
Estimates of genetic load in small populations suggest extensive purging of 1 

deleterious alleles  2 

Tom van der Valk1*, Marc de Manuel2, Tomas Marques-Bonet2,3,4,5, Katerina Guschanski1* 3 

1Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala 4 

University, Norbyvägen 18D, 752 36, Uppsala, Sweden 5 

2Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain 6 

3Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, 7 

Barcelona, Spain 8 

4CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology 9 

(BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain 10 

5Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-11 

ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain 12 

 13 

*Corresponding authors: tom.vandervalk@ebc.uu.se (T.v.d.V.); katerina.guschanski@ebc.uu.se (K.G.)  14 

 15 

Abstract: Declining populations are expected to experience negative genetic consequences of 16 

inbreeding, which over time can drive them to extinction. Yet, many species have survived in small 17 

populations for thousands of generations without apparent fitness effects, possibly due to genetic 18 

purging of partially deleterious recessive alleles in inbred populations. We estimate the abundance of 19 

deleterious alleles in a range of mammals and find that conversely to current conservation thinking 20 

species with historically small population size and low genetic diversity generally have lower genetic 21 

load compared to species with large population sizes. Rapid population declines will thus dis-22 

proportionally affect species with high diversity, as they carry many deleterious alleles that can reach 23 

fixation before being removed by genetic purging.  24 
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Main Text: Small inbred populations of wild animals frequently show lower survival, less efficient 25 

mating and lower reproduction than large outbred populations (1), as consequence of high levels of 26 

genome-wide homozygosity, including at loci with partially recessive deleterious alleles (2). The 27 

negative fitness consequences of inbreeding have also been directly shown on the genomic level (3). 28 

Nevertheless, many animals have survived in small populations for thousands of generations without 29 

apparent strong negative fitness effects. A suggested explanation for this phenomenon is genetic 30 

purging — the increased efficiency of purifying selection at removing partially recessive deleterious 31 

alleles in inbred populations (4). Whereas in large populations partially recessive deleterious alleles 32 

are mostly found at low frequency, these alleles can drift to high frequency in small populations (5). 33 

Mating between related individuals subsequently brings recessive alleles in a homozygous state, 34 

exposing them to purifying selection and thus leading to their more efficient removal from small 35 

populations over time (5). Although genetic purging has been shown in several animal populations (6–36 

9), it remains largely unknown to what extent it represents a central evolutionary force. As wild animal 37 

populations across the globe experience rapid human-caused declines (10), inbreeding and the 38 

resulting genetic consequences can directly contribute to their extinction (11). Understanding under 39 

what circumstances genetic purging acts and how common it is among endangered populations could 40 

therefore help to identify species facing the most severe genetic consequences of population declines.  41 

To address this issue, we used genomic data to estimate the strength of genetic purging experienced 42 

by wild mammalian populations, as mammals are among the most affected by human-induced 43 

population declines (10). To identify deleterious alleles, we analysed evolutionary genomic 44 

constraints, which are accurate predictors for the fitness consequences of mutations (12). Genomic 45 

sites that remained conserved during millions of years of evolution are expected to be functionally 46 

important, and therefore mutations at such sites can serve as a proxy for genetic load – the reduction 47 

of population mean fitness due to genetic factors (13, 14).  Using a panel of 100 mammalian reference 48 

genomes, comprising all major mammalian lineages, we calculated the genomic evolutionary rate 49 

profiling (GERP) scores as the number of rejected substitutions, i.e. substitutions that would have 50 

occurred if the focal genomic element was neutral but did not occur because it has been under 51 

functional constrains (15) (Supplementary material). Mutations at highly conserved genomic sites 52 

(high GERP-scores) are likely deleterious, whereas those at low GERP-scores are expected to be mostly 53 

neutral. We then estimated individual relative genetic load in 670 individuals belonging to 42 54 

mammalian species, using publicly available whole genome re-sequencing data, as the genome-wide 55 

average GERP-score for the derived alleles (Figure 1) (Supplementary material).  56 
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 57 

