Supplemental Material

Metabolic dependency of chorismate in *Plasmodium falciparum*

Ana Lisa Valenciano, ¹ Maria L. Fernández-Murga, ² Emilio F. Merino, ¹ Nicole R. Holderman, ¹ Grant J. Butschek, ¹ Karl J. Shaffer, ³ Peter C. Tyler, ³ and Maria Belen Cassera ^{1*}

From the ¹Department of Biochemistry & Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, United States; ²Laboratory of Experimental Pathology, Health Research Institute Hospital La Fe, Valencia 46026, Spain; ³The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand

Running title: Chorismate dependency in P. falciparum

^{*} To whom correspondence should be addressed: Maria Belen Cassera: Department of Biochemistry & Molecular Biology, University of Georgia, Athens GA 30602; maria.cassera@uga.edu; Tel. (706) 542-5192.

Table S1. RPMI minimal and complete composition used in this study.

Nutrient	Final Concentration (µM or as indicated)	Minimal Medium (MM)	Complete RPMI Medium (CM)
L-Arginine	200	+	+
L-Asparagine	200	+	+
L-Aspartic acid	150	+	+
L-Cysteine	200	+	+
L-Glutamic acid	136	+	+
L-Glutamine	200	+	+
Glycine	133	+	+
L-Histidine	97	+	+
Hydroxy-L-proline	153	+	+
L-Isoleucine	100	+	+
L-Leucine	381	+	+
L-Lysine	200	+	+
L-Methionine	101	+	+
L-Proline	174	+	+
L-Serine	200	+	+
L-Threonine	168	+	+
L-Valine	171	+	+
Choline Chloride	0.0214	+	+
D-Biotin	0.00082	+	+
D-Calcium pantothenate	0.00052	+	+
Myo-Inositol	0.194	+	+
Niacinamide	0.0081	+	+
Pyridoxine hydrochloride	0.0048	+	+
Riboflavin	0.00052	+	+
Thiamine hydrochloride	0.00296	+	+
Vitamin B12	0.00037	+	+
Reduced Glutathione	3,254	+	+
$Ca(NO_3)_2$	609	+	+
HEPES	20,967	+	+
KCl	5,365	+	+
MgSO_4	407	+	+
NaCl	102,669	+	+
$Na_2HPO_4 • 7 H_2O$	2,797	+	+
D-Glucose	22,203	+	+
NaHCO ₃	26,784	+	+
Gentamicin	41,876	+	+
Hypoxanthine	367	+	+
Albumax II	5 (g/L)	+	+
Folic Acid	2.2		+
<i>p</i> -Aminobenzoate	7.3		+
L-Phenylalanine	90		+
L-Tryptophan	24.5		+
L-Tyrosine	111		+
<i>p</i> -Hydroxybenzoate	7.3		+

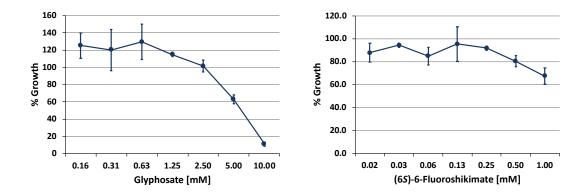
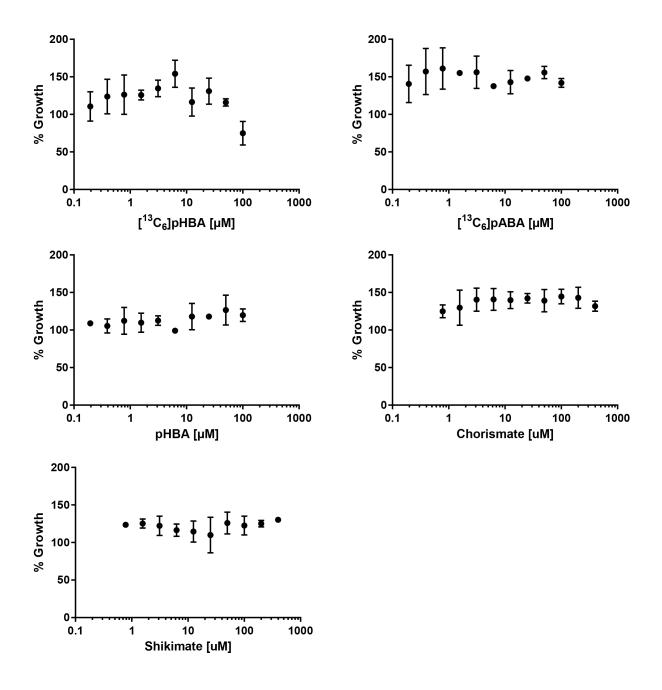



