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Neural networks have achieved many recent successes in
solving sequential processing and planning tasks. Their success
is often ascribed to the emergence of the task’s low-dimensional
latent structure in the network activity – i.e., in the learned
neural representations. Similarly, biological neural circuits and
in particular the hippocampus may produce representations
that organize semantically related episodes. Here, we investigate
the hypothesis that representations with low-dimensional latent
structure, reflecting such semantic organization, result from
learning to predict observations about the world. Specifically,
we ask whether and when network mechanisms for sensory
prediction coincide with those for extracting the underlying
latent variables. Using a recurrent neural network model
trained to predict a sequence of observations in a simulated
spatial navigation task, we show that network dynamics exhibit
low-dimensional but nonlinearly transformed representations
of sensory inputs that capture the latent structure of the
sensory environment. We quantify these results using nonlinear
measures of intrinsic dimensionality which highlight the
importance of the predictive aspect of neural representations,
and provide mathematical arguments for when and why these
representations emerge. We focus throughout on how our
results can aid the analysis and interpretation of experimental
data.

Introduction
Neural network representations are often described as
encoding latent semantic information from a corpus of data
(1–9). Similarly, the brain forms representations to help it
overcome a formidable challenge: to organize episodes, tasks
and behavior according to a priori unkown latent variables
underlying the experienced sensory information. How does
such an organization of semantic information emerge? Two
related bodies of work have shown that this can occur
due to the process of prediction – giving rise to predictive
representations. First, neural networks are able to extract
semantic characteristics from linguistic corpora when trained
to predict the context in which a given word appears (10–13).
The resulting neural representations of words (known as
word embeddings) have geometric properties that reflect the
semantic meaning of the words they represent (14). Second,
models learning to encode for future sensory information

give rise to internal representations that encode spatial maps
useful for goal-directed behavior (9, 15–17).
Characterizing predictive representations can shed light on
where and how the brain exploits predictive mechanisms
to semantically organize sensory information. The
hippocampus provides a case in point. While traditionally
distinct theories of hippocampus involve declarative memory
(18)) and spatial navigation (19), considerable effort has been
devoted to reconciling these apparently contrasting views
(20–23). In particular, Eichenbaum (22) proposed that the
hippocampus supports a semantic relational network that
organizes related episodes to subserve sequential planning
(7, 9, 24).
Inspired by this work, our goal here is to build theoretical
and data-analytic tools that explain why a predictive learning
process in neural networks leads to low-dimensional maps of
the latent structure of the underlying tasks – and what the
general signatures of such maps in neural recordings might
be.
We begin with a generative model: observations
are generated from latent variables embedded in a
low-dimensional manifold. In the special case of spatial
navigation, the latent variables are the position and
orientation of an agent in the spatial environment, and the
observations are high-dimensional sensory inputs specific
to a given position and orientation. The predictive learning
task we study is to predict future observations. Our central
question is whether a recurrent neural network (RNN) trained
on this predictive learning task will extract representations
of the underlying low-dimensional latent variables.
We develop analytical tools to reveal the low-dimensional
structure of representations created by predictive learning.
Crucial to this is the distinction between linear (25–29)
and nonlinear dimensionality (30, 31), which allows us to
uncover what we call latent space signal transfer, wherein
information about nonlinearly encoded latent variables
moves into the linearly defined top principal components of
the representation as learning progresses. Latent space signal
transfer is accompanied by clear trends in the linear and
nonlinear dimensionality of the underlying representation
manifold, and by the formation of neurons with localized
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Fig. 1. Predictive network solving a navigation task. a) Logic diagram of task and information: an agent explores a latent space X through actions and receives observations
regarding it. The network’s task is to predict the next sensory observation. By learning to do so it recovers information regarding the underlying hidden latent space. b)
Illustration of the agent with sensors in square maze where the walls have been colored (cfr. Methods). The 5 sensors span a 90o degree angle and perceive the color and
distance of the wall along their respective directions. The agent moves in a direction θ which is updated continuously according to draws from a gaussian distribution (giving
a random walk on a circle). c) Diagram of the predictive recurrent neural network: the network receives actions and observations as inputs and is trained to output the next
sensory observation. d) Cost during training for the network (cf. Methods). e) Place cell activities: average activity of 100 neurons (one per small quadrant) against the x,y
coordinates of the latent space. f) Head direction activities: average activity of 100 neurons (one per small quadrant) on the latent space against the agent’s direction θ.

activations on the nonlinear manifold, manifold cells
(32). Importantly, all of these phenomena are measurable
signatures of predictive learning that can be tested in data
from biological or machine learning experiments.

