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Abstract 6 

We present Scaden, a deep neural network for cell deconvolution that uses gene 7 

expression information to infer the cellular composition of tissues. Scaden is trained 8 

on single cell RNA-seq data to engineer discriminative features that confer robustness 9 

to bias and noise, making complex data preprocessing and feature selection 10 

unnecessary. We demonstrate that Scaden outperforms existing deconvolution 11 

algorithms in both precision and robustness, across tissues and species. A single 12 

trained network reliably deconvolves bulk RNA-seq and microarray, human and 13 

mouse tissue expression data. Due to this stability and flexibility, we surmise that deep 14 

learning-based cell deconvolution will become a mainstay across data types and 15 

algorithmic approaches. Scaden’s comprehensive software package is easy to use on 16 

novel as well as diverse existing expression datasets available in public resources, 17 

deepening the molecular and cellular understanding of developmental and disease 18 

processes.  19 
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Introduction 23 

The analysis of tissue-specific gene expression using Next Generation Sequencing 24 

(RNA-seq) is a centerpiece of the molecular characterization of biological and medical 25 

processes1. A well-known limitation of tissue-based RNA-seq is that it typically 26 

measures average gene expression across many molecularly diverse cell types that 27 

can have distinct cellular states2. A change in gene expression between two conditions 28 

can therefore be attributed to a change in the cellular composition of the tissue or a 29 

change in gene expression in a specific cell population, or a mixture of the two. To 30 

deconvolve systematic differences in cell type composition is especially important in 31 

systems with cellular proliferation (e.g. cancer) or cellular death (e.g. neuronal loss in 32 

Neurodegenerative Diseases)3. 33 

To account for this problem, several computational cell deconvolution methods have 34 

been proposed during the last years4,5. These algorithms attempt to calculate an 35 

approximation of the cell type composition of a given gene expression sample, such 36 

that systematic differences in cellular abundance between samples can be detected, 37 

interpreted, and possibly corrected for. Current algorithms utilize gene expression 38 

profiles (GEPs) of cell type-specifically expressed genes to estimate cellular fractions 39 

using linear regression4. While the best performing linear regression algorithms for 40 

deconvolution seem to be variations of Support Vector Regression (SVR)6–10, the 41 

selection of an optimal GEP is a field of active research10,11. Indeed, it has been 42 

recently shown that the design of the GEP is the most important factor in most 43 

deconvolution methods, as results from different algorithms strongly correlate given 44 

the same GEP11. 45 

In theory, an optimal GEP should contain a set of genes that are predominantly 46 

expressed within each cell population of a complex sample12. They should be stably 47 
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expressed across experimental conditions, for example across health and disease, 48 

and resilient to experimental noise and bias. The negative impact of bias on 49 

deconvolution performance can be partly improved by using large, heterogeneous 50 

GEP matrices11. It is therefore not surprising that recent advancement in cell 51 

deconvolution relied almost exclusively on sophisticated algorithms to normalize the 52 

data and engineer optimal GEPs10. 53 

While GEP-based approaches lay the foundational basis of modern cell deconvolution 54 

algorithms, we hypothesize that Deep Neural Networks (DNNs) could create optimal 55 

features for cell deconvolution, without relying on the complex generation of GEPs. 56 

DNNs such as multilayer perceptrons are universal function approximators that 57 

achieve state-of-the-art performance on classification and regression tasks. We 58 

theorize that by using gene expression information as network input, hidden layer 59 

nodes of the DNN would represent higher-order latent representations of cell types 60 

that are robust to input noise and technical bias. 61 

An obvious limitation of DNNs is the requirement for large training data to avoid 62 

overfitting of the machine learning model. While ground truth information on tissue 63 

RNA-seq cell composition is scarce, one can use single cell RNA-seq (scRNA-seq) 64 

data to obtain virtually unlimited in silico tissue datasets of predefined cell 65 

composition7–9,13–15. This is achieved by sub-sampling and subsequently merging cells 66 

from scRNA-seq datasets and is limited only by the availability of tissue-specific 67 

scRNA-seq data. It is to be noted that scRNA-seq data suffers from known biases, 68 

such as drop-out, that RNA-seq data is not subject to16. While this complicates the use 69 

of scRNA-seq data for GEP design8, we surmise that latent network nodes could 70 

represent features that are robust to such biases. 71 
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Based on these assumptions we developed a single-cell-assisted deconvolutional 72 

