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Extended Data Fig. 1 | Corpora of human neuroimaging articles. a, Articles reporting locations of 
activity in the human brain in standard MNI or Talairach space. Article metadata and coordinates were 
curated first from BrainMap (n = 3,346), then from Neurosynth (n = 12,676), then by deploying the 
Automated Coordinate Extractor (n = 2,133).1 b, A comprehensive corpus of human neuroimaging articles 
served as the basis for a computational linguistics approach to selecting mental function words for the 
RDoC framework. Articles were retrieved in response to a PubMed query (Extended Data Fig. 3a) and 
combined with those reporting coordinate data.  c, A corpus of human neuroimaging articles enriched 
with studies addressing psychiatric illness served as the basis for selecting mental function and 
dysfunction words for the DSM framework. As before, articles were retrieved through a PubMed query 
(Extended Data Fig. 3b) and combined with those reporting coordinate data. d-f, Characterizations of the 
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corpora by the proportion of article full texts in which the terms dsm, rdoc, and machine learning occurred 
at least once, broken down by year. As expected, the proportion for dsm is consistently high over time in 
the psychiatric corpus. The proportion for rdoc begins increasing in 2010 when the first working group 
was held to populate the framework. Its proportion is lower than that of machine learning, which has 
increased since the mid-2000s. Shaded areas show bootstrap distributions generated by resampling 
articles published in a given year with replacement over 1,000 iterations. 

 
 
 
 
 
 
 
 
 

 
 
