VolcanoFinder: Supporting information

Text S1.1 Here, we compare different approximations for the effects of selection on
the genealogical distribution at a linked neutral site. As in the main text, s is the
(heterozygous) strength of selection acting on the beneficial B allele, R = rd is the rate
of recombination between the two sites, and we sample n = 2 individuals from a diploid
population of size N.
Star-like approximation

In the main text, the star-like approximation assumes that the stochastic trajectory
of the B allele is well approximated by the expected change in allele frequency, i.e.
logistic growth, from an initial frequency of 1/(2N). At a single time point, this average
is taken over all possible changes in allele frequency, including a decrease which causes
loss of the B allele. In that way, at low frequency, the expected growth is very slow.
However, when the allele frequency is very small, its fate — loss or fixation — is largely
stochastic. By conditioning on fixation of the B allele, we tend to observe cases where,
by chance, the B allele increases in frequency faster than expected. This early stochastic
increase can be accounted for by setting the initial frequency to 1/(2N2s) [46]. The
expected time to fixation is 2In(2N2s)/s, and the probability of escape becomes

RIn(2N2s)

Po=1—e " = . (17)
This amounts to re-scaling ad — w in the main text. The same result for P,
was also derived by [135,|136] using a diffusion-approximation approach. The effect of
rescaling ad is that the predicted breadth of the sweep increases to fit simulation results
more closely. However, this does not account for the fact that Pg, is overestimated
while Pg is underestimated by the star-like approximation .
Dealing with variance in coalescence time

The fault of the star-like approximation falls in assuming all coalescence occurs at
the very beginning of the sweep. In reality, there is variance in the true time to
coalescence for the sampled lineages, and late recombination events permit coalescence
even to the b background. While this variance in coalescence time can be addressed
using a diffusion approach [30], this approximation is valid only for small values of R/s.
For accurate predictions over the full breadth of the volcano sweep (see , we
use the approximation in [51], re-derived for the Wright-Fisher (WF') model:

M
Fe = R1—25 +sj_2( )s> (18)
ne gt (- )+ S 11 (- 635)

PBbZQ((l—Pe)—PB)
Py =1-Pp—P,— Ppy

Here, the establishment of the beneficial allele is modeled as a continuous-time
branching process, where the intrinsic birth and death rates are taken as 1/2 (rather
than 1) to account for drift in the WF (rather than Moran) model [137]. This leads to
our term of R(1 — 2s) rather than R(1 — s) in [51]. The subsequent growth of the
beneficial allele, conditioned on fixation, is modeled as a pure-birth branching process,
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or Yule process, which is marked by recombination events to account for the effects of
selection on the genealogy at linked neutral sites. If the number of lineages sampled
after the sweep is small, their ancestry is well-approximated by the growth of the
marked Yule process from the single initial B lineage to M = 2Ns (Moran) or
M =2N2s (WF) lineages. Aside from this factor-of-two difference in M, however, the
rates of events in the conditioned process are the same in the Moran and WF models.
In we see that the star-like approximation for (1 — P.), eq. (17)), slightly
overestimates this but otherwise performs almost as accurately as eq. . For
comparison, we follow [51] in approximating

(1 - Pe) ~ e‘%(ln(zst)_,_,y_%) (19)

where v ~ 0.58 is Euler’s gamma. Note that if we ignore v and s terms, we recover the
star-like approximation by [46]. This may be interpreted as a better approximation for
the time to fixation of the beneficial allele. Indeed 2£(In(2N2s) + v — 2s) closely
resembles the approximations in [31] and [137] for the expected time to fixation.

On the other hand, we see in supp. that Pp is underestimated by the

star-like approximation, and as a consequence, Pp, = 2((1 — P.) — Pp) is overestimated.

In contrast, eq. estimates Pp very well. We may similarly approximate Ppg, and by
rearrangement and substitution using 1 — P. in eq. , we find

Pp ~ (1 — P.)%e™ (1+9), (20)

The (1 — P.)? term corresponds to that of the star-like approximation using
ad = %(IH(QNQS) + v — 2s) as the sweep strength parameter. Importantly, eq.
shows us that Pp cannot be accurately approximated using the single sweep parameter

«. Rather, Pp is e (159) times higher than expected under the star-like approximation.

Let (1 — P.)? account for coalescence which occurs at the origin of the sweep and
denote P* = % = ¢2B*%* the proportion of the {B, B} — {B} events which are
approximately star-like. Very near the selected site, few if any lineages escape the sweep
and most coalescent events will occur very near the origin of the B allele, i.e., as R — 0,
P* —1and Pg — (1 — P.)%. As R increases, one or both lineages are likely to escape
the sweep. Conditioned on sampling lineages with a { B, B} — { B} genealogy,
coalescence during the sweep occurs only among the subset of non-recombinant B type
lineages. P* decreases to 0 as R grows, and therefore if coalescence occurs, it does so
earlier in the sweep than expected under the star-like approximation. However, note
that the relative error of the star-like approximation increases with 2R(1 4+ s)/s, but Pp
decreases more quickly, approximately with 2R1n(2N2s)/s. That is, at distances where
the error becomes large, Pp is already very small.
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Fig. S1.1 The effect of selection on linked neutral genealogies. The 1107
probability for a lineage not to escape (1 — P.) and the genealogical distribution for a 1

sample of n = 2 as a function of the recombination rate R. The solid lines are the 1199
approximation of eq. . The dashed lines use the star-like approximation with P, as 120
in The dots represent the average from 1000 independent simulation runs. 1201
A. N =5000. B. N =1000. In both panels s = 0.1. 1202
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0.8 o (1-F)
> os ® Pp
= [
3 Py
R} Pgy
o
a 04 Pyy
0.2
0.0k - = — eal-$ 2 2.8 8 8 94
0.00 0.02 0.04 0.06 0.08 0.10

1203

Probability

0.06 0.10

recombination rate

July 10, 2019 55,[96]



Text S1.2 Model 2: accounting for coalescence time within the recipient 1204
species. 1205
1206

In a second model we still assume complete lineage sorting, i.e all the lineages 1207
escaping the introgression sweep coalesce in a single lineage in a recipient species before 128
this lineage coalesce with the single lineage that traced back into the donor species (see 120
Fig. , but we no-longer ignore the coalescence time within the recipient species. The 120
D/2 factor in the last term in eq. @ no longer holds and thus needs to be replaced by 1n
the probability o;(7) that a mutation occurred in the ancestral lineage of the 7 lines that 112
escaped the introgression sweep between the common ancestor and the coalescence 1213
event with the lineage that traced back into the donor species. Inspired by eq. we 1214
can express the divergences between the recipient and the donor species and between 125
the recipient species and its MRCA with the outgroup species considering the SFS in 126
the subsample of ¢ lineages that escaped the introgression sweep. In the case when fixed 1217

differences are polarized we have, 1218
D i—1 j
5= oi(i) + Z ;Sy (4),
j=1
and 1219
i—1 j
D,=S5 =
o= Si(i) + Z +5;(i)
j=1
From these expressions we can isolate o;(i) = D/2 — D, + S;(i) and finally get the 1220
probabilities in the altered SFS after the introgression sweep for the polymorphic states 12
(1<i<n—1), 1222