DNN (Scaden) that uses simulated bulk RNA-seq samples for training and predicts 73 

cell type proportions for input expression samples of cell mixtures. Scaden is trained 74 

on publicly available scRNA- and RNA-seq data, does not rely on specific GEP 75 

matrices, and automatically infers informative features. Finally, we show that Scaden 76 

deconvolves expression data into cell types with higher precision and robustness than 77 

existing methods that rely on GEP matrices, across tissues, species, and data types. 78 

Results 79 

Scaden Overview, Model Selection, and Training 80 

The basic architecture of Scaden is a DNN that takes gene counts of RNA-seq data 81 

as input and outputs predicted cell fractions (Fig. 1). To optimize the performance of 82 

the DNN, it is trained on data that contains both the gene expression and the real cell 83 

fraction information (Fig. 1A). The network then adjusts its weights to minimize the 84 

error between the predicted cell fractions and the real cell fractions (Fig. 1B).  85 

For the model selection and training we made use of the virtually unlimited amount of 86 

artificial bulk RNA-seq datasets with defined composition that can be generated in 87 

silico from published scRNA-seq and RNA-seq datasets (simulated tissues) (Fig. 1, 88 

Tables S1 & S2). The only constraint being that the scRNA-seq and RNA-seq data 89 

must come from the same tissue as the bulk data subject to deconvolution. 90 

To find the optimal DNN architecture for cell deconvolution, we performed leave-one-91 

dataset-out cross validation on simulated peripheral blood mononuclear cell (PBMC) 92 

tissue, training on mixtures of three scRNA-seq datasets and evaluating the 93 

performance on simulated tissue from a fourth scRNA-seq dataset (Table S1 & S3). 94 
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The final Scaden model is an ensemble of the three best performing models and the 95 

final cell type composition estimates are the averaged predictions of all three 96 

ensemble models (Fig. S1, Table S4).  97 

 98 

 99 
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Figure 1 Overview of training data generation and cell type deconvolution with Scaden. A: 100 

Artificial bulk samples are generated by subsampling random cells from a scRNA-seq datasets 101 

and merging their expression profiles. B: Model training and parameter optimization on 102 

simulated tissue RNA-seq data by comparing cell fraction predictions to ground-truth cell 103 

composition. C: Cell deconvolution of real tissue RNA-seq data using Scaden. 104 

 105 

To get an initial estimate of Scaden’s deconvolution fidelity we measured the root 106 

mean square error (RMSE), Lin’s concordance correlation coefficient (CCC)17, 107 

Pearson’s correlation coefficient (r), and the slope and intercept of the regression fitted 108 

for actual and predicted cell fractions. To this end, 32,000 human PBMC, 14,000 109 

human pancreas, 6,000 human ascites, and 30,000 mouse brain simulated tissue 110 

samples were generated for network training and evaluation (Table S2). We then 111 

compared Scaden to four state-of-the-art GEP-based cell deconvolution algorithms, 112 

CIBERSORT (CS)6, CIBERSORTx (CSx)7, MuSiC8, and Cell Population Mapping 113 

(CPM)9. While CS relies on hand-curated GEP matrices, CSx, MuSiC, and CPM can 114 

generate GEPs using scRNA-seq data as input. 115 

We first evaluated the deconvolution performance on simulated PBMC data, since 116 

curated GEP matrices and RNA-seq datasets with associated ground truth cell type 117 

compositions are available for human PBMCs, making this tissue uniquely suited 118 

toward deconvolution performance evaluation. Scaden was trained on simulated data 119 

from all datasets but a held-out dataset while CSx, MuSiC and CPM used a GEP 120 

generated from a scRNA-seq dataset excluding a held-out dataset (e.g. data6k, 121 

data8k, donorA). Subsequently the algorithms were tested on 500 simulated PBMC 122 

samples from a held-out scRNA-seq dataset (e.g. donorC) (Fig. 2A & B, Table S5). 123 

For CS we used the PBMC-optimized LM22 GEP matrix6 and tested performance on 124 

the 500 simulated PBMC samples from a held-out scRNA-seq dataset (e.g. donorC).  125 
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 126 