Predictive Learning in a RNN
In predictive learning a neural network is trained to minimize
the errors between its output and a stream of future sensory
observations. Here we demonstrate our main result: that the
network uncovers the low-dimensional latent space structure
in the course of optimizing its future predictions (cfr. Fig. 1a).
This occurs despite the fact that the network has no direct
information regarding the latent variables generating the
observations.
We test our hypothesis that predictive learning extracts
the underlying low-dimensional latent variables from a
high-dimensional sensory stream in the context of a spatial
navigation task. In spatial navigation the latent space is
the set of spatial coordinates that identify the agent’s state,
(x,y,θ), where θ identifies its direction. The observation
space depends on the agent’s ability to sense the environment.
The agent we consider is equipped with simple sensors
that span a visual cone of 90o centered on its current
direction θ. Each sensor reports the distance and color
of the environment’s wall along its direction, Fig. 1b.
The environment the agent navigates is a discrete grid of
locations. Each wall tile, one at each wall location, is
colored randomly; a relatively narrow spatial autocorrelation
of two tiles induces independent sensory observations across
sensors.
For simplicity we consider the case of random exploration,

where the agent’s actions do not depend on the observations.
At each step the agent’s direction θ is updated by a small
random angle dθ . The agent then moves to the discrete
grid location most aligned with the updated direction θ+dθ
(unless it is not occupied by a wall; cfr. Methods for details).
Actions are performed by the agent with respect to its
allocentric framework, so that there are nine possible choices:
for each location there are eight neighbouring locations plus
the possibility of remaining in the same location.
While the agent moves in the environment it collects a stream
of observations. In predictive learning, the RNN learns to
predict the upcoming sensory observation (see Fig. 2c). This
is achieved by minimizing the difference between the RNN
output yt at time t and the upcoming observation ot+1 : C =∑
t ||yt− ot+1||2, Fig. 2d. We refer to the activations of the

units of the trained RNN as its predictive representation.
As the agent traverses the environment, it traces out
a trajectory in three spaces: the latent variable space
(x,y,θ), the observation space, and the neural activation
(representation) space. As the RNN learns to predict the
next observation, its representation is influenced both by
the observation space (since the task is defined purely in
terms of observations) and by the latent space (since the
latent variables are a generative model for the observations);
a priori, it is not obvious which space’s influence will be
stronger.
At the end of learning, we find that neurons clearly encode
the latent space: Fig. 1e shows how the latent variables are
encoded in the neural representation space. Moreover, single
neurons’ receptive fields function as “place” and “border”
cells that encode the latent variables x and y, and as “head
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Fig. 2. Manifold analysis example. a) Example of a two dimensional environment in which the agent moves. We assign a unique color to each location of the environment. A
segment of the agent’s trajectory is represented in gray scale, with shade standing for time. b) Example tuning of a neuron with gaussian receptive field centered on
(x0,y0). c) Neural representation manifold projected onto PCs 1 to 3, under the assumptions that neurons have gaussian receptive fields which uniformly cover the
environment and that the agent uniformly explores the environment. Displayed points are uniformly sampled from the manifold. Each point of this representation manifold is
colored according to the corresponding location in latent space. The agent’s trajectory is represented on the manifold; the inset shows the top view (first two PCs). d)
Example of a neural response field on the manifold. The same neuron shown in b) is now shown, with its receptive field with respect to manifold coordinates. e) PR
dependence on the size of the gaussian field σ. The red line represents the DG as computed for 4096 neurons tiling the latent space. The blue dotted line represents the
theoretical analysis.

direction” cells that encode θ (Fig. 1f) (19, 33, 34). Thus,
the neural representation has extracted information about
the latent space from the observations, without any explicit
prompt to do so. In the last section and more in depth
in the Suppl. Mat., we show how this phenomenon is
robust to alterations of the sensory observations and network
architecture.

Latent and neural representation spaces
So far, we have considered how the latent variables are
represented one neuron at a time within our predictive
learning RNN. How does the neural population as a whole
represent the latent space? To answer this question precisely
we develop methods for analyzing neural representation
manifolds. We begin with the most basic characteristic of
a representation manifold, its dimensionality. We start by
analyzing a simplified, concrete model of latent space coding.
Low-dimensional (Low-D) representation manifolds occur
when a large number of neurons are strongly and consistently
tuned to a small set of latent variables. Place and grid
cells are examples of such coding (19, 35–37). Specifically,
given two continuous variables x,y that parametrize a latent
space, Fig. 2a, consider an ensemble of N neurons with
Gaussian tuning curves that are centered over uniformly
distributed locations on the latent space. For example a
neuron may be centered at location (x0,y0) and have a
gaussian radial basis tuning curve as shown in Fig. 2b,

Gσ(x,y) = 1
2πσ2 exp

(
− (x−x0)2+(y−y0)2

2σ2

)
. The responses

of an ensemble of N neurons map the latent space manifold
(Fig. 2a) to a neural response manifold embedded in neural
representation space (that is, the N -dimensional space

spanned by the activity of all neurons in the population. To
visualize the response manifold, we project it onto its first
three Principal Components (PCs), Fig. 2c. As the agent
traverses a trajectory xt in the 2d latent space (Fig. 2a,
grayscale), the representation rt traces out a trajectory on
the response manifold (Fig. 2c, grayscale). We can view the
tuning curve of a single neuron (Fig. 2b) on the response
manifold to obtain the manifold tuning curve of this neuron
(Fig. 2d). In the next section we will analyze in more depth
the meaning and properties of manifold tuning curves.
The two dimensions of the latent space completely
parametrize the response manifold, resulting in a
two-dimensional curved surface. The fact that the
representation manifold has two dimensions is revealed
by a measure known as Intrinsic Dimensionality (ID), whose
formal definition relies on concepts of Riemannian geometry
for smooth manifolds (30).
While the ID of the representation manifold is two, due
to its curvature, many linear components are necessary to
cover it in the N -dimensional neural space. This linear
dimensionality can be captured by a second measure of
dimensionality: the Participation Ratio (PR) of the manifold.
This metric is defined over the eigenvalues λ1..N of the
covariance matrix C of the neural activity:

PR = (TrC)2

Tr(C2)
=

(
∑N
i=1λi)2∑N
i=1λ

2
i

= 1∑N
i=1 λ̃

2
i

(1)

where λ̃i =λi/
∑N
j=1λj , see Suppl.Mat. Fig.S2 (25, 27–29).

The two most important aspects of these measures of
dimension are:

• ID of the representation manifold is determined by the
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Fig. 3. Signatures of the learned predictive representation. a) 100000 points of the neural network representation, corresponding to an equal number of steps for the agent’s
exploration, are shown projected into the space spanned by by PCs 1 to 3 of the learned representation, and colored respectively with respect to x,y latent variables (cfr.
Fig. 1b for colorcode) and θ. b) Same as panel b but for PCs 4 and 5. c) Same as panel a but colored with respect to the mean distance or color activations of the agent’s
sensors. In this specific example the first five PC components explain respectively 13.7%, 11.4%, 10.2%, 5.5%, 5.4% of the total neural variance. d) Manifold cell
activations: average activity of 100 neurons on the manifold (here displayed for the first PCs 1 and 2.). The activity of each neuron (one per quadrant) is averaged as the
population activity is in a specific “location” on the neural manifold.

latent variables underlying the inputs. As such, it does
not depend on specific details of the neural code.

• PR, by contrast, is a property of the neural code. The
more localized the neural fields are (i.e. the smaller the
response curve width σ is), the more decorrelated the
neural activations are, and, in turn, the higher the linear
dimensionality PR is.

Thus, the difference between PR and ID carries information
about the non-linear embedding of latent variables in the
representation. We suggest a novel metric, Dimensionality
Gain (DG), to capture such difference which measures the
extent to which a given representation linearly expands the
“true” (i.e. intrinsic) dimensionality of the manifold:

DG = linear dimensionality measure

non-linear dimensionality measure
= PR

ID .

(2)

Fig. 2e shows a key observation, that we will return to in the
context of predictive representations: that the Dimensionality
Gain (DG) increases as the width σ of the neural fields
decreases. Thus a higher DG is regarded as a signature of
low-D coding. In the Suppl.Mat. we give an analytical
formula for this relationship as well as a more thorough
explanation of relationships among ID, PR, and DG (Fig.S1).

The learned neural representation manifold
In the previous section we illustrated signatures of low-D
representation manifolds of the latent variable space in the
case where neurons function exactly as place cells directly
encoding the latent space. This led to interesting and readily
measurable phenomena. First, neurons show clear response
fields on the response manifold, which we named manifold
tuning curves. Moreover, the representation manifold
is low-dimensional while appearing higher-dimensional
according to linear measures: that is, the representation has
a high dimensionality gain (DG). These observations beg the
question of whether representation manifolds learned via the
predictive learning framework introduced in the first section
will have the same properties.
We begin by showing in Fig. 3a the neural representation
projected into the space of its first three PCs, colored
according to each of the three latent variables x, y, and
θ. Each point in these plots corresponds to the neural
representation at a specific moment in time, and the color of
the point is determined by the position or orientation of the
agent in the latent environment at that moment. This shows
that the agent’s location x,y is systematically encoded in the
first three PCs, while PCs four and five encode the agent’s
orientation θ, Fig. 3b.
As the agent’s input is the observations rather than the
latent variables, it is natural to ask whether the observation
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variables are similarly encoded in the RNN representation.
Fig. 3c shows that, while the first three PCs do encode
distance, they do not appear to encode the sensor-averaged
color in any of the three RGB channels. Intriguingly, this
is a consequence of learning: average color information is
encoded in the first PCs in the beginning of learning (see
more details below). Figs. 3a and 3b, taken together, suggest
that the network allocates most of its internal variability to
the encoding of latent variables.
We next explore the relationship between the responses of
single cells and the population activity along the manifold. In
the simplest case of Fig. 2, in which the latent space directly
parameterized the responses of individual cells, we showed
that the receptive fields of single cells tiled the representation
manifold in the same way that they tiled the latent space.
Does the same phenomenon occur for learned representations
in the RNN? Fig. 3d demonstrates that this is indeed the case,
by showing the activity of the same 100 neurons in Fig. 1e
averaged over “locations" in the space spanned by the first
two PCs.
This reveals that single neurons have activities that resemble
receptive fields on the neural representation manifold. We
refer to these as neural manifold cells. If the neural manifold
clearly represents the latent space (Fig. 3a) and neural
receptive fields tile the latent space (Fig. 1e), then neural
activities are also localized on the manifold. Intriguingly the
reverse is also true: localized activities in the latent space
(e.g. place cells, cfr. Fig. 1e) follow from tiling of the
manifold by single neuron receptive fields.
The preceding analysis shows how the neural representation
manifold and single neuron coding are tied to one another,
via the latent space. We proceed to study how the manifold
and its connection to the latent space emerges over the course
of predictive learning.
In Fig. 2 we highlighted two different ways to assess
the dimensionality of the representation: a linear measure
(Participation Ratio, PR) and a nonlinear one (Intrinsic
Dimensionality, ID). Here, we find that the PR of predictive
representations, computed at every training epoch, keeps
increasing through learning (Fig. 4a). The increase
corresponds to the formation of place cells with respect to
the latent space (Fig. 1e) or, equivalently, manifold cells
with respect to the representation manifold (Fig. 2d). While
the PR increases, ID decreases until it reaches a value of
approximately 5 (Fig. 4b; see also Methods). Recall from
our analysis in the previous section that the value of ID is
independent of single neuron fields. Although we cannot
explain the number 5 precisely, we note that if the latent
variables are encoded then it cannot be less than the number
of latent components (x,y,θ). Furthermore the encoding of
the actions could explain the fact that it is higher than 3. ID
is considerably smaller than PR, pointing to a dimensionality
gain DG of roughly DG = PR