S;(Tl|0&, da D) = ( i Pe(k|a7 d)Sz(k)> +Pe(n—i\a, d)%+Pe(Z|O‘7d) (% - Do + Sl(Z)) :

k=it+1
(21)
Eq. is only valid if D/2 — D, + S;(¢) > 0 for all i € {1,...,n}. A necessary and 123
sufficient condition is % > D, — S,(n). Using eq. leads to % > ”T_léL, where 1224
0, = L 2?2—11 1S;(n) is an unbiased estimator of 8 defined in [52} eq.(8)] and 1225
computed from the whole genomic background. 1226
Similarly, the D, factor in the last term of eq. can easily be replaced by the 1227
probability S, (n) that a mutation occurs on the ancestral lineage of n lineages that 1228
have escaped the introgression sweep before coalescence occurs with the outgroup: 1229
n—1
S! (n|a,d, D) = ((DO - L) Z P.(k|a, d)) + Do P.(0|la, d) + Sp(n)Pe(n|a, d).  (22)
k=1

If fixed differences are not polarized, then egs. and still hold when substituting 123
the divergence between the recipient species and its MRCA with the ougroup species D, 12
with the full divergence between the recipient and the outgroup species D!. Once again 13
the probabilities in egs. and are linearly dependent of the mutation parameter 123
6 = 4N, and this dependency disappears in conditional probabilities obtained from 1234

eqs. and . 1235
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Text S1.3 Comparison of Models 1 and 2

In Fig. [4 of the main text, we saw that Models 1 and 2 yield similar predictions for
the SFS after the selective sweep when D > . That is, when the divergence is
sufficiently large so that ancestral variation is no longer segregating in the populations,
Teoal,2 < Ty, the pairwise diversity D well-approximates the contribution of fixed
derived mutations from the recipient population. Here, we look at the difference
between the two models in approximating the expected heterozygosity after the sweep.

For a sample of n = 2 two lineages taken directly after the sweep, the expected
heterozygosity may be approximated as in eq. of the main text. In we show
the star-like approximation in grey, the more-accurate approximation of [51] in black,
and simulation results as black dots. For a sample of n > 2, we use the un-normalized
Si(n) from either Model 1 (eq. [9) or 2 (eq. to determine the effects of the sweep. By
substituting the S}(n) into eq. 6] the expected heterozygosity is given by S (2). We
show the predictions of Model 1 (red, dashed) and Model 2 (blue, dashed) in
We see that Model 2 exactly matches the predictions of the star-like approximation and
that Model 1 is even more biased to over-estimates the increase in genetic diversity.

Text S1.4 The performance of VolcanoFinder and SweepFinder

Here we take a closer look at the ability of both SweepFinder and VolcanoFinder
to detect an adaptive introgression sweep. 200 successful introgression sweeps centered
in a 500 kb locus were simulated under strong selection, 2Ns = 1000 (N = 5000,

s =0.1), a scaled mutation parameter § = 0.002 (mutation rate u = 10~7), and
significant divergence of the donor population D = 0.026 = 136. The per-site
recombination rate r = 5 x 10~7, thus the sweep parameter

a=rIn(2N)/s = 4.6 x 1075. The data consists of n = 10 lineages sampled from the
recipient species. It is polarized to an outgroup with pairwise divergence D, = 0.05 and
includes fixed differences. As shown in the power analysis of the main text, both sweep
scan methods have high power to detect introgression sweeps with these parameters.

Single iterations of the adaptive introgression process may produce the expected
volcano pattern, but when early recombination events occur, the signal is concatenated.
In order to compare data to theory, the 200 iterations were combined into a single
data-rich locus, preserving the unique identifier and correct positions of the mutations
within the simulated genomic region The result is an “average” data set representative
of the expected volcano sweep pattern which we scan for selection using SweepFinder
and VolcanoFinder. Note that here, the LR values are inflated because they are
calculated from the combination of 200 iterations of data. The LR values of a single
iteration are much smaller.

VolcanoFinder scans were run over a range of potential divergence values
D =0.010, 0.015, 0.020, 0.026, 0.030, 0.035, 0.040, and 0.045 (i.e.

D/0 =5,7.5,10, 13, 15, 17.5, 20, 22.5) including the true value used in simulations
Dy = 0.026. While the true value D = Dy, results in a very high LR value of
507297, VolcanoFinder finds that an introgression sweep with D = 0.020 fits the
average data slightly better, with LR value 598280. As shown in the previous section,
model 1 consistently over-estimates the contribution of divergence before the sweep to
diversity after the sweep. In combination, the star-like approximation for the effect of
selection on linked neutral loci systematically over-estimates the height of the diversity
peaks. Together, this indicates that a lower D value yields a better-fitting model.
Indeed, supp. shows that at the distance ad = 1/2 where the volcano peak is
close to the maximum height, the model predictions fit the data better using D = 0.02.
However, for both D values, VolcanoFinder finds an optimum sweep parameter

July 10, 2019

57

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286



& = 3.4 x 1075, close to the true value of 4.6 x 107?, (% ~ 0.74).

SweepFinder is also able to detect the introgression sweep but is less sensitive to the
signal, producing a LR value of 2672, nearly 200 times smaller than that reported by
VolcanoFinder. While VolcanoFinder uses information from the full breadth of the
introgression sweep, the SweepFinder model cannot account for the influx of foreign
variation and is sensitive only to the features of the narrow diversity valley near the
introgression sweep center.

In we compare the optimum model that SweepFinder fits to the average
data set to that of VolcanoFinder with D = 0.026, discussed above and shown in
(right column). In the top panel, we see that SweepFinder detects only a very
small sweep valley that approximately matches the valley of the volcano sweep. In
contrast to VolcanoFinder, the optimum sweep strength found by this method is an
order of magnitude smaller than the true value used in simulations (2 ~ 6.4).

As expected, the weak sweep parameter chosen by SweepFinder as the optimum
allows it to approximately fit the SF'S very near the sweep center (top two panels,
classic sweep model &d = 0.01 or 0.1). At greater distances, SweepFinder cannot
predict the effect of introgression on the SFS and matches the data poorly. Due to the
weak sweep strength, the corresponding regions in the simulated data are in-reality an
order of magnitude closer to the sweep center when distance is scaled by the true
strength of the selective sweep. This has conflicting effects on the power of
SweepFinder to detect adaptive introgression sweeps.

At distances ad > 10 from the sweep center, a selective sweep has little effect on
neutral genealogies, and this provides a limit to how much of the data is informative for
selective sweep scans. With a much weaker selection strength parameter, SweepFinder
assesses only a fraction of the information that is accessible to the VolcanoFinder
method, explaining in-part the much-lower LR value.

