells. 2017;40(11): 814-822. doi: 10.14348/molcells.2017.0171.
770	8.	Fernandes JB, Séguéla-Arnauda M, Larchevêquea C, Lloyda AH, Merciera R. Unleashing
771		meiotic crossovers in hybrid plants. PNAS. 2018;115: 10.2431-2436.
772	9.	Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS. Polyploidy and interspecific
773		hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot. 2017;120:
774		183-194. doi:10.1093/aob/mcx079.
775	10.	Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6: 836-
776		846. doi:10.1038/nrg1711.
777	11.	Ramsey J, Schemske D. Neopolyploidy in flowering plants. Annu Rev Ecol Syst. 2002;33:
778		589-639.
779	12.	Stenberg P, Saura A. Meiosis and its deviations in polyploid animals. Cytogenet Genome Res.
780		2013;140: 185–203. doi:10.1159/000351731.
781	13.	Kobayashi T, Hotta Y. Tabata S. Isolation and characterization of a yeast gene that is
782		homologous with a meiosis-specific cDNA from a plant. Mol. Gen. Genet. 1993;237: 225-
783		232.
784	14.	Kobayashi T, Kobayashi E, Sato S, Hotta Y, Miyajima N, Tanaka A, Tabata S.
785		Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res.
786		1994;1: 15-26.
787	15.	Mercier R, Grelon M. Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res.
788		2008;120(3-4): 281-90. doi: 10.1159/000121077.
789	16.	Luo Q, Li Y, Shen Y, Cheng Z. Ten Years of Gene Discovery for Meiotic Event Control in
790		Rice. 2014;41(3): 125-137.
791	17.	Blary A Jenczewski E. Manipulation of crossover frequency and distribution for plant
792		breeding. Theor Appl Genet. 2019;132(3): 575-592. doi: 10.1007/s00122-018-3240-1.
793	18.	Riley R, Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid
794		wheat. Nature. 1958;182: 713–715.
795	19.	Riley R. The diploidisation of polyploid wheat. Ibid. 1960;15: 407-429.

796	20.	Holm PB. Chromosome pairing and chiasma formation in allohexaploid wheat, triticum
797		aestivum analyzed by spreading of meiotic nuclei. Carlsberg Res.Commun. 1986;51: 239-
798		294.
799	21.	Martinez-Perez E, Shaw P, Moore G. Polyploidy induces centromere association. J Cell Biol
800		2000;148: 233-238.
801	22.	Martinez-Perez E, Shaw P, Aragon-Alcaide L, Moore G. Chromosomes form into seven
802		groups in hexaploid and tetraploid wheat as a prelude to meiosis. Plant J. 2003;36: 21–29.
803	23.	Riley R, Chapman V, Johnson R. The incorporation of alien disease resistance in wheat by
804		genetic interference with the regulation of meiotic chromosomal synapsis. Genet Res.
805		1968;12: 199-219.
806	24.	Holm PB. Chromosome pairing and synaptonemal complex formation in hexaploid wheat,
807		monosomic for chromosome 5B. Carlsberg Res Commun. 1988;53: 57-89.
808	25.	Holm PB, Wang X. The effect of chromosome 5B on synapsis and chiasma formation in
809		wheat, Triticum aestivum cv. Chinese Spring. Carlsberg Res Commun. 1988;53: 191-208.
810	26.	Feldman M. Cytogenetic Activity and Mode of Action of the Pairing Homoeologous (Ph1)
811		Gene of Wheat. Crop Sci. 1993;33: 894-897.
812	27.	Aragon-Alcaide L, Reader S, Miller T, Moore G. Centromeric behaviour in wheat with high
813		and low homoeologous chromosomal pairing. Chromosoma. 1997;106: 327-33.
814	28.	Martinez-Perez E, Shaw P, Moore G. The Ph1 locus is needed to ensure specific somatic and
815		meiotic centromere pairing. Nature. 2001;411: 204-208.
816	29.	Prieto P, Shaw P. and Moore G. Homologue recognition during meiosis is associated with a
817		change in chromatin conformation. Nature Cell Biol. 2004;6: 906-908.
818	30.	Colas I, Shaw P, Prieto P, Wanous M, Spielmeyer W, Mago R, Moore G. Effective
819		chromosome pairing requires chromatin remodeling at the onset of meiosis. Proc Natl Acad
820		Sci USA. 2008;105(16): 6075-80. doi: 10.1073/pnas.0801521105.
821	31.	Martín AC, Rey MD, Shaw P, Moore G. Dual effect of the wheat Ph1 locus on chromosome
822		synapsis and crossover. Chromosoma. 2017; doi:10.1007/s00412-017-0630-0.