Extended Data Fig. 2 | Mental function lexicon broken down by framework. For the data-driven 
ontology, brain circuits were clustered by their PMI-weighted co-occurrences with the indicated terms, 
which were subsequently assigned to domains by the procedure detailed in Fig. 1a. For RDoC and DSM 
frameworks, terms in their respective lexicons were assigned based on semantic similarity to the centroid 
of seeds in each domain, as depicted in Fig. 2a. 
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Extended Data Fig. 3 | Search queries for NLP corpora. PubMed queries used to retrieve additional 
articles for a, the general neuroimaging corpus (see Extended Data Fig. 1b) and b, the psychiatric 
neuroimaging corpus (see Extended Data Fig. 1c). In addition to the above search criteria, studies were 
required to use human subjects and to be formatted as journal articles. Full text articles curated by these 
searches were added to the corpus of articles with coordinate data (see Extended Data Fig. 1a). 
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Extended Data Fig. 4 | Data-driven solutions for k=2 to 5 using logistic regression classifiers to 
optimize term lists. Domains generated at lower values of k than selected through the optimization 
procedure detailed in Fig. 1a.  
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Extended Data Fig. 5 | Data-driven solutions for k=7 to 10 using logistic regression classifiers to optimize term 
lists. Domains generated at higher values of k than selected through the optimization procedure detailed in Fig. 1a.  
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Extended Data Fig. 6 | Neural network approach to data-driven ontology generation. The procedure 
detailed in Fig. 1a was repeated using neural network classifiers in place of logistic regression. All neural 
network classifiers were comprised of 8 fully connected layers and were fit with learning rate = 0.001, 
weight decay = 0.001, neurons per layer = 100, dropout probability = 0.1 (applied to the last 3 
layers), and batch size = 1,024.  In Step 3 of the process, classifiers predicted term and structure 
occurrences within domains and were trained over 100 epochs.  In Step 4, classifiers predicted domain 
word list and circuit occurrences and were trained over 500 epochs. a, Validation set ROC-AUC for 
logistic regression classifiers used to select the optimal number of domains. Performance is plotted for 
forward inference classifiers (right-pointing triangles), reverse inference classifiers (left-pointing triangles), 
and their average (diamonds). Shaded areas around markers represent 99.9% confidence intervals 
computed by resampling validation set articles with replacement over 1,000 iterations. The dashed line 
represents the mean of null distributions generated by shuffling true labels for validation set articles over 
1,000 iterations, and the surrounding shaded area is the 95% confidence interval. b, Data-driven solution 
for 6 domains. Word size is scaled to frequency in the corpus of 18,155 articles with activation coordinate 
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data. The number of words per domain was selected in Step 3 using logistic regression performance in 
the validation set. Brain maps show structures included in each circuit as a result of clustering by PMI-
weighted co-occurrences with function terms, which were not influenced by the downstream neural 
network approach. c, Article partitioning based on maximal similarity to terms and structures in domain 
archetypes plotted with multidimensional scaling. d, Modularity of the article partitioning was assessed by 
comparing the mean Dice distance of function and structure occurrences of articles between domains 
versus within domains. Observed values are colored by domain; null distributions in gray were computed 
by shuffling distance values across article partitions. e, Generalizability was assessed by computing the 
Dice similarity of each domain’s “archetype” vector of function terms and brain structures with the terms 
and structure occurring in each article of the domain’s partition. Observed values are colored by domain; 
null distributions in gray were computed by shuffling terms and structures in each archetype. 
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Extended Data Fig. 7 | Data-driven solutions for k=2 to 5 using neural network classifiers for 
optimizing term lists. Domains generated at lower values of k than selected based on ROC-AUC results 
shown in Fig. 6a.  
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Extended Data Fig. 8 | Data-driven solutions for k=7 to 10 using neural network classifiers for optimizing term 
lists. Domains generated at lower values of k than selected based on ROC-AUC results shown in Fig. 6a. 
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Extended Data Fig. 9 | Additional evaluation metrics for reverse inference classification with 
logistic regression. Precision-recall curves are shown for the test set performance of logistic regression 
classifiers with mental function features defined by a, the data-driven ontology, b, RDoC, and c, the DSM. 
d-f, Bootstrap distributions of F1 score (colored) were computed by resampling articles in the test set with 
replacement over 1,000 iterations. Observed values in the test set are shown with solid lines. Null 
distributions (gray) were computed by shuffling true labels for term list scores over 1,000 iterations; the 
99.9% confidence interval is shaded, and distribution means are shown with dashed lines. The mean of 
each bootstrap distribution was assessed for a difference in mean from its corresponding null distribution 
(* FDR < 0.001). g, F1 scores across the domains in each framework. Solid lines denote means of the 
bootstrap distributions macro-averaged across classifiers. Differences in bootstrap means were assessed 