Figure 2 Deconvolution performance on simulated tissue data A: Ground truth values (x-axis) 127 

plotted against cell type fraction estimates (y-axis) for predictions made on simulated data 128 

from four PBMC scRNA-seq datasets. Darker color in a hexbin corresponds to more data 129 

points falling into this bin. Numbers inside the plotting area signify CCC values, the overall 130 
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CCC is shown in parenthesis below the algorithm name. B: Boxplots of r and RMSE values 131 

for simulated PBMC data. C: Per-cell-type scatterplots of ground truth (x-axis) and predicted 132 

values (y-axis) for Scaden, CSx, and MuSiC on artificial pancreas data18. Numbers inside the 133 

plotting area signify CCC values. 134 

 135 

For two of four test datasets (donorA, donorC), Scaden obtained the highest CCC and 136 

lowest RMSE, followed by CSx, MuSiC, CS, and CPM (Fig. 2A, Table S5). CSx and 137 

MuSiC obtain the highest CCC values for the data8k and data6k datasets, 138 

respectively. Overall, Scaden obtains the highest CCC and lowest RMSE (0.88, 0.08, 139 

respectively), followed by MuSiC(0.85, 0.10), CSx(0.83, 0.11), CS (0.63 0.15), and 140 

CPM (0, 0.20) (Fig. 2A). As expected, all algorithms that use scRNA-seq data as 141 

reference perform good in this scenario with the notable exception of CPM. We want 142 

to mention that CPM was not primarily developed for cell deconvolution, but merely 143 

incorporates this as an additional feature. On average, Scaden also obtained the 144 

highest correlation and the best intercept and slope values on simulated PBMC data 145 

(Table S5).  146 

A specific feature of the MuSiC algorithm is that it preferentially weighs genes 147 

according to low inter-subject and intra-cell cluster variability for its GEP, which 148 

increases deconvolution robustness when high expression heterogeneity is observed 149 

between human subjects, for example8. To understand if Scaden can utilize multi-150 

subject information to increase its deconvolution performance, we trained Scaden, 151 

CSx, and MuSiC on scRNA-seq pancreas data from several subjects19 and assessed 152 

the performance on a separate simulated pancreas RNA-seq dataset18 (Fig. 2C, Table 153 

S6). To allow for direct comparison, we chose the same pancreas training and test 154 

datasets that were used in the original MuSiC publication (Table S1). To enable 155 

Scaden to leverage the heterogeneity of multi-subject data, training data was 156 
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generated separately for every subject in the dataset (see Methods). CSx cannot profit 157 

from multi-subject data but performed well on the artificial PBMC datasets and was 158 

therefore included in the comparison. The best performance is achieved by Scaden 159 

(CCC = 0.98), closely followed by MuSiC (CCC = 0.93), while CSx does not perform 160 

as well (CCC = 0.75) (Fig. 2C, Table S6). This provides strong evidence that Scaden, 161 

by separating training data generation for each subject, can learn inter-subject 162 

heterogeneity and outperform specialized multi-subject algorithms such as MuSiC on 163 

the cell-type deconvolution task. 164 

Additionally, we wanted to test how the best performing deconvolution algorithms 165 

Scaden, MuSiC, and CSx behave when unknown cell content is part of the mixture. 166 

To test this, all cells falling into the ‘Unknown’ category were removed from the training 167 

or reference datasets but added to the simulated mixture samples at fixed percentages 168 

(5%, 10%, 20%, 30%) (see Methods). Scaden obtains the highest CCC for all tested 169 

percentages of unknown cell content (Fig. S2, Table S8). The general deconvolution 170 

performance declines linearly with increasing percentage of unknown content for all 171 

tested algorithms (Fig. S2, Table S8), indicating that Scaden, MuSiC, and CSx have a 172 

similar robustness against unknown mixture content. 173 

Robust deconvolution of bulk expression data   174 

The true use case of cell deconvolution algorithms is the cell fraction estimation of 175 

tissue RNA-seq data. We therefore assessed the performance of Scaden, CS, CSx, 176 

MuSiC, and CPM to deconvolve two publicly available human PBMC bulk RNA-seq 177 

datasets, for which ground-truth cell composition information was measured using flow 178 

cytometry (Fig. 3A, Tables S7 & S9). We will refer to these datasets that consists of 179 

12 samples each as PBMC1 20 and PBMC2 10. Deconvolution for all methods was 180 
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performed as described in the previous section, with the difference that data from all 181 

four PBMC scRNA-seq datasets was now deployed for Scaden training.   182 

 183 
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Figure 3 Deconvolution of real tissue RNA-seq data A: Per-cell-type scatterplots of ground 184 

truth (x-axis) and predicted values (y-axis) for Scaden, CS, CSx, MuSiC, and CPM on real 185 