823	32.	Rey MD, Martín AC, Smedley M, Hayta S, Harwood W, Shaw P, et al. Magnesium increases
824		homoeologous crossover frequency during meiosis in ZIP4 (Ph1 Gene) mutant wheat-wild
825		relative hybrids. Front Plant Sci. 2018;9: 509. doi:10.3389/fpls.2018.00509.
826	33.	Martín AC, Borrill P, Higgins J, Alabdullah A, Ramírez-González, RH, Swarbreck D, et al.
827		Genome-Wide Transcription During Early Wheat Meiosis Is Independent of Synapsis, Ploidy
828		Level, and the Ph1 Locus. Front Plant Sci. 2018;9:1 791. doi: 10.3389/fpls.2018.01791.
829	34.	Jiao Y, Wickett NJ, Ayyampalayam S., Chanderbali, A.S., Landherr, L., Ralph, E., et al.
830		Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473: 97–100.
831		doi:10.1038/nature09916.
832	35.	Lloyd AH, Ranoux M, Vautrin S, Glover N, Fourment J, Charif D, et al. Meiotic gene
833		evolution: Can you teach a new dog new tricks? Mol Biol Evol. 2014;31: 1724-1727.
834	36.	Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, et al. The
835		transcriptional landscape of polyploid wheat. Science. 2018;361: eaar6089. doi:
836		10.1126/science.aar6089.
837	37.	International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat
838		research and breeding using a fully annotated reference genome. Science. 2018;361:
839		eaar7191. doi: 10.1126/science.aar7191.
840	38.	Edger PP, Smith R, McKain MR, Cooley AM, Vallejo-Marin M, Yuan Y, et al. Subgenome
841		dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally
842		established neo-allopolyploid monkeyflower. Plant Cell. 2017;29: 2150-2167.
843	39.	Freeling M. Bias in plant gene content following different sorts of duplication: Tandem,
844		whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 2009;60: 433-453.
845	40.	Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, et al. Coexpression
846		tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell
847		Environ. 2009;32: 1633–1651.
848	41.	He F, Maslov S. Pan- and core- network analysis of co-expression genes in a model plant. Sci
849		Rep. 2016;6: 38956. DOI: 10.1038/srep38956.

42. Krishnan A, Gupta C, Ambavaram MMR, Pereira A. RECoN: Rice Environment

- 851 Coexpression Network for Systems Level Analysis of Abiotic-Stress Response. Front. Plant
 852 Sci. 2017;8: 1640. doi: 10.3389/fpls.2017.01640.
- 43. Ma X, Zhao H, Xu W, You Q, Yan H, Gao Z, Su Z. Co-expression Gene Network Analysis
- and Functional Module Identification in Bamboo Growth and Development. Front. Genet.
- 855 2018;9: 574. doi: 10.3389/fgene.2018.00574.
- 44. Liu W, Lin L, Zhang Z, Liu S, Gao K, Lv Y, Tao H, He H. Gene co-expression network
 analysis identifies trait-related modules in Arabidopsis thaliana. Planta. 2019;249: 1487.
- 858 https://doi.org/10.1007/s00425-019-03102-9.
- 45. Yu H, Jiao B, Lu L, Wang P, Chen S, Liang C, et al. NetMiner-an ensemble pipeline for
- building genome-wide and high-quality gene coexpression network using massive-scale

861 RNA-seq. PLoS ONE. 2018;13(2): e0192613. https://doi.org/10.1371/journal.pone.0192613.

- 46. Tan M, Cheng D, Yang Y, Zhang G, Qin M, Chen J, et al. Co-expression network analysis of
 the transcriptomes of rice roots exposed to various cadmium stresses reveals universal
 cadmium-responsive genes. BMC Plant Biol. 2017;17: 194. https://doi.org/10.1186/s12870017-1143-y
- 000 017 1115 y
- 47. Aya K, Suzuki G, Suwabe K, Hobo T, Takahashi H, Shiono K, et al. Comprehensive Network
 Analysis of Anther-Expressed Genes in Rice by the Combination of 33 Laser Microdissection
 and 143 Spatiotemporal Microarrays. PLoS ONE. 2011;6(10): e26162. doi:
- 869 10.1371/journal.pone.0026162.
- 870 48. Silva AT, Ribone PA, Chan RL, Ligterink W, Hilhorst HW. A predictive co-expression
 871 network identifies novel genes controlling the seed-to-seedling phase transition
- in Arabidopsis thaliana. Plant Physiol. 2016;170: 2218–2231. doi: 10.1104/pp.15.01704.
- 49. Costa MC, Righetti K, Nijveen H, Yazdanpanah F, Ligterink W, Buitink J, et al. A gene co-
- 874 expression network predicts functional genes controlling the re-establishment of desiccation
- tolerance in germinated Arabidopsis thaliana seeds. Planta. 2015;242: 435-449. doi:
- 876 10.1007/s00425-015-2283-7

877	50.	Borrill P, Ramirez-Gonzalez R, Uauy C. expVIP: A customisable RNA-seq data analysis and
878		visualization platform. Plant Physiol. 2016;170: 2172-2186. doi: 10.1104/ pp.15.01667.
879	51.	Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis.
880		BMC Bioinformatics. 2008;9: 559. doi: 10.1186/1471-2105-9-559.
881	52.	Langfelder P, Horvath S. Fast R Functions for Robust Correlations and Hierarchical
882		Clustering. J Stat Softw. 2012;46: 11, 1-17. URL http://www.jstatsoft.org/v46/i11/.
883	53.	Ji LH, Langridge P. An early meiosis cDNA clone from wheat. Mol. Gen. Genet. 1994;243:
884		17-23.
885	54.	Boden SA, Shadiac N, Tucker EJ, Langridge P, Able JA. Expression and functional analysis
886		of TaASY1 during meiosis of bread wheat (Triticum aestivum). BMC Mol. Biol. 2007;8: 65.
887		http://www.biomedcentral.com/1471-2199/8/65.
888	55.	Boden SA, Langridge P, Spangenberg G, Able JA. TaASY1 promotes homologous
889		chromosome interactions and is affected by deletion of Ph1. Plant J. 2009;57: 487-497. doi:
890		10.1111/j.1365-313X.2008.03701.x
891	56.	Lloyd AH, Milligan SA, Langridge P, Able JA. TaMSH7: A cereal mismatch repair gene that
892		affects fertility in transgenic barley (Hordeum vulgare L.). BMC Plant Biol. 2007;7: 67.
893		doi:10.1186/1471-2229-7-67
894	57.	Khoo KHP, Jolly HR, Able JA. The RAD51 gene family in bread wheat is highly conserved
895		across eukaryotes, with RAD51A1 upregulated during early meiosis. Funct Plant Biol
896		2008;35: 1267-1277.
897	58.	Devisetty UK, Mayes K, Mayes S. The RAD51 and DMC1 homoeologous genes of bread
898		wheat: cloning, molecular characterization and expression analysis. BMC Res Notes 2010;3:
899		245.
900	59.	Khoo KHP, Able AJ, Able JA. Poor Homologous Synapsis 1 Interacts with Chromatin but
901		Does Not Colocalise with ASYnapsis 1 during Early Meiosis in Bread Wheat. Int J Plant
902		Genomics. 2012;23: 514398. DOI: 10.1155/2012/514398.