However, by finding a weak optimum strength parameter, SweepFinder avoids
looking at regions of the introgression sweep in which it performs poorly relative to the
background SFS used as a null hypothesis. In the main text, we saw that at distances
greater than or equal to ad = 1, the classic sweep model predicts a near-return to the
background SFS. At greater distances, sites are no longer informative due to the
similarity in the null and alternative hypotheses of the likelihood ratio statistic.
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Fig. S1.2 Pairwise diversity after the selective sweep. Predictions from a 1319
sample of two lineages are in gray. Model 1 predictions are in red. Model 2 predictions 10

are in blue. Our original model predictions are in black. Average of simulated data 1321

points £3 standard error are shown in black. In the upper data set D = 0.026, and in 132

the lower data set D = 0.014. In both, the remaining parameters are § = 0.002, 1323

N =5000, s = 0.1, and n = 50. 1324
0.014

0.012
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0.008
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Fig. S1.3 VolcanoFinder optimum model: choice of D Results from the 1326
VolcanoFinder scan of the average data set described in the supp. The left 152
column shows the optimum sweep model (inferred strength parameter & = 3.4 x 107°) 138
given the true D = Dy;,,, = 0.026 used in the simulation. The right column shows the 13

best-fitting model found by the method with inferred parameters D =0.02 and 1330
& = 3.4 x 1075, The top panels show the average heterozygosity along the sweep region 1
with distance scaled by the true sweep strength ad (gray) as well as the expected 1332
diversity predicted under the given model (blue dashed). The remaining rows show the 1
theoretical SFS of the the optimum model (light gray) at increasing distances 1334

ad = 0.01,0.1,0.5,1,2, 3,8 from the sweep center and compares this to the observed 1335
SFS in a 100-bp window centered at that position averaged over 50 simulations (dark 133

gray). The label on each panel lists the chosen value of scaled distance &d from the 1337
optimum model as well as the corresponding true value of ad determined by the 1338
simulation parameters. 1330

1340
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el

Fig. S1.4 SweepFinder detects the introgression sweep valley. The left
column shows the best-fitting model for SweepFinder. The VolcanoFinder results in
the right column as well as the description of the panels are the same as in
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Text S2.1 Adjusting the migration and duration for the introgression
sweep.

We use the model in where introgression from a donor species occurs as a
short and sudden migration episode from the donor to the recipient species. In order to
simulate the sweep of an introgressed selected allele, we adjust the migration parameter
m such that the expected frequency pg of the introgressed selected allele just after the
migration episode leads to the fixation of the selected allele with a high probability
Tfix — 0.95.

Migration rate. Under a diploid additive model the probability of ultimate fixation of
a beneficial allele with initial frequency pg is given by eq. (5.47) in [138]

1— 6—2Nsp0

Tfix = 1 _e—2Ns ° (23)
Isolating pg in eq. leads to
1 — s
P0o = ~5N% In(1—(1—e ") mpy) . (24)

In a discrete generation model, the backward migration rate m is defined as the
probability for a lineage in the recipient population to come from the donor population
at the previous generation, we thus have pg = m and adjust the migration rate to
obtain a desired fixation probability for the selected allele. In a continuous coalescent
model where time is scaled in units of 4N generations, a comparible result is obtained
by seting the migration rate to m = po/At.,ig during a time interval Atyi,.

Duration of the sweep phase. We assume weak selection such that w =~ 1 and the
dynamics of the frequency of the beneficial allele is well described by the logistic
model [138] eq. (1.27)]. If the time ¢ is scaled in units of 4N generations, we have

B Nsp(1—p) =t = —— (Inp—In(1—p))+C (25)

— =4Nsp(1 — =—(Inp—In(1 -

dt P p ANs p p )
where C' is an integration constant. The duration of the sweep phase Atgyeep can be
computed from the frequencies of the beneficial mutation at the introgression time py
and at the end of the sweep p=1—1/(2N):

1 1 1
Atsyeep = e (ln (1 — 2]\/_) —In N~ Inpy + In(1 —p0)> . (26)

Including drift at the end of the sweep would substantially shorten the duration of the
sweep, and using eq. enables that the selected went to fixation with a high
probability.
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Text S2.2 Coalescent simulations.

The coalescent simulations were conducted with the R package coala [72] as a frontend
to the coalescent simulator msms [69].

Coalescent simulations involving introgression sweeps.

We used the model described in supp. We simulated coalescent trees for
n = 40 lineages sampled from the recipient species and one from the outgroup species.
The simulated region comprises 2 x 10° nucleotides, the recombination rate was set to
p =5 x 1077 events per generation per nucleotide and the mutation rate was set to
p=1.25 x 1077 events per generation per nucleotide following previous studies [49].
The speciation time between the outgroup and the ancestor of the donor and recipient
species was T, = 10 units of 4N generations (8 Mya with N = 10? and a 20 years
generation time). The divergence time between the donor and recipient species was
T, € {1,2.5,4,55} (D/0 € {3, 6,9, 12}, equivalent to 0.8, 2, 3.2, and 4.4 Mya,
respectively). Taking into account an average expected time of 2N generations for the
coalescence of a pair of lineages coming for the donor and recipient species, these values
of Ty lead to an average probability for a nucleotide to differ between the donor and the
recipient species (average divergence) of D € {0.015, 0.03, 0.045, 0.06}. The population
sizes of the recipient species, the ancestor of the recipient and donor species, as well as
the outgroup species were set to N = 10* individuals. To mimic a sweep from a single
lineage introgressed from the donor species (hard introgression sweep), the population
size of the donor species was reduced to a single individual (Ny = 1) at the time of the
split such that all lineages that trace back into the donor species coalesce almost
instantaneously. We also relaxed this assumption, restraining this bottleneck to a tiny
time interval (20 generations) after the split from the recipient species and thus allowing
the donor species to recover polymorphism before the introgression event, potentially
allowing sweeps from different lineages in the recipient species (soft introgression
sweeps). Because we do not model an initial selective sweep in the donor population,
the nucleotide diversity in the donor population is only affected by the strong
bottleneck and is not locally reduced around the selected site.

Introgression from the donor into the recipient species occurs at time
T; = Ts + Algweep + Atmig: migration is allowed from the donor species into the
recipient species for a short time interval At,,;,. The migration rate m and duration of
the migration interval Atp,;, are chosen such that the expected frequency of the selected
allele in the recipient species at the end of the migration interval leads to the fixation of
the selected allele with a high probability 7, as described in Two selection
coefficients were used 2Ns € {100, 1000} and 7, = 0.95 was achieved by using an
identical migration rate in both cases (m & 0.003) and letting the duration of the
migration event last a single generation (At = 1/(4N) for 2Ns = 1000) or 10
generations (Atwyig = 10/(4N) for 2Ns = 100). A logistic model for the dynamics of the
selected allele as in eq. eventually leads to fixation after some time given by eq.
. We assume that sampling was done at time T € {0, 0.1, 0.25, 0.5} (equivalent to
0, 80, 200, and 400 kya respectively) after the fixation event.