Fig. 1. Relative genetic load in mammals. (A) Genetic load is depicted as the average GERP-score of 58 

the derived allele for each individual within a species. Several closely related species (Sumatran and 59 

Bornean orang-utans, gibbons, vervet monkeys, and eastern and western gorillas) are grouped 60 

together for clarity (depicted by the asterisks). (B) Relative genetic load is not explained by 61 

conservation status. DD: data deficient, LC: least concern, NT: near threatened, VU: vulnerable, EN: 62 
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endangered, CR: critically endangered. (C) Relative genetic load is negatively correlated with genetic 63 

diversity. Species with recurrent bottlenecks and/or small population size show low load despite high 64 

inbreeding (e.g. cheetah and island foxes). In contrast, some highly inbred species, which experienced 65 

recent dramatic population decline show disproportionally high genetic load (e.g. Iberian lynx). (D) 66 

Genetic load is generally higher in species with large census population size (species with population 67 

size above 1 million are grouped together for clarity). However, some species with historically large 68 

population sizes and recent strong declines (e.g. Sumatran orangutan, Iberian Lynx) show relatively 69 

high genetic load. Each grey dot represents a species in (B) and (D) and an individual genome in (C). 70 

Dotted lines depict the best fitting linear intercept. 71 

 72 

As the genome sequences of individuals belonging to the same species are highly similar, especially at 73 

the conserved sites, within-species differences in genetic load are generally based on few divergent 74 

alleles. We indeed observed few intraspecific differences, suggesting that our measure of genetic load 75 

reflects long-term evolutionary processes (e.g. over hundreds of generations) (Table S1, Fig. 1A). We 76 

found that estimates of genetic load differ strongly among the studied mammals (Fig. 1A) and do not 77 

correlate with species conservation status (Fig. 1B). We also did not detect a strong phylogenetic signal 78 

in genetic load, as closely related species (e.g. orang-utan and human, ~14-16 My divergence) differ 79 

strongly in their estimates of genetic load, whereas some highly divergent species (e.g. African 80 

elephant and great roundleaf bat, ~99-109 My divergence) (16) show comparable genetic load scores 81 

(Fig. 1A).  82 

We observed a weak inverse relationship between genetic load and inbreeding (Fig. 1C). Species with 83 

low genetic load, i.e. relatively few derived alleles at putatively deleterious sites, have high proportion 84 

of their genome in runs of homozygosity (e.g. snow leopard, tiger, island fox, wolves, cheetah, Fig. 1C, 85 

Table S1). Conversely, species with high genetic load frequently have a low genome-wide rate of 86 

homozygosity (e.g. house mouse, brown rat, Himalayan rat, European rabbit, vervet monkey, olive 87 

baboon, rhesus macaque, Table S1). Large changes in levels of inbreeding can occur within only a few 88 

generations, which is also exemplified by the high degree of intra-species variation in inbreeding (±SD 89 

27%) compared to genetic load (±SD 1.3%), a processes that takes place over hundreds of generations 90 

(Table S1). Individual measures of genetic load are therefore overall only weakly correlated with 91 

individual measures of inbreeding (R=0.17, Fig. 1C).  92 

Contrary to the prevailing notion that small populations have high genetic load (17), we observe a 93 

positive relationship between relative genetic load and population size (Fig. 1D, Table S1).  Generally, 94 

species with small population size have lower genetic load than species with large population sizes 95 
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(Fig. 1D, Table S1), suggesting that purging of deleterious alleles can be an important evolutionary 96 

force. However, we observe relatively high genetic load in several species with historically large 97 

population sizes that have experienced dramatic recent population declines (e.g. chimpanzees, 98 

orangutans, bonobos and Iberian lynx, Fig. 1D) (18). This corroborates recent findings from  genetic 99 

simulations, which demonstrated that strong declines in population size disproportionally affect 100 

ancestrally large populations (19).  101 

As selection can only act on variation, deleterious alleles that are fixed within a population are 102 

especially problematic for long-term population viability. We thus estimated the fraction of fixed 103 

derived alleles stratified by GERP-score for all species with at least five individuals in our dataset (Fig. 104 