903	60.	Gardiner L-J, Wingen LU, Bailey P, Joynson R, Brabbs T, Wright J, et al. Analysis of the
904		recombination landscape of hexaploid bread wheat reveals genes controlling recombination
905		and gene conversion frequency. Genome Biol. 2019;20: 6. https://doi.org/10.1186/s13059-
906		019-1675-6
907	61.	Caryl AP, Armstrong SJ, Jones GH, Franklin FC. A homologue of the yeast HOP1 gene is
908		inactivated in the Arabidopsis meiotic mutant asy1. Chromosoma. 2000;109: 62-71. doi:
909		10.1007/s004120050413.
910	62.	Armstrong SJ, Caryl AP, Jones GH, Franklin FCH. Asy1, a protein required for meiotic
911		chromosome synapsis, localizes to axisassociated chromatin in Arabidopsis and Brassica. J.
912		Cell Sci. 2002;115: 3645-3655. doi: 10.1242/jcs.00048.
913	63.	Klimyuk VI, Jones JDG. AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene:
914		characterization, transposon-induced allelic variation and meiosis-associated expression. Plant
915		J. 1997;11: 1-14. doi: 10.1046/j.1365-313X.1997.11010001.x.
916	64.	Trapp O, Seeliger K, Puchta H. Homologs of breast cancer genes in plants. Front. Plant Sci.
917		2011;2: 19. doi: 10.3389/ fpls.2011.00019.
918	65.	Lam WS, Yang X, Makaroff CA. Characterization of Arabidopsis thaliana SMC1 and SMC3:
919		evidence that AtSMC3 may function beyond chromosome cohesion. J Cell Sci 2005;118:
920		3037-3048. doi:10.1242/jcs.02443.
921	66.	Gonzalo A, Lucas M-O, Charpentier C, Sandmann G, Lloyd A, Jenczewski E. Reducing
922		MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in
923		Brassica napus. Nature commun. 2019;10:2354. https://doi.org/10.1038/s41467-019-10010-9.
924	67.	Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. Draft genome of the wheat A-
925		genome progenitor Triticum urartu. Nature. 2013; 496(7443): 87-90. doi:
926		10.1038/nature11997
927	68.	Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, et al. Genome sequence of the
928		progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551: 498-502. doi:
929		10.1038/nature24486.

930	69.	Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, et al. Wild emmer genome
931		architecture and diversity elucidate wheat evolution and domestication. Science.
932		2017;357(6346): 93-97. DOI: 10.1126/science.aan0032.
933	70.	Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, The International Wheat Genome
934		Sequencing Consortium, et al. Ancient hybridizations among the ancestral genomes of bread
935		wheat. Science. 2014;345(6194): 1250092. DOI: 10.1126/science.1250092.
936	71.	Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH. Multiple rounds of speciation
937		associated with reciprocal gene loss in polyploid yeasts. Nature. 2006;440: 341-345.
938	72.	Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, et al. Structural and functional
939		partitioning of bread wheat chromosome 3B. Science. 2014;345: 1249721. doi:
940		10.1126/science.1249721
941	73.	Akhunov ED, Akhunova AR, Linkiewicz AM, Dubcovsky J, Hummel D, Lazo G, et
942		al. Synteny perturbations between wheat homoeologous chromosomes caused by locus
943		duplications and deletions correlate with recombination rates. Proc Natl Acad Sci
944		USA. 2003;100: 10836-10841. doi:10.1073/pnas.1934431100.
945	74.	Schreiber AW, Hayden MJ, Kerrie L Forrest KL, Kong SL, Langridge P, Baumann U.
946		Transcriptome-scale homoeolog-specific transcript assemblies of bread wheat. BMC
947		Genomics. 2012;13: 492. doi: 10.1186/1471-2164-13-492.
948	75.	Chelysheva L, Gendrot G, Vezon D, Doutriaux MP, Mercier R, Grelon M. Zip4/Spo22 is
949		required for class I CO formation but not for synapsis completion in Arabidopsis thaliana.
950		PLoS Genet. 2007;3(5): e83. doi:10.1371/journal.pgen.0030083.
951	76.	Shen Y, Tang D, Wang K, Wang M, Huang J, Luo W, et al. ZIP4 in homologous
952		chromosome synapsis and crossover formation in rice meiosis. J of Cell Sci. 2012;125: 2581-
953		2591.
954	77.	De Muyt A, Pyatnitskaya A, Andréani J, Ranjha L, Ramus C, Laureau R, et al. A meiotic
955		XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote
956		crossover formation. Genes Dev. 2018; DOI: 10.1101/gad.308510.117