ID ≈ 3 toward the end of
learning. This is consistent with our previous analysis where
we showed that local manifold fields tend to increase the DG,
(cf. Fig. 2e and Suppl. Mat.).
In Figs. 3a and 3b we showed that the first five PCs of

the learned representation are highly correlated with latent
space variables. This latent space signal transfer is another
signature of predictive learning that we can exploit and
track through training. Specifically, we compute the average
of the canonical correlation (CC) coefficients between the
representation projected into its PCs, and latent space
variables x,y,θ. The blue line in Fig. 4c shows the average
CC between the representation in PCs 1 to 3 and the position
x,y of the agent in latent space. When the average CC
is 1, this means that all the signal regarding x,y has been
transferred onto PCs 1 to 3. Similar interpretations hold
for the other curves we show, which track the transfer of
signal relative to the latent space x,y,θ. Fig. 4c shows that,
between epoch 50 and 150, most of the information regarding
the latent space moves onto the first few PC modes of the
neural activities. The same analysis can be carried out with
respect to observation space variables. This is shown in
Fig. 4d, and indicates that the observation space signal flows
out of the first few PC components as learning progresses.
Together Figs. 4c and 4d show that the representation, as
interpreted through PC components, encodes more latent
space information vs. observation space information as
learning progresses (blue and red lines).
The transfer of latent variable information to the first PCs
of the representation is tightly connected to the linear
and non-linear dimensionality of the representation, as
discussed in more depth in the Suppl. Mat. Altogether
Fig. 4 suggests that predictive learning forms a low-D
representation (Fig. 4a), with specific signatures that can
be quantified via latent signal transfer and dimensionality
(Fig. 4b).

A neural network mechanism for low-D
representation manifolds through predictive
learning
Why does predictive learning lead to the discovery, and
low-D representation, of the latent space? In this section we
provide theoretical arguments suggesting why the predictive
step, in particular, can be such an important ingredient in
extracting latent manifolds.
For simplicity, we consider the case where the movement of
the agent in the latent space X is governed by a discrete-time
dynamical system:

xt+1 = xt+F (xt) (3)

where x = (x,y,θ) and F (x) is a vector field on X ; for the
arguments below, this vector field may be deterministic or
stochastic (as for the “off policy” actions taken by the agent
in our simulations). We note that F may depend on a learned
policy but, without loss of generality, we omit this detail. The
agent’s observation at time t is then defined as a differentiable
function of the latent variable: ot = ϕ(xt). Such a mapping
induces a nonlinear dynamical system in the space of the
observations o which can be written in terms of the dynamics
of xt: ot+1 = ϕ(xt+F (xt)). Assuming that the trajectory
xt stays close to a reference point x∗ ∈X we can expand the

Recanatesi et al. | Nature Communications Submission | 5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2019. ; https://doi.org/10.1101/471987doi: bioRxiv preprint 

https://doi.org/10.1101/471987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Epoch numberEpoch number

In
tr

in
si

c 
D

im
en

si
on

al
ity

 ID

L
in

ea
r 

D
im

en
si

on
al

ity
 P

R

0 50 100 150 200 250 300 350 400
0

5

10

15

20

0 50 100 150 200 250 300 350 400
0

5

10

15

20

Intrinsic Dimensionality ID during learningLinear Dimensionality PR during learning