Total number of replicates. Combining four values for the divergence time

T, € {1, 2.5, 4, 5.5}, four values for the time since the selective sweep

T, € {0, 0.1, 0.25, 0.5} and two values for the selection coefficient 2Ns € {100, 1000}
for each hard and soft introgression sweeps leads to 64 parameter sets. For each
parameter set, we ran 1000 coalescent simulations involving selection and 10 000 neutral
coalescent simulations with the same admixture level (same migration rate at the same
time point). In addition, a neutral non-admixed reference was obtained from another

July 10, 2019

63

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425



10000 coalescent simulations. In total we thus performed 714000 (650 000 neutral and
64 000 non-neutral) coalescent simulations.

Coalescent simulations involving balancing selection.

We used three different demographic models inspired by the models that
were formerly used to investigate the statistical power of BALLET [48]. The speciation
time between the outgroup and the ingroup species was T, = 10 units of 4V
generations (8 Mya with N = 10000 and a 20 years generation time). The simulated
sequence comprised 2 x 10° nucleotides. Balancing selection involved a selected locus
with two alleles (A and a) in the middle of the sequence. We assumed overdominance
with the following fitnesses: wg, = 1, waq =1+ hs and was = 1+ s with h = 100 and
s = 0.01. Balancing selection started at different times
T, € {1.25, 5, 8.75, 12.5, 16.25, 20} (equivalent to 1, 4, 7, 10, 13, and 16 Mya,
respectively). We assume the selected allele A reaches the equilibrium frequency
h/(2h — 1) as soon as selection starts. For the population growth model, population
expanded from N = 10000 to Ny = 2N at time T, = 0.06 (48 kya). For the bottleneck
model, population size was reduced from N = 10000 to N, = 0.055N at time
T, = 0.0375 (30 kya) before returning to its initial size at time T, = 0.0275 (22 kya).

Total number of replicates. Combining three demographic models and six values for T
leads to 18 parameter sets. We ran 1000 coalescent simulations involving selection for
each parameter set, and 10 000 neutral coalescent simulations for each demographic
model. In addition to these simulations, a single simulation of a 2 x 107 nucleotides
sequence was performed to generate a genomic background reference for each
demographic model. In total we thus performed 48 003 (30000 neutral, 18 000
non-neutral and 3 neutral background references) coalescent simulations.
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Fig. S2.1 Introgression model. The model comprizes three species. The ancestor
of the donor and recipient species diverged from an outgroup species at time T, in the
past. The donor and recipient species diverged at time Ty in the past. Immediately after
this speciation event, selection starts (diploid additive model with selection coefficient s)
in the donor and recipient species, but the beneficial allele is only present in the donor
species, where it is assumed to have already reached fixation. The donor species is
bottlenecked to a population size of N’ = Ny individuals (Ny is assumed to be very
small so that coalescence of lineages in the donor species is immediate). The bottleneck
may last until present (enforcing a hard introgression sweep, vertical dashed line) or only
occur for a very short period after which the donor population size is set to N’ = N,
allowing the donor population to recover some polymorphism before the introgression
occurs (soft introgression sweep). At time 7 in the past, migration occurs for a small
amount of time (one to ten generations) from the donor to the recipient species. At this
time point the beneficial allele is introgressed in the recipient population. The migration
rate m is set such that the fixation probability of the beneficial allele in the recipient
population is 0.95 given its expected initial frequency in the recipient population at
time T;. The selected allele reaches fixation in the recipient species at time T5.

outgroup donor recipient
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Fig. S2.2 Balancing selection models. The model comprizes two species, the
outgroup and the ingroup species that diverged at time T, in the past, when the
ancestor species (size N,) splitted into two species of equal sizes N = N,. Balancing
selection starts at time T either in the ingroup species (T < Typ) or in the ancestor
species (Tsp < T5). A Constant population size model. B Population growth model:
the size of the ingroup species expanded to N, at time Tj;. C Bottleneck model: the size
of the ingroup species was reduced to IV, between times Tp and T-.
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Text S2.3 Genome scans and power analysis.
Genome scans.

Genome scans for introgression sweeps. We compared the performance of three
model-based composite likelihood methods: BALLET [48|, SweepFinder2 [49] and
VolcanoFinder. For each method, two cases were considered for the reference genomic
background. We considered either a non-admixed reference inferred from 10000 neutral
coalescent simulations without introgression or an admixed reference inferred from
10000 neutral coalescent simulations involving the same level of admixture as the
non-neutral coalescent (same migration rate at the same time point) as described in
[Text 52.2] and [Fig. S2.1}

BALLET: the T2 test of BALLET was used with a sliding window size of 21 informative
sites (half-window size of 10 sites).

SweepFinder2: the composite likelihoods were computed on a grid of 800 locations for
the selected site (250 nucleotides spacing, four times denser than that used in the
original article on SweepFinder?2).

VolcanoFinder: the model 1 was used to compute the composite likelihoods on a grid
of 800 locations for the selected site and 13 values for the divergence parameter

D € {0.005, 0.01, 0.015, ..., 0.065}, encompassing the full range of D in the simulations.

Genome scans for balancing selection. We compared the performance of BALLET and
VolcanoFinder under three demographic scenarios inspired by the original
BALLET article [48]. For each method, the genomic background reference was inferred
from a single coalescent simulation of a 2 x 107 nucleotides under the same demographic
scenario.

BALLET: the T2 test of BALLET [48] was used with a sliding window size of 21
informative sites (half-window size of 10 informative sites).

VolcanoFinder: the model 1 was used to compute the composite likelihoods on a grid
of 500 locations for the selected site and 13 values for the divergence parameter

D € {0.001, ..., 0.013}, enabling to encompass the full range of starting time for the
selection T in the simulations.

Power analysis. For all methods, the maximum LR value in a simulated sequence of
200kb was used as a test statistics.

Rejection rates. The rejection rate of a method for a given false positive rate FFPR (up
to 0.05) was estimated as the proportion of the non-neutral simulations (among 1000
non-neutral replicates) leading to a test statistics exceeding the (1 — FPR) quantile of
the null distribution (estimated from 10000 neutral replicates). Because introgression
sweeps with a low selection coefficient (2Ns = 100) mainly altered the site frequency
spectrum within 10 kb from the selected site (see [Fig. S2.3|and [Fig. S2.4)), we also
computed rejection rates based on the maximum LR value in the central 20 kb in this
case.