2). Generally, species with low genetic load carry few derived alleles at high GERP-scores (e.g. cheetah, 105 

island fox, Przewalski horse) (Figs. 1, 2), however, these alleles frequently appear to be fixed in the 106 

population (Fig. 2). In contrast, although some populations with high genetic load (e.g. house mouse, 107 

brown rat, Himalayan field rat, European rabbit, vervet monkey, olive baboon, rhesus macaque) carry 108 

relatively many putatively deleterious alleles, the majority of these are at low frequency and unlikely 109 

to appear in the homozygous state in any given individual (Fig. 2). Thus, while purging removes 110 

deleterious alleles in highly inbred species, some deleterious alleles nonetheless reach fixation, which 111 

can subsequently lead to negative fitness consequences without the opportunity for additional 112 

genetic purging. This could also explain why inbreeding depression has been reported in the cheetah 113 

and (Swedish) wolves despite the relatively low overall genetic load (20, 21) . Taken together, these 114 

observation are especially worrying for genetically diverse populations that experience rapid 115 

population declines, as we show that species with high genetic diversity generally carry relatively many 116 

deleterious alleles and thus a high proportion of these could reach fixation before genetic purging can 117 

act (see also 19). 118 

 119 
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 120 

Fig. 2. Fixation of derived alleles. Species are ranked by average GERP-score from the lowest (at the 121 

top of the graph) to highest (bottom of the graph). Circle sizes represent the fraction of derived alleles 122 

that are fixed within the population for a given GERP-score bin. The colour depicts the percentage of 123 

derived alleles within a given GERP-score bin out of all derived alleles in the population. The majority 124 

of derived alleles and most fixed derived alleles are found at low GERP-scores and hence in regions of 125 

low selective constraint (Figs. S5, S6). Species with a low genetic load  carry low proportion of derived 126 

alleles at high GERP-scores many of which are fixed, whereas species with high genetic load (at the 127 

bottom of the graph) show many derived alleles at high GERP-scores that are however less often  fixed 128 

in the population.  129 

 130 

Higher genetic load of individuals from large populations calls into question the commonly employed 131 

conservation strategy of genetic rescue, the increase of genetic diversity in inbred populations through 132 

introduction of outbred individuals. Although genetic rescue can increase population fitness on the 133 

short-term (22), the long-term effects can be dramatic. This is exemplified by the collapse of the Isle 134 

Royale wolves, a population that maintained good population viability for decades. After 135 

interbreeding with a mainland wolf migrant, the Isle Royale wolves initially showed higher 136 
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reproductive success. However, subsequent inbreeding in this population eventually resulted in the 137 

increase in frequency of deleterious alleles, most likely introduced by the immigrant, and eventual 138 

marked decline of the population (23). The translocation of an outbred individual with high absolute 139 

number of deleterious alleles (even though these alleles segregate at low frequency within the 140 

population) into an inbred population that experienced genetic purging will thus often have strongly 141 

negative consequences.  We thus warn against genetic rescue strategies if they are not followed by a 142 

clearly delineated long-term plan to reduce inbreeding, for instance through repeated introductions 143 

or through use of pre-screened individuals with low genetic load.  144 
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Materials and Methods 

Single nucleotide variant calling 

We obtained published re-sequencing data for 670 mammalian genomes from 42 species 

and mapped these to the phylogenetically closest available reference genome for each species 

(Table S1) using bwa mem v0.7.17 (1). In total, 27 reference genomes were used for this task 

(Table S1). We then obtained and filtered variant calls for each individual using GATK 

HaplotypeCaller v3.8 following the “short variant discovery best-practices guidelines” including 

“hard filtering” (2). Additionally, we only kept within-species bi-allelic sites and removed all 

indels and sites below one third and above three times the genome-wide autosomal coverage (3). 