Epoch number Epoch number

Latent space information flow Observation space information flow

x         y        θ
distance     R      G      B

distance     R     G    B

x         y        θ

c d

a b
C

an
on

ic
al

 C
or

re
la

tio
n 

A
na

ly
si

s 
- 

C
C

A

C
an

on
ic

al
 C

or
re

la
tio

n 
A

na
ly

si
s 

- 
C

C
A

MiND
ML

MLE
DANCoFit
CorrDim
GMST

ID algorithm

PC1

PC3

PC
2

PC1

PC3

PC
2

PC1

PC3

PC
2

PC1

PC3

PC
2

Fig. 4. Learning the predictive representation. a) Participation Ratio of the representation during learning. b) Intrinsic Dimensionality (ID) of the representation during
learning. Five different intrinsic dimensionality estimators are used (cfr. Methods). c) Signal transfer analysis: Canonical Covariance Analysis between PCs of the neural
representation and the latent space. d) Same as panel c) but for the observation space.

observations in terms of the latent variables around x∗:

ot+1 = ϕ(x∗)+Dϕ(x∗)(xt+F (xt)−x∗)+O(2)
= ϕ(x∗)+Dϕ(x∗)(xt−x∗)+Dϕ(x∗)F (xt)+O(2)
' ot+Dϕ(x∗)F (xt)

(4)

where higher order terms can be neglected when the linear
regime dominates and Dϕ(x∗) is the Jacobian matrix of ϕ
evaluated at x∗.
We now turn to the update rules of the artificial recurrent
network, also defined as a discrete-time dynamical system:

rt = g (W rt−1 +W inot)
yt = g (W outrt)

(5)

where g is a nonlinear function and W ,W in,W out are
respectively recurrent, input and output weights (the agent’s
actions are not considered here, cfr. Suppl. Mat. for further
details).
We compare the effect of two cost functions on learning in
the network, given an agent’s trajectory {xt| 0 ≤ t ≤ T}
in latent space: one predictive and another non-predictive,
respectively represented by

Cpred = 1
T

T−1∑
t=0
||ot+1−yt||2,

Cnon−pred = 1
T

T−1∑
t=0
||ot−yt||2.

(6)

For the predictive coding objective Cpred, we use Eq. (4)

and Eq. (5) to obtain

||ot+1−yt||2 = ||ot+Dϕ(xt)F (xt)−
g (W outg (W rt−1 +W inot)) ||2.

(7)

Assuming that the activity of the network remains in a regime
where g is approximately linear (for convenience, with slope
1), we can further simplify Eq. (7) into

||ot+1−yt||2 = ||ot+Dϕ(x∗)F (xt)−W outW rt−1

−W outW inot||2

≤ ||ot−W outW inot||2

+ ||Dϕ(x∗)F (xt)−W outW rt−1||2.
(8)

The two terms in this inequality suggest a possible solution
to minimizing Cpred: to “auto-encode" the observation at
the current time ot while learning a linear representation
of the observed dynamics. The latter necessarily implies
a low dimensional representation, the same as latent space.
To see this, consider a sample trajectory of length T in a
neighborhood of x∗: {xt|1 < t < T} and the corresponding
network activations {rt|1 < t < T}. Let X and R be the
following Nlatent×T and N ×T matrices, respectively:

X =

 | |
x1 . . . xT
| |

 , R=

 | |
r1 . . . rT
| |


It follows that minimizing the contribution of each term
in Eq. (8) to minimize Cpred is equivalent to solving the
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ordinary least squares problem:

ϕ(X)'W outW inϕ(X)
Dϕ(x∗)F (X)'W outWR

(9)

where ϕ and F are applied column-wise to X . This
suggests that W outW in ≈ I while the activation vector
r mainly encodes a representation of the latent variable’s
dynamic update rule F (x) (akin to the dynamics’ derivative).
Furthermore, as X is rank Nlatent and, assuming W out

and W are of higher rank, a natural way to satisfy this
is by R also being rank Nlatent. This is consistent with
low-dimensional network dynamics.
We emphasize that the analysis above is approximate, and
is local, involving linearization around a given point x∗ in
the latent space. However, by allowing x∗ to change in time
so that the linear approximation holds for trajectories on a
longer scale, the network would then learn a collection of
local linear dynamics. We observe clues in our numerical
experiments that these approximate relationships are indeed
respected. Fig. S2b shows that the matrix W outW in has
a clear diagonal structure suggesting that input observations
are fed forward to the outputs. The role of recurrent dynamics
is then to approximate the local map Dϕ(x∗)F (x). In this
sense the representation r doesn’t directly encode for x but
rather represents a collection of local linear maps indexed by
the position of the agent in the latent space, and coding for its
dynamics in this space.
By contrast, for the non-predictive objective Cnon−pred
the terms ||ot+1 − yt+1||2 = ||ot − W outW rt−1 −
W outW inot||2 are missing the dynamic update and cannot
be decomposed as in Eq. (7). The absence of the
low-dimensional latent space dynamics in this non-predictive
settings suggests that the representation shouldn’t discover
the latent manifold through learning. We will demonstrate
this explicitly in the next section.
The arguments above imply that predictive representations
will have low ID (i.e., low nonlinear dimensionality). We
next give reasoning for why such predictive representation
develop localized receptive fields. As shown in Fig. 2e, this
leads, in turn, to high PR (i.e., high linear dimensionality)
and hence high DG, all phenomena that we have observed in
our network simulations above.
We begin with the assumption that the low-dimensional
predictive representations are a smooth map of the latent
space. A consequence is Lipschitz continuity, which
guarantees that nearby points in the latent space (x,x′) map
onto nearby points (r,r′) in representation space, at least up
to a given radius:

dr,r′ ≤ κdx,x′ (10)

where κ is the Lipschitz constant and d indicates distance.
This preservation of distances, or similarities – together with
the positivity constraint (ri ≥ 0 for each neuron i) – is known
to lead to localized manifold fields (38, 39) (cf. Suppl.Mat).
Interestingly, in our framework this result appears to be
true for both positive representations (when the activation

function is a sigmoid) and more general ones (e.g. when the
activation function is tanh, data not shown).
The arguments above indicate that predictive learning leads
to increases in linear dimensionality, as observed in our
learning simulations (Fig. 4a). But when should this increase
stop? A possible answer is: when the linear dimensionality of
the neural representation matches that of the outputs that the
network is seeking to produce. We give a simplified argument
based on linear readout that suggests why this answer
might be correct. Rewriting the cost function in Eq. (6)
for a linear readout we obtain Cpred = 1

T

∑T−1
t=0 ||ot+1 −

yt||2 = 1
T

∑T−1
t=0 ||ot+1 −W outrt||2, and recognize that

(for W out randomly distributed or orthogonal), the linear
dimensionality of the representation tends to match the
linear dimensionality of the output as they are directly
related through the linear transformation W out (cf. (40–
42)). Our numerical studies lend evidence to this: the PR
increases through learning until it saturates at about the PR
dimensionality of the output, which is 16.2, Fig. 4a.

Non-predictive learning fails to extract low-D
latent manifold
A central idea in this article is that learning is predictive,
so that the underlying RNN is learning to anticipate the
observation on the next timestep. But is the predictive
aspect really necessary for the network to extract the low-D
latent manifold? Here we address this question by directly
contrasting predictive learning with the corresponding
non-predictive case.
We train 100 RNNs, which differ only in the initialization
of their weights and the agent’s generated trajectory, in two
different scenarios: predictive learning vs. non-predictive
auto-encoding; that is, predicting the next observation ot+1

as described earlier, and vs. returning the current observation
ot (43, 44). We find that all networks trained through
predictive learning show the characteristics outlined above
(low Intrinsic Dimensionality with high Dimensionality Gain
and latent signal transfer), while the same networks trained
with the auto-encoding loss develop qualitatively different
representations. Most importantly, with the auto-encoding
loss the learned representations do not reflect the latent state
variables as they do for the predictive coding loss, i.e. latent
variables do not dominate the linear factors.
In Figs. 5a and 5b we show CCA between the first
three PCs of the representation and the latent space or
the observations yields completely different trends in the
predictive vs non-predictive case. In Fig. 5a the average CCA
coefficient between the representation and the latent space
grows throughout learning while the average coefficient
between the representation and the observations decreases
(cfr. Figs. 4c and 4d). In contrast, by this metric the
networks trained to auto-encode the observations do not
develop representations that encode the latent space, but
rather only the observations. Consequently, as shown in
Fig. 5c the non-predictive representation fails to develop
place fields; in particular, the activities of neurons are not
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Fig. 5. Comparing signatures of learned representations in the predictive vs non-predictive framework. a) Canonical Correlation Analysis (CCA) between PCs 1 to 3 of the
neural representation and the latent (green) or observation (blue) spaces during learning for 100 network instances. Same as panel b but for the non-predictive case. c)
Neural spatial tuning: average activations for 100 cells in the non-predictive case. Same as for Fig. 1d but for non-predictive learning. d) PR and ID dimensionality for
networks trained on predictive learning. e) PR (yellow) and ID (purple) dimensionality for the non-predictive networks. f) Dimensionality gain for predictive (blue) and
non-predictive (red) networks throughout learning.

localized in the latent space. This is in striking contrast with
the same plots for the predictive case Fig. 1e.
The PR and ID dimensions of the learned representations also
differ significantly between the predictive and non-predictive
settings. For the predictive learning network (Fig. 5d),
PR grows and ID decreases throughout training. For the
auto-encoding network (Fig. 5e) PR grows but ID does not
decrease, as the representation does not extrac the latent
manifold. We can summarize these properties by analyzing
the Dimensionality Gain. Fig. 5f shows that in the predictive
case (blue line) DG progressively increases through learning,
while this does not occur for the non-predictive case.

Control simulations that test role of
recurrence and robustness to task setup
We conducted a series of additional simulations to control
that our main findings are robust and rely on predictive
learning, as our theoretical arguments predict. The Suppl.
Mat. gives a fuller description of these (Fig. S3, Fig. S4); we
give a brief listing here. First, we checked the importance
of a trained RNN architecture, showing that both freezing
the output weights and using a non-recurrent network hinder
the development of predictive representations with the key
properties described above. We also checked the importance

of the predictive nature of the training objective: training
the network to reproduce the observations on the last time
step as opposed to predicting those on the next step hinders
learning (as does autoencoding the input, as pointed out
above). Finally, our results are robust to the details of input
statistics, specifically to adding noise in the input and to
the degradation of the information contained in the input
to be without color space, action space or distance-related
information. Altogether these findings corroborate our
theoretical arguments, cfr. Suppl.Mat. and Fig. S3, Fig. S4.