Probability of detection of an introgression sweep in a genome scan. Whole genome scan
usually look for outliers among genome-wide data and selection at a locus is detected if
the LR value at this locus ranks among the genome-wide highest peaks. We used the
following procedure to mimic such a study: the genome-wide null-distributions of the
LR values were obtained from the reference 10000 neutral replicates of 200 kb (leading
to 2 Gb genomes). For each neutral replicate 800 LR values were retained (all values for
VolcanoFinder and SweepFinder2 and the highest LR value in 800 non-overlapping
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window of 250 nt for BALLET) leading to 8 x 10% LR values for the whole genome. The
probability to detect an introgression sweep in a genome scan considering a set of top-X

candidates was computed as the proportion of the non-neutral replicates (estimated

from 1000 replicates) leading to a maximum LR value (in a single replicate) higher than

the Xth genome-wide neutral highest LR peak.
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Fig. S2.3 Volcano patterns caused by a hard introgression sweep. Average
nucleotide diversity (Tajima’s éﬂ, ) in non-overlapping windows of 400 nucleotides
in the simulated 200 kb alignments involving a hard introgression sweep. The selection
strength is 2Ns = 100 (left) or 2Ns = 1000 (right). The age of the split between the
donor and recipient populations is (from top to bottom) Ty = 1, 2.5, 4, 5.5 units of 4N
generations (D/6 = 3, 6, 9, 12). The ending time of the selective sweep is Ty = 0 (red),

T, = 0.1 (green), Ts = 0.25 (blue),

Ts = 0.5 (black) units of 4N generations before

sampling. The coloured horizontal lines indicate the background polymorphism level in
all cases. For the lowest selection strength only the central 40 kb region is shown.
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Fig. S2.4 Volcano patterns caused by a soft introgression sweep. Average 1546
nucleotide diversity (Tajima’s O, ) in non-overlapping windows of 400 nucleotides 154
in the simulated 200 kb alignments involving a soft introgression sweep. The selection  1ss
strength is 2Ns = 100 (left) or 2Ns = 1000 (right). The age of the split between the s
donor and recipient populations is (from top to bottom) T; = 1, 2.5, 4, 5.5 units of 4N 1ss0
generations (D/6 = 3, 6, 9, 12). The ending time of the selective sweep is Ty = 0 (red), 1

T, = 0.1 (green), Ts = 0.25 (blue), Ty = 0.5 (black) units of 4N generations before 1552
sampling. The coloured horizontal lines indicate the background polymorphism level in  1ss3
all cases. For the lowest selection strength only the central 40 kb region is shown. 1554
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Fig. S2.5 Performance curves (non admixed background). Rejection rates of
VolcanoFinder (blue), BALLET (brown) and SweepFinder2 (green) for an introgression
sweep event from a donor species that diverged from the recipient species at (top to
bottom) Ty =1, 2.5, 4, 5.5 (D/0 = 3, 6, 9, 12) and a selective sweep that ended (from
left to right) Tx = 0, 0.1, 0.25, 0.5 units of 4N generations in the past. Solid lines: no
polymorphism in the donor species (hard introgression sweep). Dashed lines:
polymorphism exists in the donor species (possible soft sweep). Dark colour:

2Ns = 1000; light colour: 2Ns = 100. The upper gray line indicates the expected
highest rejection rate given the expected proportion of successful selective sweeps in the
sample. Lower gray area: the rejection rate does not exceed the false positive rate. For
all three methods, the test statistics is the highest LR value in the simulated 200 000
nucleotides alignment. Analyses involved a neutral non-admixed genomic background as
a reference.
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Fig. S2.6 Performance curves (admixed background). Rejection rates of
VolcanoFinder (blue), BALLET (brown) and SweepFinder2 (green) for an introgression
sweep event from a donor species that diverged from the recipient species at (top to
bottom) Ty =1, 2.5, 4, 5.5 (D/0 = 3, 6, 9, 12) and a selective sweep that ended (from
left to right) Tx = 0, 0.1, 0.25, 0.5 units of 4N generations in the past. Solid lines: no
polymorphism in the donor species (hard introgression sweep). Dashed lines:
polymorphism exists in the donor species (possible soft sweep). Dark colour:

2Ns = 1000; light colour: 2Ns = 100. The upper gray line indicates the expected
highest rejection rate given the expected proportion of successful selective sweeps in the
sample. Lower gray area: the rejection rate does not exceed the false positive rate. For
all three methods, the test statistics is the highest LR value in the simulated 200 000
nucleotides alignment. Analyses involved a neutral admixed genomic background with
the same level of admixture as a reference.
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Fig. S2.7 Performance curves (admixed background and different window
sizes). Rejection rates of VolcanoFinder (blue), BALLET (brown) and SweepFinder2
(green) for an introgression sweep event from a donor species that diverged from the
recipient species at (top to bottom) Ty =1, 2.5, 4, 5.5 (D/6 = 3, 6, 9, 12) and a
selective sweep that ended (from left to right) 75 = 0, 0.1, 0.25, 0.5 units of 4N
generations in the past. Solid lines: no polymorphism in the donor species (hard
introgression sweep). Dashed lines: polymorphism exists in the donor species (possible
soft sweep). Dark colour: 2N's = 1000; light colour: 2Ns = 100. The upper gray line
indicates the expected highest rejection rate given the expected proportion of succesfull
selective sweeps in the sample. Lower gray area: the rejection rate does not exceed the
false positive rate. For all three methods, the test statistics is the highest LR value in
the simulated 200 000 nucleotides alignment. The test statistics is the highest LR value
in the simulated sequence of 200 kb (2Ns = 1000) or in the central 20 kb (2Ns = 100).
Analyses involved a neutral admixed genomic background with the same level of
admixture as a reference.
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Text S2.4 Inferred parameters of the selection model.

We assessed the accuracy of VolcanoFinder to infer the position of the selected site,
the compound selection parameter «, and the divergence with the donor species D. For
the position of the selected locus, comparisons could be made with the BALLET and
SweepFinder methods. We report the observed distributions of the estimated
parameters for each parameter set in the case of a hard introgression sweep. In these
distributions we highlight values that lead to a significant CLR test (using an admixed
background and a 20 kb window size for 2Ns = 100 and a 200 kb window size for
2Ns = 1000 as in [Fig. S2.7).

Location of the selected locus as inferred by genome scan methods.

Distributions for the location of the selected site as inferred by the highest CLR
value are shown on supp. [Fig. 52.8|to [Fig. 52.13] VolcanoFinder and SweepFinder2
use information from the valley of reduced heterozygosity in the center of the sweep
region and locate the target of selection more accurately than BALLET, which tries to fit
a balancing selection model to the data and thus tends to locate the target of selection
in the flanking regions where the polymorphism to divergence ratio is higher. For older
introgression sweeps (T > 0.25) the accuracy of all methods decreases.

Parameters of the introgression sweep as inferred by VolcanoFinder.

The distributions of the scaled divergence parameter ﬁ/ 0 inferred from the location
with the highest CLR value are shown on [Fig. S2.14] to [Fig. S2.15] As expected from
the analytical analysis, VolcanoFinder tends to underestimate D. Unsurprisingly, the
mean of the distribution of estimated D tends to decrease for older introgression sweeps
that typically lead to less pronounced volcano shapes (see . The variance of
the distribution of D also tends to increase with increasing age of the introgression
sweep, probably because our model only considers very recent sweeps.