PBMC1 and PBMC2 cell fractions. Numbers inside the plotting area signify CCC values. For 186 

Scaden, the CCC using only scRNA-seq training data (in parenthesis) and the CCC using 187 

mixed scRNA-seq and RNA-seq training data is shown. B: Boxplots of r (first row) and RMSE 188 

(second row) values for real PBMC1 (first column) and PBMC2 (second column) data. C: Per-189 

cell-type scatterplots of ground truth (x-axis) and predicted values (y-axis) for Scaden, CSx, 190 

MuSiC, and CPM on real ascite cell fractions. Numbers inside the plotting area signify CCC 191 

values. 192 

 193 

On the PBMC1 dataset, Scaden obtained the highest CCC and lowest RMSE (0.56, 194 

0.13), while CSx (0.55, 0.16) and CS (0.43, 0.15) performed well yet significantly worse 195 

than Scaden (Fig. 3A, Tables S8 & S9). CPM (0, 0.18) and MuSiC (-0.19, 0.32) both 196 

failed to deconvolve the cell fractions of the PBMC1 data. Scaden also obtained the 197 

best CCC and RMSE (0.68, 0.08) on the PBMC2 dataset, while CS (0.58, 0.10) and 198 

CSx (0.42, 0.13) obtained good deconvolution results. Similar to the PBMC1 data 199 

deconvolution results, CPM (-0.16, 0.11) as well as MuSiC (-0.13, 0.30) did not 200 

perform well on the PBMC2 deconvolution task. In addition to CCC and RMSE metrics, 201 

Scaden achieves the best correlation, intercept and slope on both PBMC datasets 202 

(Tables S9 & S10). 203 

An additional algorithmic feature of Scaden is that it seamlessly integrates increasing 204 

amounts of training data, which can be of different types, such as a combination of 205 

simulated tissue and real tissue data with cell fraction information. In theory, even 206 

limited real tissue training data could make Scaden robust to data type bias and 207 

consequently improve Scaden’s deconvolution performance on real tissue data. We 208 

therefore trained Scaden on a mix of simulated PBMC (500 samples) and real PBMC2 209 

(12 samples) data and evaluated its performance on real PBMC1 data (Fig. 3A, S3, 210 
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Table S9). While the training contained only ~2% real data, Scaden’s CCC increased 211 

from 0.56 to 0.72 and the RMSE decreased from 0.13 to 0.10. We observed similar 212 

performance increases when Scaden was trained on simulated PBMC and real 213 

PBMC1 data and evaluated on real PBMC2 data (Fig. 3A, S3, Table S10). 214 

We next evaluated Scaden’s performance on real ascites RNA-seq data, for which 215 

scRNA-seq and FACS cell proportion data is available21 (Table S7). It is noteworthy 216 

that RNA-seq, scRNA-seq, and FACS data was generated for the same samples, 217 

which potentially entails reduced experimental and technical bias and consequently 218 

higher deconvolution fidelity for the ascites data as compared to the PBMC data. We 219 

did not evaluate CS’s performance on the ascites data as there was no optimized 220 

ascites GEP available. 'For Scaden, CSx, CPM and MuSiC we used scRNA-seq data 221 

to generate either simulated tissue data for training (Scaden) or a reference GEP (CSx, 222 

CPM, MuSiC). Scaden, CSx, CPM, and MuSiC all accurately predict the cell type 223 

compositions for the three real ascites samples, while CPM does not perform well (Fig. 224 

3C, Table S11). The highest CCC and lowest RMSE were achieved by Scaden (0.95, 225 

0.06), followed by CSx (0.94, 0.07), MuSiC (0.88, 0.08), and CPM (0, 0.18). This 226 

further validates that Scaden reliably deconvolves tissue RNA-seq data into the 227 

constituent cell fractions and that very accurate deconvolution results can be obtained 228 

if reference and target datasets are from the same experiment. Again, we stress that 229 

CPM was not primarily developed for cell deconvolution, but mainly for a different 230 

functionality.  231 

We next wanted to assess if Scaden’s deconvolution performance is robust across 232 

species. We therefore tested whether a Scaden model trained on mouse brain scRNA-233 

seq data could generate reasonable cell composition estimations for real human brain 234 