Discussion

How the brain extracts information about the latent structures
of the external world given only indirect sensory observations
is a long-standing question. We find that predictive learning
in recurrent neural networks (RNNs) leads to an intriguing
answer, as it automatically constructs a low dimensional
neural representation of the latent space. We explore this
phenomenon both in simulations of an egocentric spatial
navigation task – a situation that is naturally described by
latent variables corresponding to the spatial coordinates, and
providing intuitive mathematical arguments that indicate the
generality of the phenomenon.
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Signatures of predictive learning in neural data What
features characterize predictive learning in neural data?
When the observations to be predicted arise from an
environment with an underlying low-dimensional latent
structure, our work suggests several distinct signatures. First,
the dimensionality of the set of neural responses will likely
appear high when assessed with standard linear measures,
such as the participation ratio. However, when assessed
through nonlinear metrics sensitive to the dimensionality of
curved manifolds, the dimensionality will be lower, tending
to the number of independent latent variables. These two
signatures taken together imply a high dimensionality gain
(DG), or ratio of linear to nonlinear dimension.
The presence of a low-D neural representation manifold
suggests another signature of predictive learning: neural
manifold cells, with responses strongly tuned to the variables
which parameterize the neural representation manifold (cfr.
Fig. 3d). While locality in latent space is an established
aspect of neural receptive fields, locality in the manifold is an
allied feature that will be exciting to check in experimental
data. This builds on recent work on understanding
neuronal representations through the lens of representation
dimensionality (26–28, 38, 45).

Discovering latent structure in data and sensory
observations Our techniques require no advance
knowledge of what the latent variables are, or even
how many of them there are. The consequence is that both
the number and identity of latent variables can be discovered
by analysis of a learned neural response manifold, as studied
in other settings by (43, 46–48). We introduce latent signal
transfer as a viable way to uncover the relevant variables
fig. 3d: as the response manifold is learned, the position of
population responses along the manifold can be increasingly
well predicted by the true low-dimensional latent variables,
but increasingly poorly predicted by irrelevant variables.
Thus, the problem of discovering the low-dimensional, latent
structure in complex, high-dimensional dynamic signals
becomes that of discovering the variables that parameterize
a low-dimensional neural response manifold. We suggest
that such parametrization of learning via dimensionality and
latent signal transfer – two related phenomena as discussed
in the Suppl. Mat. – may contribute to the understanding of
how both biological brains and neural network algorithms
solve difficult tasks such as navigating an environment based
on complex, high-dimensional cues.

Related frameworks and findings From an algorithmic and
computational perspective, our proposal is motivated by the
recent success of predictive models in machine learning tasks
that require vector representations reflecting the semantic
relationships between the data samples in the tasks. On
one hand, information retrieval and computational linguistics
have benefited enormously from the geometric properties
of word embeddings learned by predictive models (10–12,
46). On the other hand, prediction over observations has
been used as an auxiliary task in reinforcement learning
to acquire representations favoring goal-directed learning

(9, 15–17). Finally we note that the responses are reminiscent
of the types of place-related activity observed in the
hippocampus and entorhinal cortex, lending in particular
mechanistic grounding to the recent proposal by (22) that
the hippocampus builds a semantic relational network.
We argue that relevant semantic relations are encoded by
neural representation of low intrinsic dimensionality, and in
turn these are being constructed by predictive learning to
reflect the relevant latent variables in a task. Our results
substantiate and build on the importance of allied frameworks
in constructing such relational networks (14, 15, 49).

Open questions Distinctive to our work is the use
of nonlinear dimensionality analysis to characterize the
relationship between the neural representation manifold and
the latent space. In order to reveal this low-dimensional
structure, we rely on nonlinear techniques, as more common
linear measures would give the illusion of high-dimensional
representations. Nonetheless, more work is needed to harness
and theoretically formalize the role of nonlinearities in
neural population codes. Furthermore, predictive learning
is a general framework that goes beyond the example of
navigation analyzed here, and future work will expand in
other directions (text, visual processing, behavioral tasks,
etc.) that may open new theoretical frameworks and new
implications for learning and generalization.
Finally, it will be crucial to adapt and test these ideas for
the analysis of large-scale population recordings of in-vivo
neural data – ideally longitudinally so that the evolution of
learned neural representations can be tracked with metrics
such as the emergence of a low-D neural representation
manifold, dimensionality gain, and latent signal transfer.
A very exciting possibility is that this might uncover the
presence of latent variables in tasks where they were
previously unsuspected or unidentified.
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Methods
Nonlinear dimensionality: Intrinsic Dimensionality While
research on estimating intrinsic dimensionality ID is
advancing, there is still no single algorithm to do so;
rather, we adopt the recommended practice of computing
and reporting several (here, five) different estimates of ID
based on distinct ideas (30, 31). The set of techniques we
use include: MiNDML (50), MLE (51), DancoFit (52),
CorrDim (53) and GMST (54, 55). These techniques
follow the selection criteria illustrated in (30), emphasizing
the ability to handle high-dimensional data (in our case
hundreds of dimensions) and being robust, efficient and
reliable; we refer the reader to (56) for a useful comparison.
We implement these techniques using the code from the the
authors available online (30, 51, 52), “out of the box" without
modifying hyperparameters.