The distributions of the selection strength inferred parameter — log;,(&) from the
location with the highest CLR value are shown on [Fig. S2.16|to [Fig. S2.17 —logq(«)
seems to be relatively accurately estimated for recent introgression sweeps whereas it
might be underestimated in the case of old introgression sweeps that typically lead to

narrower volcano shapes (see [Fig. S2.3)).
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Fig. S2.8 Location of the maximum LR inferred by VolcanoFinder

(2Ns =1000). Location of the highest LR inferred by VolcanoFinder for a hard
introgression sweep event with selection coefficient 2/N's = 1000. The donor species
diverged from the recipient species at (from top to bottom) T; = 1, 2.5, 4, 5.5

(D/6 =3, 6,9, 12) and the selective sweep ended (from left to right)

Ts =0, 0.1, 0.25, 0.5 units of 4N generations in the past. The coloured and gray parts
indicate significant and non-significant test as shown in
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Fig. S2.9 Location of the maximum LR inferred by VolcanoFinder
(2Ns = 100). Location of the highest LR inferred by VolcanoFinder for a hard
introgression sweep event with selection coefficient 2/Vs = 100. The donor species
diverged from the recipient species at (from top to bottom) T; = 1, 2.5, 4, 5.5
(D/0 =3, 6,9, 12) and the selective sweep ended (from left to right)

Ts =0, 0.1, 0.25, 0.5 units of 4N generations in the past. The coloured and gray parts
indicate significant and non-significant test as shown in Only the central part

of the simulated region is shown.
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Fig. S2.10 Location of the maximum LR inferred by SweepFinder2 1653

(2Ns =1000). Location of the highest LR inferred by SweepFinder2 for a hard 1654
introgression sweep event with selection coefficient 2/N's = 1000. The donor species 1655
diverged from the recipient species at (from top to bottom) T; = 1, 2.5, 4, 5.5 1656
(D/0 =3, 6,9, 12) and the selective sweep ended (from left to right) 1657
Ts =0, 0.1, 0.25, 0.5 units of 4N generations in the past. The coloured and gray parts s
indicate significant and non-significant test as shown in 1659
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Fig. S2.11 Location of the maximum LR inferred by SweepFinder2 1661

(2Ns =100). Location of the highest LR inferred by SweepFinder2 for a hard 1662
introgression sweep event with selection coefficient 2/Vs = 100. The donor species 1663
diverged from the recipient species at (from top to bottom) T; = 1, 2.5, 4, 5.5 1664
(D/0 =3, 6,9, 12) and the selective sweep ended (from left to right) 1665

Ts =0, 0.1, 0.25, 0.5 units of 4N generations in the past. The coloured and gray parts s
indicate significant and non-significant test as shown in Only the central part 1er
of the simulated region is shown. 1668
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Fig. S2.12 Location of the maximum LR inferred by BALLET (2Ns = 1000). 1670
Location of the highest LR inferred by BALLET for a hard introgression sweep event with n
selection coefficient 2Ns = 1000. The donor species diverged from the recipient species 172
at (from top to bottom) Ty =1, 2.5, 4, 5.5 (D/6 = 3, 6, 9, 12) and the selective sweep 1673
ended (from left to right) Ts = 0, 0.1, 0.25, 0.5 units of 4N generations in the past. The 1
coloured and gray parts indicate significant and non-significant test as shown in 1675
Fig. S52.7 1676
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Fig. S2.13 Location of the maximum LR inferred by BALLET (2Ns = 100). 1678
Location of the highest LR inferred by BALLET for a hard introgression sweep event with 179
selection coefficient 2Ns = 100. The donor species diverged from the recipient species at  1ss0
(from top to bottom) Ty =1, 2.5, 4, 5.5 (D/6 = 3, 6, 9, 12) and the selective sweep 1681
ended (from left to right) Ts = 0, 0.1, 0.25, 0.5 units of 4N generations in the past. The s

coloured and gray parts indicate significant and non-significant test as shown in 1683
Only the central part of the simulated region is shown. 1684
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Fig. S2.14 Divergence from the donor species inferred by VolcanoFinder
(2Ns =1000, hard introgression sweeps). Estimated scaled divergence parameter
% at the location with the highest LR inferred by VolcanoFinder for a hard
introgression sweep event with selection coefficient 2Ns = 1000. The donor species
diverged from the recipient species at (from top to bottom) Ty = 1, 2.5, 4, 5.5

(D/6 =3, 6,9, 12) and the selective sweep ended (from left to right)

Ts =0, 0.1, 0.25, 0.5 units of 4N generations in the past. The coloured and gray parts
indicate significant and non-significant test as shown in [Fig. S2.7] A vertical red line
indicates the true value used in the simulations.
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Fig. S2.15 Divergence from the donor species inferred by VolcanoFinder

(2Ns =100, hard introgression sweeps). Estimated scaled divergence parameter %
for the location with the highest LR inferred by VolcanoFinder for a hard introgression
sweep event with selection coefficient 2Ns = 100. The donor species diverged from the
recipient species at (from top to bottom) Ty =1, 2.5, 4, 5.5 (D/0 = 3, 6, 9, 12) and the
selective sweep ended (from left to right) 75 = 0, 0.1, 0.25, 0.5 units of 4N generations
in the past. The coloured and gray parts indicate significant and non-significant test as
shown in A vertical red line indicates the true value used in the simulations.
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Fig. S2.16 Selection strength inferred by VolcanoFinder (2Ns = 1000, hard
introgression sweeps). Estimated scaled selection parameter —log;,(&) at the

location with the highest LR inferred by VolcanoFinder for a hard introgression sweep
event with selection coefficient 2Ns = 1000. The donor species diverged from the

recipient species at (from top to bottom) Ty =1, 2.5, 4, 5.5 (D/0 = 3, 6, 9, 12) and the
selective sweep ended (from left to right) 75 = 0, 0.1, 0.25, 0.5 units of 4N generations
in the past. The coloured and gray parts indicate significant and non-significant test as
shown in A vertical red line indicates the true value used in the simulations.
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Fig. S2.17 Selection strength inferred by VolcanoFinder (2Ns = 100, hard
introgression sweeps). Estimated scaled selection parameter — log;,(&) for the
location with the highest LR inferred by VolcanoFinder for a hard introgression sweep

event with selection coefficient 2Ns = 100. The donor species diverged from the

recipient species at (from top to bottom) Ty =1, 2.5, 4, 5.5 (D/0 = 3, 6, 9, 12) and the
selective sweep ended (from left to right) 75 = 0, 0.1, 0.25, 0.5 units of 4N generations
in the past. The coloured and gray parts indicate significant and non-significant test as
shown in A vertical red line indicates the true value used in the simulations.
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Fig. S2.18 Performance curves to detect balancing selection. Rejection rates 172
of BALLET (solid lines) and VolcanoFinder (dashed lines) for different starting time of 172

balancing selection T under three demographic scenarios (see |[Fig. S2.2|). Black: 1725
constant population size; blue: population growth; red: bottleneck. Gray area: the 1726
rejection rate is not higher than the false positive rate. In all cases, the test statistics is 177
the highest LR value in the simulated 200 kb alignment. 1728
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1730
1731
1732
1733

the VolcanoFinder scan of the European (CEU) sample.