RNA-seq data (Table S7). To this end, Scaden was trained on artificial data generated 235 
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from five mouse brain scRNA-seq datasets and predicted the cell fractions on human 236 

post-mortem RNA-seq brain samples (390 prefrontal cortex samples) from the 237 

ROSMAP study22. Ground-truth cell fractions were not available for this data, which is 238 

why we used Braak stages23 that correspond to Alzheimer’s disease severity and 239 

correlate with the degree of neuronal loss. Overall, Scaden’s cell fraction predictions 240 

capture the increased neuronal loss with increasing Braak stage (Fig. S4). 241 

Interestingly, the largest drop in neural percentage is observed at stage 5, when the 242 

neurodegeneration typically reaches the prefrontal cortex of the brain. By learning 243 

robust features, Scaden reliably deconvolves RNA-seq data in a cross-species 244 

comparison. 245 

Given the robustness with which Scaden predicts tissue RNA-seq cell fractions using 246 

scRNA-seq training data, even across species, we next wanted to investigate if a 247 

scRNA-seq-trained Scaden model can also deconvolve other data types. To this end, 248 

we measured the deconvolution performance on a bulk PBMC microarray dataset (20 249 

samples)6 of a Scaden model trained on scRNA-seq and RNA-seq PBMC data (see 250 

above). We compared Scaden to CS using the microarray-derived LM22 matrix. CS 251 

achieved a slightly higher CCC and slightly lower total RMSE (0.72, 0.11) than Scaden 252 

(0.71, 0.13), while Scaden obtained the highest average CCC (0.50) compared to CS 253 

(0.39) (Fig. S5, Table S12). Notably in this scenario, Scaden was trained entirely on 254 

simulated data and RNA-seq data, while CS’s LM22 GEP was optimized on PBMC 255 

microarray data. 256 

Overall, we provide strong evidence that Scaden robustly deconvolves tissue data 257 

across tissues, species, and even data types. 258 
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Discussion 259 

Scaden is the first deep learning-based cell deconvolution algorithm. In many 260 

instances, it compares favorably in both prediction robustness and accuracy to existing 261 

deconvolution algorithms that rely on GEP design and linear regression. We believe 262 

that Scaden’s performance relies to a large degree on the inherent feature engineering 263 

of the DNN. The network does not only select features (genes) for regression, it also 264 

creates novel features that are optimal for the regression task in the nodes of the 265 

hidden layers. These hidden features are non-linear combinations of the input features 266 

(gene expression), which makes it notoriously difficult to explain how a DNN works24. 267 

It is important to highlight that this feature creation is fundamentally different from all 268 

other existing cell deconvolution algorithms, which rely on heuristics that select a 269 

defined subset of genes as features for linear regression. 270 

Another advantage of this inherent feature engineering is that Scaden can be trained 271 

to be robust to input noise and bias (e.g. batch effects). Noise and bias are all prevalent 272 

in experimental data, due to different sample quality, sample processing, 273 

experimenters, and instrumentation, for example. If the network is trained on different 274 

datasets of the same tissue, however, it learns to create hidden features that are 275 

robust to noise and bias, such as batch effects. This robustness is pivotal in real world 276 

cell deconvolution use cases, where the bulk RNA data for deconvolution and the 277 

training data (and therefore the network and GEP) contain different noise and biases. 278 

While especially recent cell deconvolution algorithms include batch correction 279 

heuristics prior to GEP construction, Scaden optimizes its hidden features 280 

automatically when trained on data from various batches. 281 

The robustness to noise and bias, which might be due to hidden feature generation, is 282 

especially evident in Scaden’s ability to deconvolve across data types. A network 283 
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trained on in silico bulk RNA-seq data can seamlessly deconvolve microarray data of 284 

the same tissue. This is quite noteworthy, as microarray data is known to have a 285 

reduced dynamic range and several hybridization-based biases compared to RNA-286 

seq data. In other words, Scaden can deconvolve bulk data of types it has never been 287 

trained on, even in the face of strong data type bias. This raises the possibility that 288 

Scaden trained on scRNA-seq data might reliably deconvolve other bulk omics data 289 

as well, such as proteomic and metabolomic data. This assumption is strengthened 290 

by the fact that Scaden, trained on scRNA-seq data, attains state-of-the-art 291 

performance on the deconvolution of bulk RNA-seq data, two data types with very 292 

distinct biases16. 293 

As highlighted in the introduction, a drawback for many DNNs is the large amount of 294 

training data required to obtain robust performance. Here, we used scRNA-seq data 295 

to create virtually unlimited amounts of in silico bulk RNA-seq data of predefined type 296 