- 957 78. Wang L, Xu Z, Khawar MB, Chao Liu C, Li W. The histone codes for meiosis.
- 958 Reproduction. 2017;154: R65–R79.
- 959 79. Oliver C, Pradillo M, Corredor E, Cuñado N. The dynamics of histone H3
- 960 modifications is species-specific in plant meiosis. Planta. 2013;238(1): 23-33. doi:
- 961 10.1007/s00425-013-1885-1.
- 80. Maleki S & Keeney S 2004 Modifying histones and initiating meiotic recombination. Cell
 118 404–406. (doi:10.1016/j.cell.2004.08.008)
- 964 81. Hu JL, Donahue G, Dorsey J, Govin J, Yuan ZF, Garcia BA, et al. H4K44 acetylation
 965 facilitates chromatin accessibility during meiosis. Cell Reports. 2015;13: 1772–1780.
 966 doi:10.1016/j.celrep.2015.10.070.
- 967 82. Luense LJ, Wang XS, Schon SB, Weller AH, Shiao EL, Bryant JM, et al. Comprehensive
 968 analysis of histone post-translational modifications in mouse and human male germ cells.
 969 Epigenetics and Chromatin. 2016;9. doi:10.1186/s13072-016-0072-6.
- 83. Xu Z, Song Z, Li G, Tu H, Liu W, Liu Y, et al. H2B ubiquitination regulates meiotic
 recombination by promoting chromatin relaxation. Nucleic Acids Res. 2016;44: 9681–9697.
 doi:10.1093/nar/gkw652.
- 973 84. Pawlowski WP, Golubovskaya IN, Timofejeva L, Robert B, Meeley RB, William F, et al.
- 974 Coordination of Meiotic Recombination, Pairing, and Synapsis by PHS1. Science.
- 975 2004;303(5654): 89-92. DOI: 10.1126/science.1091110.
- 976 85. Ronceret A, Doutriaux MP, Golubovskaya IN, Pawlowski WP. PHS1 regulates meiotic
- 977 recombination and homologous chromosome pairing by controlling the transport of RAD50
- 978 to the nucleus. Proc Natl Acad Sci USA. 2009;106(47): 20121-20126.
- 86. Alonso-Martin, S, Rochat A, Mademtzoglou D, Morais J, de Reynies A, Aurade F, et al. Gene
- 980 expression profiling of muscle stem cells identifies novel regulators of postnatal myogenesis.
- 981 Front. Cell Dev. Biol. 2016;4: 58-58.

982	87.	Antosch M, Schubert V, Holzinger P, Houben A, Grasser KD. Mitotic lifecycle of
983		chromosomal 3xHMG-box proteins and the role of their N-terminal domain in the association
984		with rDNA loci and proteolysis. New Phytologist. 2015;208: 1067-1077.
985	88.	Pedersen DS, Coppens F, Ma L, Antosch M, Marktl B, Merkle T, et al. The plant-specific
986		family of DNA-binding proteins containing three HMG-box domains interacts with mitotic
987		and meiotic chromosomes. New Phytologist. 2011;192: 577-589.
988	89.	Di Agostino S, Fedele M, Chieffi P, Fusco A, Rossi P, Geremia R, Sette C. Phosphorylation
989		of high-mobility group protein A2 by Nek2 kinase during the first meiotic division in mouse
990		spermatocytes. Mol Biol Cell. 2004;15: 1224-1232.
991	90.	Tessari MA, Gostissa M, Altamura S, Sgarra R, Rustighi A, Salvagno C, et al. Transcriptional
992		activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol Cell
993		Biol. 2003;23: 9104-9116.
994	91.	Akiyama T, Kim JM, Nagata M, Aoki F. Regulation of histone acetylation during meiotic
995		maturation in mouse oocytes. Mol Reprod Dev. 2004;69: 222-227.
996	92.	Wang Q, Yin S, Ai JS, Liang CG, Hou Y, Chen DY, et al. Histone deacetylation is required
997		for orderly meiosis. Cell Cycle. 2006;5: 766-74.
998	93.	Magnaghi-Jaulin L, Jaulin C. Histone deacetylase activity is necessary for chromosome
999		condensation during meiotic maturation in Xenopus laevis. Chromosome Res. 2006;14: 319-
1000		332. DOI: 10.1007/s10577-006-1049-2.
1001	94.	. Getun IV, Wu Z, Fallahi M, Ouizem S, Liu Q, Li W, et al. Functional roles of acetylated
1002		histone marks at mouse meiotic recombination hot spots. Mol Cell Biol. 2017;37: e00942-15.
1003		https:// doi.org/10.1128/MCB.00942-15.
1004	95.	Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins
1005		by F-box proteins. Int J Biochem Cell Biol. 2016;73: 99-110.
1006	96.	Bolcun-Filas E, Bannister LA, Barash A, Schimenti KJ, Suzanne A. Hartford SA, et al. A-
1007		MYB (MYBL1) transcription factor is a master regulator of male meiosis.
1008		Development. 2011;138: 3319-3330. doi: 10.1242/dev.067645.

