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Abstract— This paper aims to apply machine learning tech-
niques to an automated epileptic seizure detection using EEG
signals to help neurologists in a time-consuming diagnostic
process. We employ two approaches based on convolution
neural networks (CNNs) and artificial neural networks (ANNs)
to provide a probability of seizure occurrence in a windowed
EEG recording of 18 channels. In order to extract relevant
features based on time, frequency, and time-frequency domains
for these networks, we consider an improvement of the Bayesian
error rate from a baseline. Features of which the improvement
rates are higher than the significant level are considered.
These dominant features extracted from all EEG channels are
concatenated as the input for ANN with 7 hidden layers, while
the input of CNN is taken as raw multi-channel EEG signals.
Using multi-concept of deep CNN in image processing, we
exploit 2D-filter decomposition to handle the signal in spatial
and temporal domains. Our experiments based on CHB-MIT
Scalp EEG Database showed that both ANN and CNN were
able to perform with the overall accuracy of up to 99.07%
and F1-score of up to 77.04%. ANN with dominant features
is more capable of detecting seizure events than CNN whereas
CNN requiring no feature extraction is slightly better than ANN
in classification accuracy.

I. INTRODUCTION

An epileptic seizure is defined by the International League
Against Epilepsy (ILAE) as a transitory occurrence of signs
and/or symptoms due to abnormal excessive or synchronous
neuronal activity in the brain [1]. It was reported that 65
million people of all ages have the epilepsy [2]. Owing to
the impacts of epileptic seizures, which can lead to neuronal
injuries, patients with recurrent or prolonged seizures should
be reviewed by neurologists for a prompt diagnosis and
treatment [3], [4]. For those with refractory status epilepticus
unresponsive to medication, neurologists usually monitor the
patients with continuous video-EEG monitoring [5], [6]. This
is a combination of EEG and video, recorded simultaneously
to observe brain activities in correlation with a clinical
change. Nevertheless, this task is still a time-consuming
process for the neurologists to review the continuous EEG.
Therefore, an automated epileptic seizure detection using
EEG signals is developed to facilitate the interpretation of
long-term monitoring [7].

Ictal EEG pattern is a sequence of spike, sharp wave, and
slow wave when seizures occur [8]. By the morphology of
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these three patterns, there are continuous changes in ampli-
tude, frequency, and rhythms relative to the background [9].
When a seizure originates at some point and rapidly engaging
the whole networks, causing EEG changes apparently appear
on the whole brain, it is called a generalized-onset seizure.
On the other hand, a seizure is focal-onset when originating
within networks limited to one hemisphere, making the EEG
changes restricted in a particular brain region [10], [11].

Many researchers have applied machine learning tech-
niques in the automated seizure detection [12]. Local Bi-
nary Pattern (LBP) was used to reflect the differences of
patterns from normal and ictal EEG signals using k-nearest
neighbor (k-NN) [13]. Similarly, Local Neighbor Descriptive
Pattern (LNDP), and Local Gradient Pattern (LGP) were
developed to overcome a disadvantage of LBP which is
locally invariant [14]. When combined with k-NN, support
vector machine (SVM), decision tree (DT), and ANN, LNDP
and LGP are able to classify each sample of EEG time
series into seizure and normal group successfully. Analysing
EEG signals in frequency domain is also common. The first
four minimum and maximum amplitudes, and their corre-
sponding frequencies were extracted from the power spectral
density of EEG signal to measure frequency properties in
seizure [15]. All extracted features were then applied to
Gaussian mixture model, ANN, and SVM for classification.
Weighted permutation entropy (WPE) was computed from
coefficients of discrete wavelet transform [16]. WPE from
each decomposition level was concatenated into a feature
vector and the vector was fed into three classifiers, namely,
linear SVM, radial basis function kernel SVM (RBF SVM)
and ANN. Some study attempted to select features based on
relevance and redundancy analysis in seizure detection to re-
duce computational complexity [17]. Although these feature-
based methods achieved typically promising results, they still
require background knowledge about seizure characteristics
in the feature extraction process.

On the other hand, deep learning approaches can be
exploited to seemingly characterize and recognize a nature
of EEG signals. Various purposes of applying CNNs include
classifying spectrogram of a small EEG epoch [18] using
a modified stacked sparse denoising autoencoder (mSSDA),
classifying seizure occurrences from a single-channel in-
tracranial EEG signal [19], generating suitable features for
interictal epileptiform discharges (IED) detection [20], or
detecting interictal epileptiform spikes from scalp EEG
recordings [21].