(target tissue) with known composition, across datasets. This immediately highlights 297 

Scaden’s biggest limitation, the dependency on scRNA-seq data of the target tissue. 298 

In this study we have shown that Scaden, trained solely on simulated data from 299 

scRNA-seq datasets, can outperform GEP-based deconvolution algorithms. We did 300 

observe, however, that the addition of labeled RNA-seq samples to the training data 301 

did significantly improve deconvolution performance in the case of PBMC data. We 302 

therefore believe that efforts to increase the similarity between simulated training data 303 

and the target bulk RNA-seq data could increase Scaden’s performance further. 304 

Mixtures of in silico bulk RNA-seq data and publically available RNA-seq data, of 305 

purified cell types for example, could further increase the deconvolution performance 306 

of Scaden. Furthermore, domain adaptation methods can be used to improve 307 

performance of models that are trained on data (here, scRNA-seq data) that is similar 308 
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to the target data (here, RNA-seq data)25. In future versions, Scaden’s simple 309 

multilayer perceptron architecture could leverage domain adaptation to further 310 

stabilize and improve its cell deconvolution performance. 311 

Recent cell deconvolution algorithms have used cell fraction estimates to infer cell 312 

type-specific gene expression from bulk RNA-seq data. It is straightforward to use 313 

Scaden’s cell fraction estimates to infer per group3 and per sample7 cell type-specific 314 

gene expression using simple regression or non-negative matrix factorization, 315 

respectively. We would like to add a note of caution, however, as the error of cell 316 

fraction estimates, which can be quite significant, is propagated into the gene 317 

expression calculations and will affect any downstream statistical analysis. 318 

In summary, the deconvolution performance, robustness to noise and bias, the 319 

flexibility to learn from large numbers of in silico datasets, across data types (scRNA-320 

seq and RNA-seq mixtures), and potentially even tissues makes us believe that DNN-321 

based architectures will become an algorithmic mainstay of cell type deconvolution.  322 

  323 
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Methods 324 

Datasets and pre-processing 325 

scRNA-seq datasets  326 

The following human PBMC scRNA-seq datasets were downloaded from the 10X 327 

Genomics data download page: 6k PBMCs from a Healthy Donor, 8k PBMCs from a 328 

Healthy Donor, Frozen PBMCs (Donor A), Frozen PBMCs (Donor C){Zheng et al, 329 

2017}. Throughout this paper, these datasets are referred to with the handles data6k, 330 

data8k, donorA and donorC, respectively. These four datasets were chosen because 331 

of clearly identifiable cell types for the majority of cells. The Ascites scRNA-seq dataset 332 

was downloaded from https://figshare.com as provided by Schelker21. Pancreas and 333 

mouse brain datasets were downloaded from the scRNA-seq dataset collection of the 334 

Hemberg lab (https://hemberg-lab.github.io/scRNA.seq.datasets/). A table listing all 335 

datasets including references to the original publications can be found in Table S1. 336 

scRNA-seq preprocessing and analysis  337 

All datasets were processed using the Python package Scanpy (v. 1.2.2)26 following 338 

the Scanpy’s reimplementation of the popular Seurat’s clustering workflow. First, the 339 

corresponding cell-gene matrices were filtered for cells with less than 500 detected 340 

genes, and genes expressed in less than 5 cells. The resulting count matrix for each 341 

dataset was filtered for outliers with high or low numbers of counts. Gene expression 342 

was normalized to library size using the Scanpy function ‘normalize_per_cell’. The 343 

normalized matrix of all filtered cells and genes was saved for the subsequent data 344 

generation step. 345 
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The following processing and analysis steps had the sole purpose of assigning cell 346 

type labels to every cell. All cells were clustered using the louvain clustering 347 

implementation of the Scanpy package. The louvain clustering resolution was chosen 348 

for each dataset, using the lowest possible resolution value (low resolution values lead 349 

to less clusters) for which the calculated clusters separated the cell types 350 

appropriately. The top 1000 highly variable genes were used for clustering, which were 351 

calculated using Scanpy’s ‘filter_genes_dispersion’ function with parameters 352 

min_mean=0.0125, max_mean=3 and min_disp=0.5. Principal Component Analysis 353 

(PCA) was used for dimensionality reduction.  354 

To identify cell types, marker genes were investigated for all cell types in question. For 355 