1009	97. Yan	Z, Fan D, Meng Q, Yang J, Zhao W, Guo F, et al. Transcription factor ZFP38 is essential
1010	for n	neiosis prophase I in male mice. Reproduction. 2016;152(5): 431-7. doi: 10.1530/REP-
1011	16-02	225.
1012	98. Xu L	., Ajimura M, Padmore R, Klein C, Kleckner N. NDT80, a meiosis-specific gene
1013	requi	ired for exit from pachytene in Saccharomyces cerevisiae. Mol Cell Biol. 1995;15: 6572-
1014	6581	
1015	99. Hori	e S, Watanabe Y, Tanaka K, Nishiwaki S, Fujioka H, Abe H, et al.
1016	The	Schizosaccharomyces pombe mei4 + Gene Encodes a Meiosis-Specific Transcription
1017	Facto	or Containing a forkhead DNA-Binding Domain. Mol Cell Biol. 1998;18(4): 2118-29.
1018	100.	Pierce M, Benjamin KR, Montano SP, Georgiadis MM, Winter E, Vershon AK.
1019	Sum	1 and Ndt80 proteins compete for binding to middle sporulation element sequences that
1020	contr	rol meiotic gene expression. Mol Cell Biol. 2003;23: 4814-4825.
1021	101.	Beaudoin J, Ioannoni R, Normant V, Labbé S. A role for the transcription factor
1022	Mca	1 in activating the meiosis-specific copper transporter Mfc1. PLoS ONE. 2018;13(8):
1023	e020	1861. https://doi.org/10.1371/journal.pone.0201861
1024	102.	Zhang J, Yan G, Tian M, Ma Y, Xiong J, Miao W. A DP-like transcription factor
1025	prote	in interacts with E2fl1 to regulate meiosis in Tetrahymena thermophila. Cell
1026	Cycl	e. 2018;17(5): 634-642. doi: 10.1080/15384101.2018.1431595.
1027	103.	Zwicker J, Liu N, Engeland K, Lucibello FC, Müller R. Cell cycle regulation of E2F
1028	site o	occupation in vivo. Science. 1996;271(5255): 1595-7.
1029	104.	Zheng N, Fraenkel E, Pabo CO, Pavletich NP. Structural basis of DNA recognition
1030	by th	he heterodimeric cell cycle transcription factor E2F-DP. Genes Dev. 1999;13(6): 666-74.
1031	105.	Sozzani R, Maggio C. Varotto S, Canova S, Bergounioux C, Albani D, Cella F.
1032	Inter	play between Arabidopsis Activating Factors E2Fb and E2Fa in Cell Cycle Progression
1033	and l	Development. Plant Physiol. 2006;140(4): 1355-1366.
1034	106.	Hollenhorst PC, Bose ME, Mielke MR, Müller U, Fox CA. Forkhead Genes in
1035	Tran	scriptional Silencing, Cell Morphology and the Cell Cycle: Overlapping and Distinct

1036 Functions for FKH1 and FKH2 in Saccharomyces cerevisiae. Genetics. 2000;154(4): 1533-

1037 1548

- 1038 107. Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B. Two
 1039 yeast forkhead genes regulate the cell cycle and pseudohyphal growth.
- 1040 Nature. 2000;406(6791): 90-4.
- 1041 108. Kim M, Ahn JW, Song K, Paek KH, Pai HS. Forkhead-associated Domains of the
- Tobacco NtFHA1 Transcription Activator and the Yeast Fhl1 Forkhead Transcription Factor
 Are Functionally Conserved. J Biol Chem. 2002;277: 38781-38790.
- 1044 109. Sun Z, Hsiao J, Fay DS, Stern DF. Rad53 FHA domain associated with
- 1045 phosphorylated Rad9 in the DNA damage checkpoint. Science. 1998;281: 272-274.
- 1046 110. Bashkirov VI, Bashkirova EV, Haghnazari E, Heyer WD. Direct kinase-to-kinase
 1047 signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA
- 1048 damage checkpoint kinase. Mol Cell Biol. 2003;23: 1441-1452.
- 1049 111. Palmbos PL, Wu D, Daley JM, Wilson TE. Recruitment of Saccharomyces cerevisiae
 1050 Dnl4-Lif1 complex to a double-strand break requires interactions with Yku80 and the Xrs2
- 1051 FHA domain. Genetics. 2008;180: 1809-1819.
- 1052 112. Liang J, Suhandynata RT, Zhou H. Phosphorylation of Sae2 Mediates Forkhead-
- associated (FHA) Domain-specific Interaction and Regulates Its DNA Repair Function. J Biol
 Chem. 2015;290: 10751-10763.
- 1055113.Pérez-Hidalgo L, Moreno S, San-Segundo PA. Regulation of meiotic progression by1056the meiosis-specific checkpoint kinase Mek1 in fission yeast. J of Cell Sci. 2003;116: 259-
- 1057 271.
- 1058 114. Cigliano RA, Sanseverino W, Cremona G, Consiglio FM, Conicella C. Evolution of
 1059 parallel spindles like genes in plants and highlight of unique domain architecture. BMC Evol.
 1060 Biol. 2011;11: 78. doi: 10.1186/1471-2148-11-78.
- 1061 115. Crown KN, Savytskyy OP, Malik S, Logsdon J, Williams RS, Tainer JA, Zolan
 1062 MEA. Mutation in the FHA Domain of Coprinus cinereus Nbs1 Leads to Spo11-Independent