 

Genomic Evolutionary Rate Profiling 

We used the software GERP++ (Genomic Evolutionary Rate Profiling) to calculate the 

number of “rejected substitutions” (a proxy for evolutionary constrains) for each site in the same 

27 reference genomes that were used in mapping of the re-sequencing data (Table S1, Fig. S1) 

(4). GERP++ estimates the number of substitutions that would have occurred if the site was 

neutral given a multi-species sequence alignment and the divergence time estimates between the 

aligned species as provided in (5). A GERP-score, the number of rejected substitutions at a 

genomic site, is thus a measure of constraint that reflects the strength of past purifying selection 

at a particular locus. To calculate GERP-scores for a given focal reference genome, we used 100 

non-domesticated mammalian de-novo assembled genomes (Table S2, Fig. S2), as domesticated 

species might give a biased estimate of purifying selection. Each individual genome sequence 

was converted into short FASTQ reads by sliding across the genome in non-overlapping 

windows of 50 base pairs and transforming each window into a separate FASTQ read. The 
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resulting FASTQ reads from the 100 mammalian genomes were then mapped to each respective 

focal reference genome with bwa mem v0.7.17, slightly lowering the mismatch penalty (-B 3) 

and removing reads that mapped to multiple regions. Mapped reads were realigned around indels 

using GATK IndelRealigner (6, 7). Next, we converted the mapped reads into a haploid FASTA 

consensus sequence (i.e. 100 times for each reference genome), excluding all sites with depth 

above one (as such sites contain at least one mismapped read). GERP++ was then used to 

calculate the number of rejected substitutions at all sites in the reference using the concatenated 

FASTA files and the species divergence time estimates from (5) (Fig. S2), excluding the focal 

reference from the calculation. Missing bases within the concatenated alignment were treated as 

non-conserved (i.e. sites for which only few reads mapped obtain low GERP scores). We 

excluded all sites for which the focal reference FASTQ reads did not map to themselves and sites 

with negative GERP-scores (as these most likely represent errors) and subsequently scaled all 

scores to a range from 0 to 2. Sites that are identical between species and have thus been 

preserved over long evolutionary time result in high GERP-scores (Fig. S1). Thus, high GERP-

scores are only obtained for regions, where the majority of the 99 mammalian genomes (100 

minus the focal reference) map to the respective reference. 
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Validating GERP scores 

Inferring alleles with deleterious effects from genomic data of non-model organisms is 

hampered by the lack of functional information. For species with abundant medical data (e.g. 

human and mice), the deleterious effects for many (disease) variants are known, and thus the 

screening of individuals for such mutations can provide an estimate of genetic load (8). For non-

model species, tools have been developed to assist in identifying mutations affecting regulatory 

sequences or those altering protein structure (9–11). However, such tools rely on accurate genome 

annotations, which are only available for a limited number of species (12). Here, we use an 

estimate of genome conservation across evolutionary time, measured by GERP-scores, as a proxy 

for the deleteriousness of a given genomic variant. Although, this method is limited with respect 

to identifying the likely fitness consequences of each individual variant, genome-wide measures 

can provide an indication of the relative genetic load within an individual without relying on 

curated databases or genome annotations (13). More importantly for our study, it allows for 

between-species comparison as long as a reference genome for the species of interest (or a closely 

related species) is available. GERP-scores have previously been calculated for the human reference 

(hg19) based on the whole genome alignment of 44 vertebrate genomes (4). As alignment 

algorithms are designed to obtain matches between highly divergent sequences, these alignments 

allow for the identification of highly conserved regions as well as those regions evolving faster 

than expected under neutrality (4). Obtaining such alignments requires considerable computational 

resources (14), is error prone (15) and non-scalable (e.g. the analysis is limited to those species 

that are part of the alignment set). In this study we used a short-read mapping based approach for 

the GERP-score calculations (Fig. S1). This pipeline is flexible, as it requires considerably less 

computational resources than whole-genome alignment approaches and thus GERP-scores can be 
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readily calculated for a broad set of study organisms. In addition, we doubled the number of 

genomes used for the GERP-score calculation in comparison to the previously published scores 