Neural network model We study a Recurrent Neural
Network (RNN) that generates predictive neural
representations of hidden states during the exploration
of partially observable environments. RNNs are suited
to processing sequence-to-sequence tasks (57), i.e. to
generating sequences of outputs (here, the sequence of future
observations) upon receiving sequences of inputs (here, the
sequences of observations and actions). This is achieved
by exploiting internal recurrent units in the network whose
activity is updated as a function of their state at the previous
time step, together with the current input. The state of a
recurrent network is thus a function of the history of previous
observations, and can be exploited by the readout to learn
contextually appropriate responses to a new given input
(58–60).
Figure 2c illustrates our RNN model. In more detail: At a
given time t the RNN receives as input an observation vector
~o and a vector representation of the action ~a. The internal
state ~rt of the network is updated and used to generate the
network’s output through Eq. (5). The RNN is trained to
predict the observation at the next time step by minimizing
the first cost function in Eq. (6).

Description of the environment We consider a navigation
task in two dimensions. We simulate the navigation of
the agent in a square maze tessellated by a grid of evenly
spaced cells (64x64=4096 locations). At every time t the
agent is in a given location in the maze and heads in a
direction ϕ ∈ [0,2π). The agent executes a random walk in

the maze which is simulated as follows. At every step in the
simulation an action is selected by updating the direction
variable θ stochastically with dθ (i.i.d. sampled from a
Gaussian distribution with variance σ2

theta = 0.5 rad), Fig.2b
inset. The agent then attempts a move to the cell, among the
8 adjacent ones, that is best aligned to θ. The move occurs
unless the target cell is occupied by a wall, in which case the
agent remains in the current position.
The chosen action is encoded in a one-hot vector that indexes
the movement. Note that the actions are discrete choices
at ∈ [0..8] a set related to but distinct from the direction,
which is a continuous variable θt ∈ [0,2π). Moreover,
knowledge of the action doesn’t provide direct information
about the agent’s direction, as for each location and action
there are many possible directions the agent may point
towards and consequently as many possible observations.
As the agent explores the environment it collects, through a
set of 5 sensors, the distance and color of the walls along 5
different directions equally spaced in a 90 degree visual cone
centered at ϕ. Thus it records, for each sensor, four variables
at every time step: the distance from the wall and the RGB
components of the color of the wall. This information
is represented by a vector ot of size 5x4=20 as shown in
Fig.2D. Such a vector, together with the action encoded
through a 0−8 one-hot representation, is fed as input into
the network and used for the training procedure. The walls
are initially colored so that each tile corresponding to a
wall carries a random color (i.e. three uniformly randomly
generated numbers in the interval [0,1]). A Gaussian filter of
variance 2 is then used, for each color channel, to make the
color representations smooth. Fig. 2b shows an example of
such an environment.

Description of the network training We train the
connections in our RNN by minimizing the cost function
in Eq. (6) via backpropagation through time (61). While
RNNs are known to be difficult to train in many cases
(62), a simple vanilla RNN model with hyperbolic tangent
activation function is able to learn our task, Fig. 1d
The connectivity matrix of the recurrent network is initialized
to the identity (63, 64), while input and output connectivity
matrices are initialized to be normally distributed random
matrices. The network has 500 recurrent units (with the
exception noted below), while the input and output size
depend on the task as described in the description of the
environment. Each epoch of training corresponds to T = 106

time steps.
We train the network through the optimizer RMSprop
(though we checked that this specific choice does not
influence our main results). Learning proceeds through
successive epochs until the cost function fails to diminish in
value for 25 consecutive epochs. For the simulations of Fig. 5
we trained 100 networks of 100 neurons: 50 networks in the
predictive case (cost function C = 1

T

∑T−1
t=0 ||~ot+1 − ~yt||2,

cfr. Eq. (6)) and 50 networks in the non-predictive case
(C = 1

T

∑T−1
t=0 ||~ot−~yt||2).

The specific parameters adopted for the training of the
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recurrent network are: input weights ∼ N (0,0.02), output
weights ∼ N (0,0.02), RMSprop learning constant 0.0001,
RMSprop α= 0.95, RMSprop ε regularizer 1 ·10−7.

12 | Nature Communications Submission Recanatesi et al. |

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2019. ; https://doi.org/10.1101/471987doi: bioRxiv preprint 

https://doi.org/10.1101/471987
http://creativecommons.org/licenses/by-nc-nd/4.0/