1063	Meiotic Recombination and Chromosome Segregation. G3 (Bethesda). 2013;3(11): 1927-					
1064	1943.					
1065	116. Dukowic-Schulze S, Harris A, Li J, Sundararajan A, Mudge J, Retzel EF, et al					
1066	Comparative transcriptomics of early meiosis in Arabidopsis and maize. J. Genet.					
1067	Genomics. 2014;41: 139–152 10.1016/j.jgg.2013.11.007					
1068	117. Ma J, Skibbe DS, Fernandes J, Walbot V. Male reproductive development:					
1069	gene expression profiling of maize anther and pollen ontogeny. Genome Biol. 2008;9					
1070	R18110.1186/gb-2008-9-12-r181					
1071	118. Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, et al.					
1072	Uncovering hidden variation in polyploid wheat. PNAS, 2017;114: 6. E913-E921.					
1073	119. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a					
1074	software environment for integrated models of biomolecular interaction networks. Genome					
1075	Res. 2003;13(11): 2498-504.					
1076	120. Singh M, Goel S, Meeley RB, Dantec C, Parrinello H, Michaud C, et al. Production					
1077	of viable gametes without meiosis in maize deficient for an argonaute protein. Plant Cell.					
1078	2011;23(2): 443-58.					
1079	121. Durán-Figueroa N, Vielle-Calzada JP. Argonaute9-dependent silencing of					
1080	transposable elements in pericentromeric regions of arabidopsis. Plant Signal. Behav.					
1081	2010;5(11): 1476-79.					
1082	122. Li X, Chang Y, Xin X, Zhu C, Li X, Higgins JD, Wu C. Replication protein a2c					
1083	coupled with replication protein a1c regulates crossover formation during meiosis in rice.					
1084	Plant Cell. 2013;25(10): 3885-99.					
1085	123. Domenichini S, Raynaud C, Ni DA, Henry Y, Bergounioux C. Atmnd1-delta1 is					
1086	sensitive to gamma-irradiation and defective in meiotic dna repair. DNA Repair (Amst).					
1087	2006;5(4): 455-64.					

- 1088 124. Kerzendorfer C, Vignard J, Pedrosa-Harand A, Siwiec T, Akimcheva S, Jolivet S, et
- al. The arabidopsis thaliana mnd1 homologue plays a key role in meiotic homologous pairing,
 synapsis and recombination. J. Cell Sci. 2006;119(Pt 12): 2486-96.
- 1091 125. Hartung F, Suer S, Bergmann T, Puchta H. The role of atmus81 in dna repair and its
- 1092 genetic interaction with the helicase atrecq4a. Nucleic Acids Res. 2006;34(16): 4438-48.
- 1093 126. Higgins JD, Buckling EF, Franklin FCH, Jones GH. Expression and functional
- analysis of atmus81 in arabidopsis meiosis reveals a role in the second pathway of crossingover. Plant J. 2008;54(1): 152-62.
- 1096 127. Lu P, Wijeratne AJ, Wang Z, Copenhaver GP, Ma H. Arabidopsis ptd is required for
 1097 type i crossover formation and affects recombination frequency in two different chromosomal
 1098 regions. J. Genet. Genomics. 2014;41(3): 165-75.
- 1099 128. Wijeratne AJ, Chen C, Zhang W, Timofejeva L, Ma H. The arabidopsis thaliana
 parting dancers gene encoding a novel protein is required for normal meiotic homologous
 recombination. Mol. Biol. Cell. 2006;17(3): 1331-43.
- 1102 129. Watanabe Y, Yamamoto M. S. pombe mei2+ encodes an RNA-binding protein
- essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA
 species meiRNA. Cell. 1994;78(3): 487-98.
- 1105 130. Watanabe Y, Shinozaki-Yabana S, Chikashige Y, Hiraoka Y, Yamamoto M.
- Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic infission yeast. Nature. 1997;386: 187-190.
- 1108131.Reddy TV, Kaur J, Agashe B, Sundaresan V, Siddiqi I. The duet gene is necessary for1109chromosome organization and progression during male meiosis in arabidopsis and encodes a
- 1110phd finger protein. Development. 2003;130(24): 5975-87.
- 1111 132. Hassani-Pak K, Castellote M, Esch M, Hindle M, Lysenko A, Taubert J, Rawlings C.
- 1112 Developing integrated crop knowledge networks to advance candidate gene discovery.
- 1113 Applied & Translational Genomics. 2016;11: 18-26.
- 1114 <u>https://doi.org/10.1016/j.atg.2016.10.003</u>.