(4), possibly improving the accuracy. Although our used method is not suitable for the 

identification of fast evolving regions (as the reads do not map to highly distinct sequences), it 

performs well for genomic regions that are conserved among species. We validated our method 

using four independent approaches. First, for the human genome, we obtained a high correlation 

between the (positive) GERP-scores previously calculated based on the 44 whole-genome 

vertebrate alignment and those obtained with our pipeline (Pearson correlation r = 0.944) (Fig. 

S3). Second, our calculated GERP-scores are 4-6 times higher within exonic regions, known to be 

highly conserved and under purifying selection in vertebrates (14), than in intronic regions (P < 

2.2 · 10-16) (Fig. S4). Third, the majority of within-population variable sites (88% ±SE 5% across 

all species) are found at the lowest 10% of GERP-scores, suggesting that low GERP-scores reflect 

neutrally evolving, variable regions, whereas variants at high GERP-scores are mostly removed 

from the populations by selection (Fig. S5). Finally, we observe that derived alleles are found in 

heterozygous state more often at high GERP-scores compared to low GERP-scores (where they 

often appear in the homozygous state, Fig. S6), suggesting that many derived alleles at high GERP-

scores are likely to be recessive deleterious. 
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Ancestral allele inference 

We called the ancestral allele at each site as the variant present in the phylogenetically 

closest outgroup. By using only one outgroup we retained the highest number of sites to be 

analysed (the more outgroups are added, the fewer sites will be mapped across all outgroups). 

We estimated the effect of using one or multiple outgroups for the ancestral allele inference by 

calling the majority allele among the mapped reads for 1 to 4 outgroups (a random base was 

choses if the allele frequency was equal) and show that this does not significantly change the 

estimates of genetic load (Fig. S7, S8), as genomic sites with high GERP-scores are generally 

conserved and thus identical among all outgroup species (Fig. S7). The derived alleles in each 

individual from the study dataset was then inferred against the called ancestral allele.  

 

Relative genetic load 

We estimated relative genetic load for each of the 670 study genomes as the average GERP-

score of all derived alleles: 

 

Where Di represents the ith derived allele and gerpi the GERP-score for the ith allele. Under 

the assumption that new mutations occur randomly with respect to the genomic region, we 

expect that in species that experienced strong purifying selection, derived alleles are found 

mostly at non-conserved sites (low GERP-scores), whereas accumulation of deleterious variants 

should result in a higher fraction of derived alleles at high GERP-scores. 
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Fixation of deleterious alleles 

The fraction of fixed derived alleles was estimated for all species for which at least five 

individuals (e.g. 10 alleles) were present in our dataset. For species with more than five 

sequenced individuals, we randomly sampled 10 alleles at each site to exclude sample size bias. 

In both cases, we calculated the fraction of fixed derived alleles stratified by GERP-score.  

 

Individual inbreeding estimates 

We used PLINK1.9 (16) to identify the fraction of the genome in runs of homozygosity 

longer than 100kb, a measure of inbreeding (FROH), for all individuals with average genome 

coverage > 3X as in (17, 18). To this end, we ran sliding windows of 50 SNPs on the VCF files, 

requiring at least one SNP per 50kb. In each individual genome, we allowed for a maximum of 

one heterozygous and five missing calls per window before we considered the ROH to be 

broken. To account for differences in genome assembly qualities we restricted our analysis to 

contigs of at least 1 megabase. 
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Fig. S1.  