Fig. S1. Effect of glyphosate and (6S)-6-fluoroshikimate on *in vitro* growth of *P. falciparum*. Dose-dependent growth inhibition was determined after incubation for 72 h in the presence of increasing concentrations of the inhibitor in MM. Parasite growth was assessed by SYBR green. Results represent means \pm S.E.M. of two independent assays, with each assay performed in triplicate.

Fig. S2. Effect of metabolites on *P. falciparum in vitro* **growth.** Concentration-dependent potential metabolite toxicity was assessed in MM by SYBR green assay after 72 h incubation.

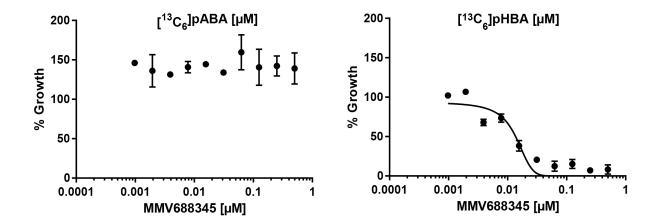


Fig. S2. (continuation) Reversal of growth inhibition by MMV688345. *P. falciparum in vitro* reversal of growth inhibition by MMV688345 in the presence of 7.3 μ M [13 C₆]pHBA or [13 C₆]pABA was assessed in MM by SYBR green assay after 72 h incubation.

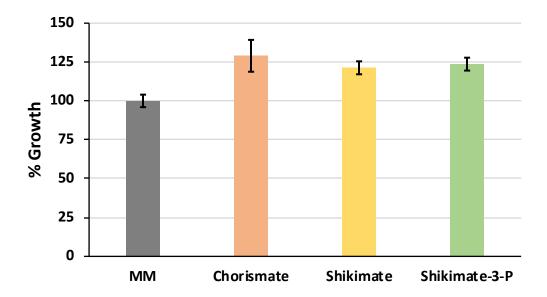


Fig. S3. *P. falciparum* growth in MM in the presence of different metabolites from the shikimate pathway. Cultures were supplemented with chorismate (12.5 μ M), shikimate (25 μ M) or shikimate-3-phosphate (25 μ M) and growth was assessed by SYBR green assay. Values represent the mean \pm S.E.M. from at least three independent assays performed in triplicate. *P* values for each supplemented metabolite with respect to control are: (*) < 0.00001, (**) < 0.000004 and (***) < 0.000009.