for each framework pair (* FDR < 0.001). 
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Extended Data Fig. 10 | Forward inference classification with logistic regression. a, Logistic 
regression classifiers were trained to predict whether coordinates were reported in each of 114 brain 
structures based on the occurrences of words for mental functions in neuroimaging article full texts. Plots 
are colored by the domain assignment for structures in the data-driven framework, and by the domain 
with the highest PPMI for the structure in RDoC and DSM frameworks. Classifier features included word 
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occurrences thresholded by mean frequency across the corpus, then the mean frequency of words in 
each domain. Activation coordinate data were mapped to anatomically defined structures the brain2 and 
cerebellum.3 Training was performed in 70% of articles (n = 12,708), hyperparameters were tuned on a 
validation set containing 20% of articles (n = 3,631), then classifiers were evaluated in a test set 
containing 10% of articles (n = 1,816). ROC curves are shown for the test set performance of classifiers 
with mental function features defined by b, the data-driven ontology, c, RDoC, and d, the DSM. e-g, 
Bootstrap distributions of ROC-AUC (colored) were computed by resampling articles in the test set over 
1,000 iterations. Observed values in the test set are shown with solid lines. Null distributions (gray) were 
computed by shuffling true labels over 1,000 iterations; the 99.9% confidence interval is shaded, and 
distribution means are shown with dashed lines. Bootstrap distributions were assessed for overlap with 
null distributions (* FDR < 0.001). h, ROC-AUC across the domains in each framework. Solid lines denote 
means of the bootstrap distributions macro-averaged across classifiers. Differences in bootstrap means 
were assessed for each framework pair (* FDR < 0.001). I-j, Difference in ROC-AUC between the data-
driven and expert determined frameworks. Maps were thresholded to show differences with FDR < 0.001 
based on permutation testing. 
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Extended Data Fig. 11 | Additional evaluation metrics for forward inference classification with 
logistic regression. Precision-recall curves are shown for the test set performance of logistic regression 
classifiers predicting mental function term lists defined by a, the data-driven ontology, b, RDoC, and c, 
the DSM. d-f, Bootstrap distributions of F1 score (colored) were computed by resampling articles in the 
test set with replacement over 1,000 iterations. Observed values in the test set are shown with solid lines. 
Null distributions (gray) were computed by shuffling true labels for term list scores over 1,000 iterations; 
the 99.9% confidence interval is shaded, and distribution means are shown with dashed lines. The mean 
of each bootstrap distribution was assessed for a difference in mean from its corresponding null 
distribution (* FDR < 0.001). g, F1 scores across the domains in each framework. Solid lines denote 
means of the bootstrap distributions macro-averaged across classifiers. Differences in bootstrap means 
were assessed for each framework pair (* FDR < 0.001). I-j, Difference in F1 scores between the data-
driven and expert determined frameworks. Maps were thresholded to show differences with FDR < 0.001 
based on permutation testing. 
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Extended Data Fig. 12 | Reverse inference classification with neural networks. Neural network 
classifiers were trained to perform reverse inference with the same features and labels as described in 
Fig. 4. Classification models comprised 8 fully connected (FC), all with ReLU activation functions except 
the output layer which was activated by a sigmoid. The optimal learning rate, weight decay, number of 
neurons per layer, and dropout probability were determined for each framework through a randomized 
grid search. ROC curves are shown for the test set performance of classifiers with mental function 
features defined by b, the data-driven ontology, c, RDoC, and d, the DSM. e-g, Bootstrap distributions of 
ROC-AUC (colored) were computed by resampling articles in the test set with replacement over 1,000 
iterations. Observed values in the test set are shown with solid lines. Null distributions (gray) were 
computed by shuffling true labels for term list scores over 1,000 iterations; the 99.9% confidence interval 
is shaded, and distribution means are shown with dashed lines. The mean of each bootstrap distribution 
was assessed for a difference in mean from its corresponding null distribution (* FDR < 0.001). h, ROC-
AUC across the domains in each framework. Solid lines denote means of the bootstrap distributions 
macro-averaged across classifiers. Differences in bootstrap means were assessed for each framework 
pair (* FDR < 0.001). 
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Extended Data Fig. 13 | Additional evaluation metrics for reverse inference classification with 
neural networks. Precision-recall curves are shown for the test set performance of neural network 
classifiers with mental function features defined by a, the data-driven ontology, b, RDoC, and c, the DSM. 
d-f, Bootstrap distributions of F1 score (colored) were computed by resampling articles in the test set with 
replacement over 1,000 iterations. Observed values in the test set are shown with solid lines. Null 
distributions (gray) were computed by shuffling true labels for term list scores over 1,000 iterations; the 
99.9% confidence interval is shaded, and distribution means are shown with dashed lines. The mean of 
each bootstrap distribution was assessed for a difference in mean from its corresponding null distribution 