However, to our knowledge, there has been no research
focusing on a deep CNN in detecting seizure using raw
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scalp EEG signals from all channels. It is more likely that
common epileptic cases contain generalized seizures so a
detection process using signals from all channels can become
a common practice and require no prior knowledge about
EEG characteristics. Hence, this paper aims to explore a
capability of a deep CNN model in seizure detection using
raw scalp EEG signals and compare its performance with a
deep ANN model using multiple selected features as inputs.
We also present a feature selection based on the Bayesian
classifier [22] to choose dominant features independently.
The performances of deep CNN and ANN models will be
evaluated based on accuracy and F1-score of classification
tasks and tested on the public CHB-MIT database.

This paper is organized as follows. Firstly, we describe the
significance of features based on the Bayesian theorem and
feature relevance in Section II. The description of database,
subject demographic and the process of signal segmentation
are explained in Section III. This section also presents the
proposed scheme of applying CNN model and describe ANN
structures. Numerical results and discussions are shown in
Section V.

II. FEATURES FOR SEIZURE DETECTION

In seizure detection, there are many features, e.g., statis-
tical parameter, energy, and entropies [23], commonly used
with machine learning techniques. However, using too many
insignificant and relevant features requires more complex
models and leads to high computational complexity and over-
fitting problem. For this reason, we apply a Bayesian-based
method to determine significance of each feature and select
only relevant features as inputs of ANN. Feature candidates
calculated from time, frequency, and time-frequency domains
are shown in Table I where features from time, frequency,
and time-frequency domains are computed from a raw EEG
signal, Fourier transform of the EEG signal, and coefficients
of discrete wavelet transform (DWT), respectively. In DWT,
EEG signals are decomposed into 5 levels using Daubechies
4 wavelet. Each feature is calculated on each channel simul-
taneously and the feature is averaged over all the channels
from the left and right sides of the brain.

TABLE I: List of feature candidates.

Domain Feature

Time

Mean, Variance, Coefficient of variation,
Skewness, Kurtosis, Max, Min, Energy,
Nonlinear energy, Line length, Shannon
entropy, Approximate entropy, Sample
entropy, Number of zero crossing, Number of
local extrema, Mobility, Complexity

Frequency
Intensity weighted mean frequency, Intensity
weighted bandwidth [24], Spectral entropy,
Peak frequency, Peak amplitude

Time-frequency Mean, Absolute mean, Variance, Skewness,
Kurtosis, Max, Min, Energy, Line length

From literature [17], [24], these candidates are selected
according to abilities to capture changes of amplitude, fre-
quency, and rhythms. Figure 1 shows examples of feature that
change corresponding to the changes in EEG signals. The
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Fig. 1: Feature examples that respond to changes of EEG sig-
nals. Each feature is calculated from 4-second EEG epochs
and the sliding window is 1 second. This displayed signal
was collected from the file chb01 16 on the channel FP1-F7.
Dash line indicates seizure onset and dashdotted line shows
seizure offset.

dash and dashdotted lines indicate seizure onset and offset
from an annotation, respectively. We can see that variance
and nonlinear energy are typically high corresponding to the
high amplitude in the EEG signal during the seizure activity.
On the other hand, Shannon entropy in seizure duration
is slightly different from the background. These suggest
us that each feature responds to EEG signal differently;
thus, combining many features can be more beneficial than
applying an individual feature.

The posterior probability density functions of the averaged
features on the left and right sides are separately esti-
mated using Gaussian kernel non-parametric density estima-
tion [22]. Consequently, we apply the Bayesian classifier to
each posterior probability function to obtain a classification
error. However, using the Bayesian error rate could be
misleading in the context of unbalanced data, especially in
clinical diagnosis since data contain only a small fraction
of seizure samples. For instance, the ratio of a number of
abnormal samples to the normal sample size is 0.0001, the
Bayesian error rate is then typically at most 0.0001, referring
to the accuracy of at least 99.99%. This too optimistic result
can be simply achieved by detecting every sample as normal.
Hence, a score indicating an improvement of the Bayesian
error from a baseline is used to determine the significance
of each features, defined by

rate =
err0 − errb

err0
× 100% (1)

where errb is the error from the Bayesian classifier and err0
is the error from the baseline method that classifies every
segment as normal.
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Fig. 2: Classification process for ANN model. Chosen fea-
tures are independently extracted from 18 channels and
stacked into a feature vector. Then the feature vector is
applied to ANN to determine a seizure activity.