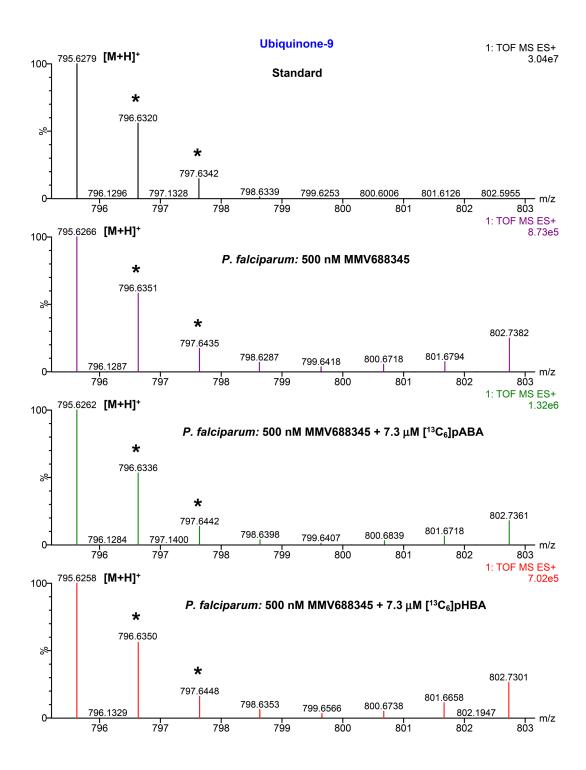
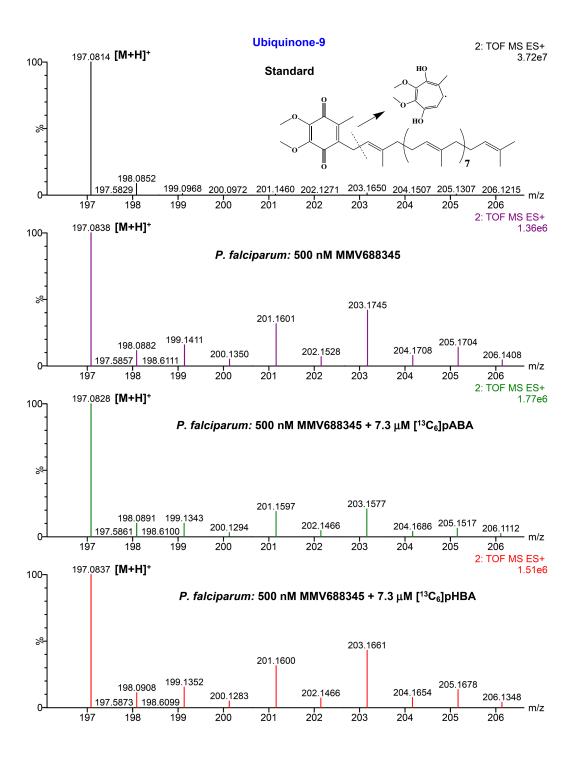
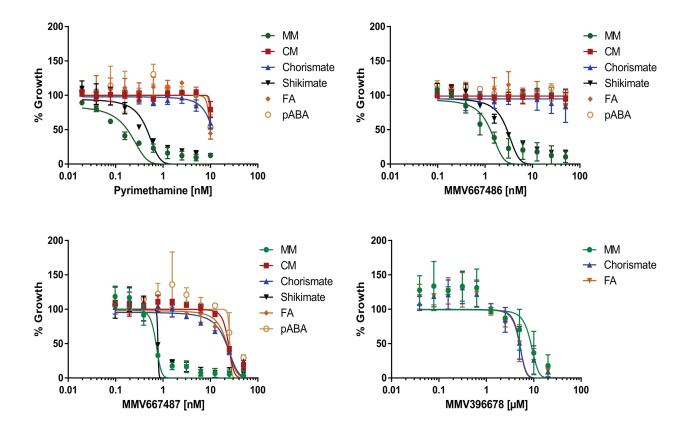




Fig. S4. LC-HRMS positive-ion mode spectra of ubiquinone-9 to assess whether *P. falciparum* is able to use [$^{13}C_6$]pHBA and [$^{13}C_6$]pABA as a metabolic precursor for ubiquinone biosynthesis. [M+H]⁺ indicates the positive-ion corresponding to the mass of ubiquinone-9 and (*) indicates its natural isotopic distribution. The ion corresponding to the [$^{13}C_6$]ubiquinone-9 ([M+H]⁺ expected = 801.6487) for [$^{13}C_6$]pHBA or [$^{13}C_6$]pABA incorporation into the head group of ubiquinone-9 was not detected.

Fig. S4. (continuation) Mass fragmentation profile of ubiquinone-9. $[M+H]^+$ indicates the positive-ion corresponding to the mass of the ubiquinone-9 tropylium ion ($[M]^+$ expected = 197.0808). The predicted fragmentation is shown. The $[^{13}C_6]$ tropylium ion ($^{13}C_6-[M]^+$ expected = 203.1010) was not detected.

Fig. S5. Growth inhibition observed in MM by pyrimethamine (IC₅₀ = 0.18 ± 0.03 nM), MMV667486 (IC₅₀ = 1.28 ± 0.17 nM) and MMV667487 (IC₅₀ = 0.71 ± 0.05 nM) was reversed in CM while growth inhibition by MMV396678 (IC₅₀ = $8,723 \pm 1.3$ nM) was not reversed by FA. Chorismate, FA and pABA but not shikimate, also reversed growth inhibition by pyrimethamine, MMV667486 and MMV667487 similar to MMV688345. The following metabolite concentrations were used: 25 μM of shikimate, 12.5 μM of chorismate and 7.3 μM of FA.