1115	133.	Hassani-Pak K, KnetMiner - An integrated data platform for gene mining and				
1116	biological knowledge discovery [dissertation]. Bielefeld: Universität Bielefeld; 2017.					
1117	134.	Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq				
1118	quantification. Nat. Biotechnol. 2016;34: 525-527. doi: 10.1038/nbt.3519.					
1119	135.	Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion				
1120	for RNA-seq data with DESeq2. Genome Biol. 2014;15: 550. doi: 10.1186/s13059-014-0550					
1121	8					
1122	136.	Zhang B, Horvath S. A General Framework for Weighted Gene Co-Expression				
1123	Network Analysis. Stat Appl Genet Mol Biol. 2005;4: Article 17. doi: 10.2202/1544-					
1124	6115.1128.					
1125	137.	Benjamini Y, Yekutieli D. The Control of the False Discovery Rate in Multiple				
1126	Test	ing under Dependency. Ann. Stat. 2001;29: 1165-1188.				
1127	138.	Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-				
1128	seq:	accounting for selection bias. Genome Biol. 2010;11: R14.				
1129	139.	Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and				
1130	Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B					
1131	(Met	thodological), 1995:57(1): 289-300.				
1132	140.	Mauri M, Elli T, Caviglia G, Uboldi G, Azzi M. RAWGraphs: A Visualisation				
1133	Platf	Form to Create Open Outputs. CHItaly '17. 2017;				
1134	https	s://doi.org/10.1145/3125571.3125585. [Software] Available at: http://app.rawgraphs.io/.				
1135	141.	Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E.				
1136	Ense	emblComparaGeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates.				
1137	Gene	ome Research. Cold Spring Harbor Laboratory Press. 2009;19: 327-335.				
1138	142.	.Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, et al. Rice Annotation				
1139	Proje	ect Database (RAP-DB): an integrative and interactive database for rice genomics. Plant				
1140	Cell Physiol. 2013;54(2): e6. doi: 10.1093/pcp/pcs183.					

- 1141 143. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S,
- et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation
- sequence and optical map data. Rice (N Y). 2013;6(1): 4. doi: 10.1186/1939-8433-6-4.
- 1144 144. Waese J, Fan J, Pasha A, Yu H, Fucile G, Shi R, et al. ePlant: Visualizing and
- 1145 Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology. Plant Cell.
- 1146 2017;29: 1806-1821. DOI: https://doi.org/10.1105/tpc.17.00073.
- 1147 145. Korf I, Yandell M, Bedell J. BLAST: An Essential Guide to the Basic Local
 1148 Alignment Search Tool. O'Reilly. 2003;360. ISBN:0-596-00299-8.
- 1149146.Hamilton N. ggtern: An extension to 'ggplot2', for the creation of ternary diagrams. R
- 1150 package version 2.2.1 [software]. 2016. Available from: https://CRAN.R-
- 1151 project.org/package=ggtern.
- 1152
- 1153

1154 Supporting information

1155 S1 Fig. Homeolog expression patterns of expressed triads in hexaploid wheat. Homeolog

1156 expression pattern was calculated for 19,801 triads (59,403 genes) across 8 tissue types according to 1157 published criteria [36], where triad defined as expressed when the sum of the A, B, and D subgenome 1158 homoeologs was > 0.5 TPM. (A) Proportion of triads in each homoeolog expression pattern across the 1159 8 tissues. *n* is number of expressed triads. (B) Ternary plot showing relative expression abundance of 1160 14,837 expressed triads (44,511 genes) in the meiotic anther tissue. Each circle represents a gene triad 1161 with an A, B, and D coordinate consisting of the relative contribution of each homeolog to the overall 1162 triad expression. Triads in vertices correspond to single-subgenome-dominant categories, whereas 1163 triads close to edges and between vertices correspond to suppressed categories. Box plots indicate the 1164 relative contribution of each subgenome based on triad assignment to the seven categories. 1165 Percentages between brackets indicate the percentage of triad number in each category to the total

number of triads.

S2 Fig. Proportion of genes in each homeologs number category. Expressed genes across 8 tissues
were assigned to four categories (triads, duplets, monads and others). *n* indicates number of expressed
genes.

1170 **S3 Fig. Module-tissue relationship.** Each row corresponds to a module; each column corresponds to 1171 a tissue type; Each cell contains the correlation value (r) and, in brackets, its corresponding FDR 1172 adjusted *P* value. *n* indicates number of samples. Only modules that have correlation value > 0.5 are 1173 shown.

- 1174 S4 Fig. Enriched GO terms in the meiosis-related and other tissue-related modules. Top 5 GO
- 1175 terms are shown for each module. Black bars indicate the number of genes in the GO term.

1176 S1 Table. Assignment of hexaploid wheat HC genes to four groups based on their copy number.

- 1177 *n* is number of samples per tissue type.
- 1178 S2 Table. The 130 RNA-Seq samples included in the co-expression analysis. The samples belong
- to eight different types of tissues (Intermed.tissue).
- 1180 S3 Table. Number of genes and gene IDs in the modules identified using WGCNA.
- 1181 S4 Table. Enriched GO terms in all modules including the three meiosis-related modules.
- 1182 S5 Table. Gene IDs of wheat orthologs of known meiotic genes in other plants species.
- 1183 S6 Table. Meiotic genes and their orthologs in wheat according to EnsemblPlants prediction.
- 1184 S7 Table. List of wheat genes with meiotic GO term(s)
- 1185 S8 Table. Fishers exact test and FDR adjusted p-value for "Orthologs" and "Meiotic GO"
- 1186 genes enrichment in modules.
- 1187 S9 Table. Assignment of wheat orthologs of known meiotic genes to the meiosis-related modules.
- 1188 S10 Table. Expression pattern of wheat orthologs of meiotic genes that were not assigned to the
- 1189 meiosis-related modules. Average expression values (TPMs) is shown for the 8 tissue types.