III. SEIZURE DETECTION SCHEME

The proposed classification process for a deep ANN-based
model is shown in Figure 2. The ANN model contains 7
hidden layers and each layer has 8 neurons. The chosen
features from the Bayesian method are extracted from each
channel separately. Consequently, a feature vector as the
input to the ANN model is constructed by concatenating all
features from all channels.

CNN architecture in this study consists of convolutional
layers, activation layers, normalization layers [25], pooling
layers, dropout layers [26], and fully-connected layers. We
propose a detection scheme using raw EEG signals from all
channels as input as illustrated in Figure 3 and the proposed
CNN model is depicted in the block where Conv(h,w, f)
stands for a convolutional layer of size (h,w) with f filters,
BN is a batch normalization layer, ReLU is a rectified linear
unit as an activation layer, Max(h,w) is a max-pooling
layer of size (h,w), Dropout(α) is a dropout layer with a
fraction of α to disconnect the input units, and FC(a, b)
stands for a fully-connected layer that receives a inputs,
excluding a bias term, and produces b outputs. In order to
capture ictal patterns in EEG signals with a convolutional
layer, a filter width corresponding to an EEG signal in one
channel should be higher than the filter height, meaning that
w > h. The model is adjusted by reducing a number of filters
and adding convolutional layers to prevent an overfitting
problem while maintaining a high classification accuracy
since the deeper model with less parameter is approximately
better than the shallow model [27]. In addition to decreasing
model complexity and parameters, the convolutional layer is
decomposed into (w, 1) and (1, h) filters [28]. Moreover, a
1-by-1 convolutional layer [29] is added in order to reduce
computational complexity.

IV. DATA DESCRIPTION

This study uses the public CHB-MIT Scalp EEG
Database [30] that consists of 24 EEG recordings from 23
patients: 5 males aged 3-22 years, 17 females aged 1.5-
19 years, and one anonymous subject. All EEG data were
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Fig. 3: Classification process for the CNN model. Raw EEG
signals from every channels are simultaneously fed to a
convolutional neural network to produce the probability of
seizure appearance.

obtained at Children’s Hospital Boston and fully deidentified
and privacy-protected. All signals were measured with sam-
pling frequency of 256 Hz at 16-bit resolution and stored
in EDF file [31]. The international 10-20 system is used to
locate electrode positions. This database is available online at
PhysioNet (https://physionet.org/physiobank/
database/chbmit/).

In our experiment, 24 records listed Table II were ran-
domly selected based on the conditions that every record
must have at least one seizure and was collected with a
bipolar montage. According to the bipolar montage, the
channels are FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-
T3, T3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8,
F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ. So the total seizure
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TABLE II: List of records.

Records
chb01 04 chb01 16 chb02 16+ chb02 19 chb03 03
chb03 35 chb04 08 chb04 28 chb05 06 chb05 13
chb06 01 chb06 04 chb07 13 chb07 19 chb08 02
chb08 05 chb09 06 chb09 08 chb10 38 chb10 89
chb23 06 chb23 09 chb24 04 chb24 11

TABLE III: Bayesian error rate and improvement of features
with high improvement rates on left and right sides of the
brain.

Feature Left side Right side
errb rate errb rate

Variance 0.0156 7.76 0.0160 5.07
Energy 0.0156 7.76 0.0160 5.06
Nonlinear energy 0.0153 9.49 0.0154 8.69
Shannon entropy 0.0168 0.31 0.0159 5.85

duration from all chosen records is 2401 seconds and the
total record duration is 182957 seconds; thus there exists
1.31% seizure period. We use each record separately to
train and test the models. In every channel, each record
is then segmented into samples with 4-second width, 1024
sample points per segment, and the moving-window is set
to 1 second, with 3-second overlapping with the previous
segment. As a result, the input of the CNN model has the
size of 18× 1024.

V. RESULTS AND DISCUSSION

Features in Table I are computed from each EEG seg-
ment of each record and features from all conditionally
random records are used to estimate posterior probability
distributions and calculate improvement rates. Any feature
with improvement rate greater than 5% is considered to be
significant in seizure detection. As a result, time-domain
features with high improvement rates shown in Table III
were variance, energy, nonlinear energy, and Shannon en-
tropy, whereas the other time- and frequency-domain features
obtained apparently small improvement rates, less than 1%.