Schematic representation of the GERP-score pipeline. (A) A set of 100 de-novo assembled 

genomes is sliced into non-overlapping 50 base pair FASTQ read and aligned to the same 

reference as used for the within-species variance detection (SNP calling in (B)). A consensus 

sequence is then obtained for each of these 100 mapped genomes and GERP scores are 

subsequently calculated using the GERP++ software (excluding the focal reference from the 

calculation). Sites with few mapped reads or with a large proportion of variable alleles (depicted 

with vertical black bars on the individual reads) obtain low GERP scores, whereas sites identical 

among the majority of the mapped genomes obtain high GERP-scores. (B) Individual re-

sequenced genomes from a population of a given study species are mapped to the reference 
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genome (chimpanzee in this example) and SNPs are subsequently identified for each individual 

within a population following the GATK “short variant discovery best practise” guidelines. (C) 

The genetic load of the derived alleles identified in (B) can now be estimated. Derived alleles at 

highly conserved sites are more likely to have a negative fitness effect (depicted with the red 

vertical bars in B) compared to derived alleles at less conserved sites (green vertical bars in B). 

The average GERP-score of the derived alleles is a measure of the relative genetic load carried 

by each individual (red=high genetic load, orange=intermediate genetic load, green=low genetic 

load). 
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Fig. S2. 

The 100 mammalian genomes and their divergence times estimates used for the GERP-

score calculations. The divergence times between the species were obtained using the online 

software TimeTree which gives a dated phylogeny from a list of species through automated 

literature searches (5). The genomes depicted in red were also used for the mapping of re-

sequencing data. 
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Fig. S3. 

Correlation between previously published alignment-based GERP-scores and the GERP-

scores calculated with the mapping-based approach in this study for the human genome 

(hg19). We binned all sites in the human genome by their published GERP-scores and calculated 

the average GERP-score for each bin of size 10 (black dots). Grey shaded area depicts ±1SD. 

Pearson correlation = 0.944, Spearman’s rank correlation = 0.997. Note that we transformed our 

GERP-scores on a scale from 0 to 2, whereas the published scores are on the scale from 0 to 6. 
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Fig. S4. 

GERP-score of genomic partitions. The distribution of GERP-scores within introns (top panel) 

and exons (bottom panel) for 4 species with available high-quality reference genome annotations 

(used references between brackets). White lines within the plots depict the average GERP-score 

for a given genomic category. The highest GERP-scores are primarily found within exonic 

regions, with the average GERP-score in exons 4-6 times higher than within introns (P < 2.2 · 

10-16 for all four species). 
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Fig. S5. 

Distribution of within-population variable sites by GERP-score. The proportion of variable 

sites found within the genomic regions with the 10% lowest GERP-scores is depicted in the 

bottom right corner.  
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Fig. S6. 

Proportion of heterozygous alleles out of total sites stratified by GERP-score. We included 

only samples with average genome wide coverage > 10X. Y-axis is scaled form 0 to 0.2 for 

clarity. 
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Fig. S7. 

Relative genetic load calculated as the average GERP-score of the derived alleles using 

different number of outgroups. We inferred the derived state by either using one outgroup or 

the majority allele among 2 or 3 outgroups. We then re-calculated the genetic load for a 

phylogenetically diverse group of species (the Przewalski’s horse, wolf, human and house 

mouse). Circles represent individual estimates and dotted lines depict the population averages for 

different number of used outgroups. 
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Fig. S8. 

Ancestral allele inference depending on the number of used outgroups. Plots show the 

percentage of nucleotide differences to the major allele (among the complete phylogeny, e.g. all 

species that mapped to the site) by GERP-score depending on the number of outgroups used ot 

inter the ancestral allele. Increasing the number of outgroups only slightly increases the 

likelihood of calling the correct ancestral allele and comes at the cost of having fewer sites in 

total. 
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Table S1. 

Individual genome re-sequencing data used to estimate genetic load and FROH 

(Provided as a separate file) 

 

Table S2. 

Reference genomes used to calculate GERP-scores 

(Provided as a separate file) 
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