Table S3.1 Candidate peaks ranked by the maximum log likelihood ratios

m

Chr. Peak Position | L.R. —log;,a D Nearest Gene(s) RefSeq ID
22 36556 023 | 102.4 3.42 0.0038 | APOLS, APOL4 NM_145640.2, NM_030643.4
8 42558168 | 80.4 3.67 0.0023 | CHRNB3, CHRNAG6 NM_001347717.1, NM_004198.3
2 223953190 | 55.5 3.21 0.0061 | KCNE/ NM_080671.3
14 81512174 51.5 3.73 0.0023 | TSHR NM_001018036.2
21 19243059 50.5 3.68 0.0015 | CHODL, CHODL-AS1 NM_001204177.1, NR_024354.1
2 24626190 | 36.9 3.88 0.0015 | ITSN2 NM_001348181.1
2 223924190 | 36.7 3.58 0.0030 | KCNE/ NM_080671.3
3 182989072 | 354 3.48 0.0023 | MCF2L2, BSGNT5 NM_015078.3, NM_032047.4
2 122044 190 35.2 3.50 0.0015 | TFCP2L1 NM_014553.2
2 172059 190 33.7 3.49 0.0023 | TLK1 NM_012290.4
7 73935618 | 32.8 3.31 0.0030 | GTF2IRD1 NM_005685.3
2 12035190 | 29.6 3.35 0.0023 | - =
16 83231010 | 29.5 3.19 0.0015 | CDH13 NM_001220491.1
3 127624072 29.2 3.49 0.0023 | KBTBD12 NM_207335.2
11 44436 084 29.0 3.30 0.0015 | — -
12 71969102 28.5 3.12 0.0038 | LGRS, ZFC3H1 NM_001277227.1, NM_144982.4
19 17289015 | 27.9 3.20 0.0023 | MY09B, USE1, OCEL1  NM_004145.3, NM_018467.3,
NM_024578.2
20 7596076 | 27.8 3.32 0.0023 | — =
10 28705072 27.4 3.47 0.0015 | — =
1 232398053 26.5 3.50 0.0015 | — -
3 129080072 25.6 3.22 0.0023 | RPL32P3, HIFX, HIFX- NR_003111.2, NM_006026.3,
AS1, SNORA7B, EF- NR.026991.1, NR_002992.2,
CAB12 NM_207307.2
) 154678 042 24.6 3.50 0.0015 | — =
13 105399 042 24.4 3.28 0.0030 | — -
9 115694 060 244 3.29 0.0015 | SLC46A2 NM_033051.3
6 29035112 | 23.9 3.12 0.0023 | LOC100129636, OR2W1, NR_125387.1, NM_030903.3,
OR2B3, OR2J3 NM_001005226.2, NM_001005216.3
9 79675060 | 23.9 3.27 0.0015 | FOXB2 NM_001013735.1
6 34052112 23.2 3.29 0.0023 | GRM/, NM_000841.3

.
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1734
1735
1736

Chr. Peak Position | LR —log;,& D Nearest Gene(s) Respective RefSeq ID
19 41473015 | 45.2 3.49 0.0020 | CYP2B7P, CYP2B6 NR_001278.1, NM_000767.4
1 152102007 | 37.3 3.48 0.0030 | LOC100131107, TCHHL1, NM_001310142.1, NM_001008536.1,
TCHH, RPTN NM_007113.3, NM_001122965.1
12 59033128 | 32.1 3.56 0.0020 | LOC101927653, NR_120452.1, NR_126341.1
LOC100506869
3 33007016 | 32.0 3.48 0.0030 | CCR4, GLB1 NM_005508.4, NM_001079811.2
2 170442117 | 28.7 3.25 0.0020 | FASTKD1, PPIG NM_001322046.1, NM_004792.2
2 235174117 | 25.1 3.09 0.0020 | - =
4 101771036 | 22.9 3.53 0.0020 | — =
4 78105036 | 22.2 3.31 0.0030 | CCNG2 NM_004354.2

Table S3.2 Candidate peaks ranked by the maximum log likelihood ratios
the VolcanoFinder scan of the Yoruban (YRI) sample.

m

.
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Fig. S3.1 Whole-genome Manhattan plot of the maximum likelihood ratio
test statistic for the European (CEU) population computed from Model 1 173
of VolcanoFinder on data on within-CEU polymorphism and substitutions 1739

with respect to chimpanzee, and annotated with the top 18 gene 1740
candidates. 1741
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Fig. S3.2 Whole-genome Manhattan plot of the maximum likelihood ratio
test statistic for the Yoruban (YRI) population computed from Model 1 of
VolcanoFinder on data on within-YRI polymorphism and substitutions with
respect to chimpanzee, and annotated with the top 7 gene candidates.
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Fig. S3.3 Introgression sweep signals, parameter estimates, and
sequencing properties across the 100 kb region on chromosome 22 covering
APOL gene cluster in YRI.

A. Likelihood ratio test statistic computed from Model 1 of VolcanoFinder on data
on within-YRI polymorphism and substitutions with respect to chimpanzee. Horizontal
dark gray, medium gray, and light gray bars correspond to regions that were filtered
based on Hardy-Weinberg equilibrium (HWE) test. Gene tracts and labels for key genes
are depicted below the plot, with the wider bars representing exons. B. Values for a and
divergence D corresponding to the maximum likelihood estimate of the data. Black line
corresponds to — In(a) and vertical gray bars correspond to estimated D. C. Likelihood
ratio test statistic computed from 75 of BALLET on data on within-YRI polymorphism
and substitutions with respect to chimpanzee using windows of 100 (black) or 22 (gray)
informative sites on either side of the test site. D. Mean pairwise sequence difference
(0}) computed in five kb windows centered on each polymorphic site. E. Mappability
uniqueness scores for 35 nucleotide sequences across the region. F. Mean sequencing
depth across the 108 YRI individuals as a function of genomic position, with the gray
ribbon indicating standard deviation. The background heatmap displays the number of
individuals devoid of sequencing reads as a function of genomic position, with darker
shades of red indicating a greater number of individuals with no sequencing reads.
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Fig. S3.4 Introgression sweep signals, parameter estimates, and
sequencing properties across the 100 kb region on chromosome 22 covering
APOL/ gene in CEU, matching the same region in YRI.

A. Likelihood ratio test statistic computed from Model 1 of VolcanoFinder on data
on within-CEU polymorphism and substitutions with respect to chimpanzee. Horizontal
dark gray, medium gray, and light gray bars correspond to regions that were filtered
based on Hardy-Weinberg equilibrium (HWE) test. Gene tracts and labels for key genes
are depicted below the plot, with the wider bars representing exons. B. Values for a and
divergence D corresponding to the maximum likelihood estimate of the data. Black line
corresponds to — In(a) and vertical gray bars correspond to estimated D. C. Likelihood
ratio test statistic computed from 75 of BALLET on data on within-CEU polymorphism
and substitutions with respect to chimpanzee using windows of 100 (black) or 22 (gray)
informative sites on either side of the test site. D. Mean pairwise sequence difference
(0}) computed in five kb windows centered on each polymorphic site. E. Mappability
uniqueness scores for 35 nucleotide sequences across the region. F. Mean sequencing
depth across the 108 YRI individuals as a function of genomic position, with the gray
ribbon indicating standard deviation. The background heatmap displays the number of
individuals devoid of sequencing reads as a function of genomic position, with darker
shades of red indicating a greater number of individuals with no sequencing reads.
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Fig. S3.5 Introgression sweep signals, parameter estimates, and
sequencing properties across the one Mb region on chromosome 7 covering
the PTPRN2 gene region in YRI.