Moreover, as shown in Figure 4, features calculated from
wavelet coefficients which obtained high improvement rates
were variance and energy from all decomposition levels,
and line length from approximation coefficients of level 5.
However, since variance and energy have similar contribution
by their mathematical expression, causing redundancy, we
neglected the energy from both time and time-frequency
domains as a feature. So, instead of applying all 76 features,
only 10 features are used and calculated from each channel
independently. The dominant features used in further exper-
iment with a deep ANN are listed as follows:

• Time domain: Variance, nonlinear energy, Shannon
entropy.

• Time-frequency domain: Variance from all decompo-
sition levels, line length from approximation level 5.

Therefore, the total number of features of each sample is
10×18 = 180. All dominant features are then normalized by
the z-score normalization. Hence, the ANN model contains
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Fig. 4: Improvement rate based on the Bayesian method
of time-frequency domain features calculated from discrete
wavelet transform using Daubechies 4 wavelet. The features
are averaged over all channels from the left and right sides
of the brain.

1, 889 trainable parameters whereas the CNN model has
7, 945 parameters to train.

We apply 10-fold cross validation to test the proposed
scheme. The following four metrics from each test fold are
averaged and reported to assess the model performance:

• Accuracy is the number of correctly classified samples
divided by the total number of sample.

• Sensitivity is the proportion of actual seizure samples
that are detected as a seizure.

• Specificity measures the ratio of a number of correctly
classified normal samples to the normal sample size.

• F1-score is a harmonic mean of positive predictive value
(PPV) and sensitivity where PPV is the proportion of
detected seizure samples correctly classified [32].

Figure 5 illustrates the averaged accuracy and F1-score
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Fig. 5: Classification performance of CNN and ANN.

evaluated on each EEG record. As a result, accuracies from
these models are similar and are typically above 90% in every
case. Apparently, CNN obtains slightly higher accuracy in
many cases. They also provide similarly high specificities
as shown in Figure 6. However, sensitivities and F1-score
of classification of the CNN model are mostly less than
of ANN. Table IV shows the averaged metrics presented
in percentage over all records from the test samples. We
can see that in overall CNN yielded 99.07% accuracy and
99.63% specificity whereas 98.62% accuracy and 98.92%
specificity were obtained by ANN. On the other hand, ANN
gave 77.04% F1-score and 82.05% sensitivity, and CNN
provided 65.69% F1-score and 66.76% sensitivity.

According to 15% and 11% differences of specificity and
F1-score, ANN seems to be much more useful than CNN
in the seizure detection that is known to be involved with
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Fig. 6: Sensitivity and specificity of classification using CNN
and ANN models.

TABLE IV: Averaged performance metrics over records and
number of model parameter.

Model Sensitivity Specificity Accuracy F1 Parameters
CNN 66.76 99.63 99.07 65.69 7,945
ANN 82.05 98.92 98.62 77.04 1,889

imbalanced data. From the data description, there are much
less seizure samples than the normal, especially some records
have a small seizure duration with less than 20 seconds.
It means that a few wrong detections of seizure samples
can cause considerable reduction in sensitivity. For example,
detecting 4 epileptic samples as normal from 40 seizure
samples causes 10% difference in sensitivity. On the other
hand, incorrect detections of normal samples slightly affects
specificity. Therefore, 15% difference in the sensitivity and
11% in F1-score between ANN and CNN provide moderately
different results in detection. This means ANN seems to
detect abnormal samples better than CNN in a certain level
while CNN has more potential to classify normal people. If
model complexity is taken into account, these two models
are comparable when achieving the same level of accuracy.
Our ANN model has less parameter but requires a feature ex-
traction process, while the CNN model has more parameters
but takes multi-channel raw EEG signals as input.

VI. CONCLUSIONS

This research proposes a deep CNN model for classifying
seizure events in multi-channel EEG signals. The model
input is a raw scalp signal and the model is adjusted to
reduce the complexity while achieving a promising accuracy.
To compare with a deep artificial neural network (ANN),
selecting significant features based on the improvement rate
of Bayesian classification error is applied, and all combined
prominent features are taken as the input of ANN. Per-
forming classifications on 24 EEG recordings from CHB-
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MIT database shows that the accuracies of CNN and ANN
are comparable (99.07% and 98.62% respectively). ANN
achieves 11% higher in F1-score and has less number of
parameters. However, ANN also requires 10 features calcu-
lated based on both time and frequency domains and from
all EEG channels. For this reason, if we focus on the seizure
detection in clinic, the ANN model with dominant features is
recommended. However, if the model accuracy is primarily
considered, CNN can be a favorable approach as it requires
no background knowledge about ictal patterns while it can
achieve a comparable overall accuracy to ANN.
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