1190 S11 Table. Copy number of orthologs of meiotic gene in wheat and its ancestors. MR indicates

- wheat orthologs of known meiotic recombination genes. ZMM indicates orthologs of ZMM pathwaygenes.
- 1193 S12 Table. Assignment of the genes in triads to the co-expression network modules. Genes
- 1194 belong to Meiotic, Non-meiotic, Leaves, Grain and Roots modules and "Orthologs & Meiotic GO"
- 1195 gene sets are indicated in the table. Balance as a gene category refer to the genes belong to balanced
- triads.
- 1197 S13 Table. HC genes distribution across wheat genomic compartment.
- 1198 S14 Table. List of the core histone and histone modification genes identified in the wheat
- **genome.** All wheat genes annotated as core histones (Fun.annotation) or having GO terms related to
- 1200 histone modification (GO) were selected.
- 1201 S15 Table. List of transcription factors in the meiosis-related modules 2, 28 and 4.
- 1202 S16 Table. Fishers exact test for TF families enrichment in modules.
- 1203 S17 Table. Literature review of the functionally characterized meiotic genes in model plant
 1204 species.
- 1205 S18 Table. Defining the expressed triads in meiotic anther tissue. Triad is considered as expressed
- 1206 when one of its homeologs is expressed according to the criterion used in our WGCNA analysis.
- 1207 S19 Table. Gene category assignment based on the sub-genome of origin and triad description.
- 1208 S1 Text. R script used to summarize expression values (counts) from transcript to gene level.
- 1209 S2 Text. R script used to combine samples from all studies and normalize counts for WGCNA
 1210 analysis.
- 1211 S3 Text. R script used to calculate the soft power threshold for the WGCNA analysis.
- 1212 S4. Text. R script used to run the WGCNA analysis and MEs calculation and plotting.

- 1213 S5. Text. R scripts used to calculate module-tissue correlation.
- 1214 S6. Text. R scripts used for enrichment analysis of GO and GO slim terms in the modules.
- 1215 S7. Text. R scripts used for enrichment analysis of "Orthologs" and "Meiotic GO" genes in the
- 1216 modules.
- 1217 S8 Text: R script used to calculate hub genes for each module. Top 10 hub genes were selected for
- 1218 each module.
- 1219 S9. Text. R script used for the assessment of TF families in modules.
- 1220 S10 Text. R script used to calculate homeolog expression patterns in triads.
- 1221 S11. Text. R script used to export meiosis-related modules data for visualisation.

Meiotic anther (<i>n</i> = 17)		Floral organ (n = 10)	s Grain (<i>n</i> = 37)	Leaves (<i>n</i> = 21)	Roots (<i>n</i> = 20)	Shoots (<i>n</i> = 6)	Spike (<i>n</i> = 12)	Stem (<i>n</i> = 7)	_
ME2	0.61 (9e-13)	0.086 (1)	-0.38 (3e-04)	-0.3 (0.01)	0.28 (0.03)	-0.13 (1)	-0.07 (1)	0.011 (1)	1
ME11	0.68 (1e−16)	0.38 (3e-04)	0.06 (1)	-0.42 (3e-05)	-0.43 (2e-05)	-0.23 (0.2)	0.11 (1)	-0.15 (1)	- 0.5
ME25	0.65 (9e−15)	0.41 (4e−05)	-0.48 (4e-07)	-0.2 (0.4)	-0.29 (0.02)	-0.14 (1)	0.31 (0.008)	0.016 (1)	-0
ME28	0.52 (2e-08)	0.15 (1)	0.24 (0.1)	−0.57 (8e−11)	-0.037 (1)	-0.26 (0.06)	-0.088 (1)	-0.077 (1)	0.5
ME41	0.73 (3e−20)	0.19 (0.4)	0.057 (1)	-0.37 (4e-04)	-0.28 (0.02)	-0.22 (0.2)	-0.031 (1)	-0.12 (1)	□□ 1

TaMis ^{12a} ∎	
TaMUS ⁸¹	
TaEME ^{1B}	
TaCENH ³	
TaSMC ²	
TaBRK ¹	Sister kinetochore association at meiosis
TaSGO ¹	Class II CO pathway
TaMEI ¹	olas il oo patilway
TaCDC ⁴⁵	Chromosome segregation
TaCDKA ¹	Centromeric cohesion protection
TaPS ¹	Entry into meiosis
Таторза	
TaCYCA ¹	Meiotic cell cycle control
TaREC ⁸	
TaSYN ³	DNA repair
TaRMI ¹	
TaETG ¹	Sister chromatid conesion
TaRAD ^{51C}	
TaRAD ^{51B}	DSB repair
TaESP	
TaMSH ⁷ ■	Auti-CO activity
TaH2AX	Anti co doimy
	Synaptonemal complex
TaMSH ²	Class I CO pathway
TaFANCM	DSB formation
TaPCH ²	
TaASY ³	
TaSHOC ¹	
TaRECQ ^{4A}	
TaSpo ¹¹⁻³	
	TaMis ^{12a} TaMUS ⁸¹ TaEME ^{1B} TaCENH ³ TaSMC ² TaBRK ¹ TaSGO ¹ TaMEI ¹ TaCDC ⁴⁵ TaCDKA ¹ TaCDC ⁴⁵ TaCDKA ¹ TaPS ¹ TaTOP ^{3A} TaCYCA ¹ TaREC ⁸ TaSYN ³ TaRMI ¹ TaETG ¹ TaRAD ^{51C} TaRAD ^{51B} TaESP TaMSH ⁷ TaH ^{2AX} TaMSH ² TaFANCM TaPCH ² TaASY ³ TaSHOC ¹ TaRECQ ^{4A} TaFLIP TaSpo ¹¹⁻³