(* FDR < 0.001). g, F1 scores across the domains in each framework. Solid lines denote means of the 
bootstrap distributions macro-averaged across classifiers. Differences in bootstrap means were assessed 
for each framework pair (* FDR < 0.001). 
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Extended Data Fig. 14 | Forward inference classification with neural networks. a, Neural network 
classifiers were trained to perform forward inference with the same features and labels as described in 
Extended Data Fig. 8. Forward inference classifiers were optimized over a grid search with the same 
hyperparameter values as reverse inference classifiers in Extended Data Fig. 10. ROC curves are shown 
for the test set performance of classifiers with mental function features defined by b, the data-driven 
ontology, c, RDoC, and d, the DSM. e-g, Bootstrap distributions of ROC-AUC (colored) were computed 
by resampling articles in the test set over 1,000 iterations. Observed values in the test set are shown with 
solid lines. Null distributions (gray) were computed by shuffling true labels over 1,000 iterations; the 
99.9% confidence interval is shaded, and distribution means are shown with dashed lines. Bootstrap 
distributions were assessed for overlap with null distributions (* FDR < 0.001). h, ROC-AUC across the 
domains in each framework. Solid lines denote means of the bootstrap distributions macro-averaged 
across classifiers. Differences in bootstrap means were assessed for each framework pair (* FDR < 
0.001). I-j, Difference in ROC-AUC between the data-driven and expert determined frameworks. Maps 
were thresholded to show differences with FDR < 0.001 based on permutation testing. 
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Extended Data Fig. 15 | Additional evaluation metrics for forward inference classification with 
neural networks. Precision-recall curves are shown for the test set performance of neural network 
classifiers predicting mental function term lists defined by a, the data-driven ontology, b, RDoC, and c, 
the DSM. d-f, Bootstrap distributions of F1 score (colored) were computed by resampling articles in the 
test set with replacement over 1,000 iterations. Observed values in the test set are shown with solid lines. 
Null distributions (gray) were computed by shuffling true labels for term list scores over 1,000 iterations; 
the 99.9% confidence interval is shaded, and distribution means are shown with dashed lines. The mean 
of each bootstrap distribution was assessed for a difference in mean from its corresponding null 
distribution (* FDR < 0.001). g, F1 scores across the domains in each framework. Solid lines denote 
means of the bootstrap distributions macro-averaged across classifiers. Differences in bootstrap means 
were assessed for each framework pair (* FDR < 0.001). I-j, Difference in F1 scores between the data-
driven and expert determined frameworks. Maps were thresholded to show differences with FDR < 0.001 
based on permutation testing. 
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Extended Data Fig. 16 | Reverse inference results across classification architectures. Observed 
test set ROC-AUC and F1 scores for logistic regression (LR) and neural network (NN) classifiers. Each 
99.9% confidence interval (CI) for the difference between LR and NN classifiers was computed by 
bootstrap resampling of articles in the test set over 1,000 iterations. Classifiers for which the 99.9% CI did 
not include zero are highlighted in yellow. 
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Extended Data Fig. 17 | Left hemispheric forward inference results across classification 
architectures. Observed test set ROC-AUC and F1 scores for logistic regression (LR) and neural 
network (NN) classifiers. Each 99.9% confidence interval (CI) for the difference between LR and NN 
classifiers was computed by bootstrap resampling of articles in the test set over 1,000 iterations. 
Classifiers for which the 99.9% CI did not include zero are highlighted in yellow. 
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Extended Data Fig. 18 | Right hemispheric forward inference results across classification 
architectures. Observed test set ROC-AUC and F1 scores for logistic regression (LR) and neural 
network (NN) classifiers. Each 99.9% confidence interval (CI) for the difference between LR and NN 
classifiers was computed by bootstrap resampling of articles in the test set over 1,000 iterations. In all 
cases, the 99.9% CI included zero. 
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Extended Data Fig. 19 | Articles partitioned by similarity to mental functions and brain circuits in 
the domains of each framework. Dice distance between articles (n = 18,155) is shown for binarized 
vectors of the mental function words that occurred in the full text and the brain structures to which 
reported coordinate data were mapped. Articles were matched to domains based on the dice similarity of 
their word-structure vectors, and domain assignments are represented by the color coding scheme 
established in Fig. 3 for a, the data-driven ontology, b, RDoC, and c, the DSM. Shaded areas represent 
the lower triangle of distances between articles within each domain partition. d-f, Dice distance between 
articles across the corpus (n = 18,155) visualized with t-SNE. Distances were computed between the 
terms and structures of every article, and dimensionality of the 18,155 x 18,155 matrix was reduced by 
principal component analysis. The first 10 principal components (18,155 x 10) were taken as inputs to t-
SNE, which was trained with perplexity = 25, early exaggeration = 15, learning rate = 500, and maximum 
iterations = 1,000. Articles are colored by their domain assignments in each framework. 
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