A. Likelihood ratio test statistic computed from Model 1 of VolcanoFinder on data
on within-YRI polymorphism and substitutions with respect to chimpanzee. Horizontal
dark gray and light gray bars correspond to regions that were filtered based on either
mean CRG score or mean CRG score and proximity to a telomere, respectively. Gene
tracts and labels for key genes are depicted below the plot, with the wider bars
representing exons. B. Values for a and divergence D corresponding to the maximum
likelihood estimate of the data. Black line corresponds to — In(«) and vertical gray bars
correspond to estimated D. C. Likelihood ratio test statistic computed from T5 of
BALLET on data on within-YRI polymorphism and substitutions with respect to
chimpanzee using windows of 100 (black) or 22 (gray) informative sites on either side of
the test site. D. Mean pairwise sequence difference (é,r) computed in five kb windows
centered on each polymorphic site. E. Mappability uniqueness scores for 35 nucleotide
sequences across the region. F. Mean sequencing depth across the 108 YRI individuals
as a function of genomic position, with the gray ribbon indicating standard deviation.
The background heatmap displays the number of individuals devoid of sequencing reads
as a function of genomic position, with darker shades of red indicating a greater number
of individuals with no sequencing reads.
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Fig. S3.6 Introgression sweep signals, parameter estimates, and
sequencing properties across the one Mb region on chromosome 19
covering region surrounding PCAT19 and CEACAM genes in YRI.

A. Likelihood ratio test statistic computed from Model 1 of VolcanoFinder on data
on within-YRI polymorphism and substitutions with respect to chimpanzee. Horizontal
dark gray and light gray bars correspond to regions that were filtered based on
Hardy-Weinberg equilibrium (HWE) test. Gene tracts and labels for key genes are
depicted below the plot, with the wider bars representing exons. B. Values for a and
divergence D corresponding to the maximum likelihood estimate of the data. Black line
corresponds to — In(a) and vertical gray bars correspond to estimated D. C. Likelihood
ratio test statistic computed from 75 of BALLET on data on within-YRI polymorphism
and substitutions with respect to chimpanzee using windows of 100 (black) or 22 (gray)
informative sites on either side of the test site. D. Mean pairwise sequence difference
(0}) computed in five kb windows centered on each polymorphic site. E. Mappability
uniqueness scores for 35 nucleotide sequences across the region. F. Mean sequencing
depth across the 108 YRI individuals as a function of genomic position, with the gray
ribbon indicating standard deviation. The background heatmap displays the number of
individuals devoid of sequencing reads as a function of genomic position, with darker
shades of red indicating a greater number of individuals with no sequencing reads.
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Fig. S3.7 Introgression sweep signals, parameter estimates, and
sequencing properties across the one Mb region on chromosome 17
covering IGFBP1 and B4{GALNT2 in YRI.

A. Likelihood ratio test statistic computed from Model 1 of VolcanoFinder on data
on within-YRI polymorphism and substitutions with respect to chimpanzee. Horizontal
dark gray and light gray bars correspond to regions that were filtered based on
Hardy-Weinberg equilibrium (HWE) test. Gene tracts and labels for key genes are
depicted below the plot, with wider bars representing exons. B. Values for o and
divergence D corresponding to the maximum likelihood estimate of the data. Black line
corresponds to — In(a) and vertical gray bars correspond to estimated D. C. Likelihood
ratio test statistic computed from 75 of BALLET on data on within-YRI polymorphism
and substitutions with respect to chimpanzee using windows of 100 (black) or 22 (gray)
informative sites on either side of the test site. D. Mean pairwise sequence difference
(0}) computed in five kb windows centered on each polymorphic site. E. Mappability
uniqueness scores for 35 nucleotide sequences across the region. F. Mean sequencing
depth across the 108 YRI individuals as a function of genomic position, with the gray
ribbon indicating standard deviation. The background heatmap displays the number of
individuals devoid of sequencing reads as a function of genomic position, with darker
shades of red indicating a greater number of individuals with no sequencing reads.
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Fig. S3.8 Introgression sweep signals, parameter estimates, and 1849
sequencing properties across the 100 kb region on chromosome 19 covering 1sso
the gene MUC}Y in CEU. 1851

A. Likelihood ratio statistic computed from Model 1 of VolcanoFinder on the data 1ss
of within-CEU polymorphism and substitutions with respect to the chimpanzee. Gray 13
bars immediately below indicate the type of filters, and the longest gene transcripts are 1sss
depicted with thick bars standing for exons. B. Values for o and divergence D 1855
corresponding to the maximum likelihood estimate of the data. Black line corresponds 1sss
to —In(«) and vertical gray bars correspond to estimated D. C. Likelihood ratio test s
statistic computed from T, of BALLET on data on within-CEU polymorphism and 1858
substitutions with respect to chimpanzee using windows of 100 (black) or 22 (gray) 1850
informative sites on either side of the test site. D. Mean pairwise sequence difference  1s0
(9}) computed in five kb windows centered on each polymorphic site. E. Mappability s
uniqueness scores for 35 nucleotide sequences across the region. F. Mean sequencing 1862
depth across the 99 CEU individuals as a function of genomic position, with the gray s
ribbon indicating standard deviation. The background heatmap displays the number of 1ses
individuals devoid of sequencing reads as a function of genomic position, with darker  1ses
shades of red indicating a greater number of individuals with no sequencing reads. 1866
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Fig. S3.9 Introgression sweep signals, parameter estimates, and
sequencing properties across the 100 kb region on chromosome 19 covering
the gene CYP2B6 and CYP2B7 in YRI.

A. Likelihood ratio statistic computed from Model 1 of VolcanoFinder on the data
of within-YRI polymorphism and substitutions with respect to the chimpanzee. Gray
bars immediately below indicate the type of filters, and the longest gene transcripts are
depicted with the wider bars standing for exons. B. Values for a and divergence D
corresponding to the maximum likelihood estimate of the data. Black line corresponds
to —In(«) and vertical gray bars correspond to estimated D. C. Likelihood ratio test
statistic computed from T, of BALLET on data on within-YRI polymorphism and
substitutions with respect to chimpanzee using windows of 100 (black) or 22 (gray)
informative sites on either side of the test site. D. Mean pairwise sequence difference
(9}) computed in five kb windows centered on each polymorphic site. E. Mappability
uniqueness scores for 35 nucleotide sequences across the region. F. Mean sequencing
depth across the 108 YRI individuals as a function of genomic position, with the gray
ribbon indicating standard deviation. The background heatmap displays the number of
individuals devoid of sequencing reads as a function of genomic position, with darker
shades of red indicating a greater number of individuals with no sequencing reads.
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