PBMC datasets, useful marker genes were adopted from public resources such as the 356 

Seurat tutorial for 2700 PBMCs27. Briefly, IL7R was taken as marker for CD4 T-cells, 357 

LYZ for Monocytes, MS4A1 for B-cells, GNLY for Natural Killer cells, FCER1A for 358 

Dendritic cells and CD8A and CCL5 as markers for CD8 T-cells. For all other scRNA-359 

seq datasets, marker genes and expected cell types were inferred from the original 360 

publication of the dataset. For instance, to annotate cell types of the mouse brain 361 

dataset from Zeisel et al.28, we used the same marker genes as Zeisel and colleagues. 362 

We did not use the same cell type labels from the original publications because a main 363 

objective was to assure that cell type labeling is consistent between all datasets of a 364 

certain tissue. 365 

Cell type annotation was performed manually across all the clusters for each dataset, 366 

such that all cells belonging to the same cluster were labeled with the same cell type. 367 

The cell type identity of each cluster was chosen by crossing the cluster’s highly 368 

differentially expressed genes with the curated cell type’s marker genes. Clusters that 369 
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could not be clearly identified with a cell type were grouped into the ‘Unknown’ 370 

category.  371 

Tissue Datasets for Benchmarking  372 

To assess the deconvolution performance on real tissue expression data, we used 373 

datasets for which the corresponding cell fractions were measured and published. The 374 

first dataset is the PBMC1 dataset which was obtained from Zimmermann et al.20. The 375 

second dataset, PBMC2, was downloaded from GEO with accession code 376 

GSE107011 10. This dataset contains both RNA-seq profiles of immune cells (S4 377 

cohort) and from bulk individuals (S13 cohort). As we were interested in the bulk 378 

profiles, we only used 12 samples from the S13 cohort from this data. Flow cytometry 379 

fractions were collected from the Monaco et al. publication10. 380 

In addition to the above mentioned two PBMC datasets, we used Ascites RNA-seq 381 

data. This dataset was kindly provided by the authors and cell type fractions for this 382 

dataset were taken from the supplementary materials of the publication21.  383 

For the evaluation on pancreas data, artificial bulk RNA-seq samples created from the 384 

scRNA-seq dataset of Xin et al.18 were used. This dataset was downloaded from the 385 

resources of the MuSiC publication8. The artificial bulk RNA-seq samples used for 386 

evaluation were then created using the ‘bulk_construct’ function of the MuSiC tool. 387 

To assess how Scaden deals with unknown cell types in a bulk mixture, we used the 388 

whole blood dataset from Newman et al.7, which consists of 12 samples (GSE127813). 389 

Cell type fractions were downloaded from the CSx website 390 

(https://cibersortx.stanford.edu/download.php). 391 

To assess robustness against unknown mixture content, all cells classified as 392 

‘Unknown’ were removed from the data6k, data8k, donorA, and donorC datasets to 393 

generate training samples for Scaden and reference datasets for MuSiC and CSx. 394 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 16, 2019. ; https://doi.org/10.1101/659227doi: bioRxiv preprint 

https://cibersortx.stanford.edu/download.php
https://doi.org/10.1101/659227
http://creativecommons.org/licenses/by-nc/4.0/


20 
 

Then, test datasets were generated with fixed content of ‘Unknown’ cells at 5%, 10%, 395 

20% and 30%. Performance on these samples was then assessed to test robustness 396 

against unseen cell types in the bulk mixture. Scaden was trained on samples from all 397 

datasets but the test dataset, while CSx and MuSiC used data8k as a reference. 398 

The microarray dataset GSE65133 was downloaded from GEO, and cell type fractions 399 

taken from the original CS publication6. 400 

Finally, we wanted to get insights into neurodegenerative cell fraction changes in the 401 

brain. While it is known that neurodegenerative diseases like Alzheimer’s Disease are 402 

accompanied by a gradual loss of brain neurons, stage-specific cell type shifts are still 403 

hard to come by. Here we use the ROSMAP (Religious Orders Study and Memory and 404 

Aging Project Study) cortical RNA-seq dataset along with the corresponding clinical 405 

metadata, to infer cell type composition over six clinically relevant stages of 406 

neurodegeneration22.  407 

RNA-seq preprocessing and analysis  408 

For the RNA-seq datasets analyzed in this study, we did not apply any additional 409 

processing steps, but used the obtained count or expression tables directly as 410 

downloaded for all dataset except the ROSMAP dataset. For the latter, we generated 411 

count tables from raw FastQ-files using Salmon29 and the GRCh38 reference genome.  412 

FastQ-files from the ROSMAP study were downloaded from Synapse 413 

(www.synapse.org). 414 

Simulation of bulk RNA-seq samples from scRNA-seq data 415 

Scadan’s deep neural network requires large amounts of training  RNA-seq samples 416 

with known cell fractions. This explains why the generation of artificial bulk RNA-seq 417 

data is one of the key elements of the Scaden workflow. 418 
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In order to generate the training data, preprocessed scRNA-seq datasets were used 419 

(see section ‘Data Collection and Processing’), comprising the gene expression matrix 420 

and the cell type labels. Artificial RNA-seq samples were simulated by sub-sampling 421 

cells from individual scRNA-seq datasets - cells from different datasets were not 422 

merged into samples to preserve within-subject relationships. Datasets generated 423 

from multiple subjects were split according to subject and each sub-sampling was 424 

constrained to cells from one subject in order to capture the cross-subject 425 

heterogeneity and keep subject-specific gene dependencies.  426 

The exact sub-sampling procedure is described in the following. First, for every 427 

simulated sample, random fractions were created for all different cell types within each 428 

scRNA-seq dataset using the random module of the Python package NumPy. Briefly, 429 

a random number was chosen from a uniform distribution between 0 and 1 using the 430 

NumPy function ‘random.rand()’ for each cell type, and then this number was divided 431 

by the sum of all random numbers created to ensure the constraint of all fractions 432 

adding up to 1: 433 

𝑓𝑐 =
𝑟𝑐

∑ 𝑟𝑐𝐶𝑎𝑙𝑙

 434 

where 𝑟𝑐is the random number created for cell type 𝑐, and 𝐶𝑎𝑙𝑙 is the set of all cell 435 

types. Here, 𝑓𝑐 is the calculated random fraction for cell type 𝑐. Then, each fraction 436 

was multiplied with the total number of cells selected for each sample, yielding the 437 

number of cells to choose for a specific cell type: 438 

 439 

𝑁𝑐 = 𝑓𝑐 ∗ 𝑁𝑡𝑜𝑡𝑎𝑙 440 

 441 

where 𝑁𝑐 is the number of cells to select for the cell type 𝑐, and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total 442 

number of cells contributing to one simulated RNA-seq sample (400, in this study). 443 

Next,  𝑁𝑐 cells were randomly sampled from the scRNA-seq gene expression matrix 444 
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for each cell type 𝑐. Afterwards, the randomly selected single-cell expression profiles 445 

for every cell type are then aggregated by summing their expression values, to yield 446 

the artificial bulk expression profile for this sample. 447 

Using the above described approach, cell compositions that are strongly biased 448 

toward a certain cell type or are missing specific cell types are rare among the 449 

generated training samples. To account for this and to simulate cell compositions with 450 

a heavy bias to and the absence of certain cell types, a variation of the sub-sampling 451 

procedure was used to generate samples with sparse compositions, which we refer to 452 

as sparse samples. Before generating the random fractions for all cell types, a random 453 

number of cell types was selected to be absent from the sample, with the requirement 454 

of at least one cell type constituting the sample. After these leave-out cell types were 455 

chosen, random fractions were created and samples generated as described above. 456 

Using this procedure, we generated 32,000 samples for the human PBMC training 457 

dataset, 14,000 samples for the human pancreas training dataset and 30,000 samples 458 

for the mouse brain training dataset (Table S2). 459 

Artificial bulk RNA-seq datasets were stored in ‘h5ad’ format using the Anndata 460 

package26, which allows to store the samples together with their corresponding cell 461 

type ratios, while also keeping information about the scRNA-seq dataset of origin for 462 

each sample. This allowed to access samples from specific datasets, which is useful 463 

for cross validation. 464 

Scaden Overview 465 

The following section contains an overview of the input data preprocessing, the 466 

Scaden model, model selection, and how Scaden predictions are generated. 467 
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Input Data Preprocessing  468 

The data preprocessing step is aimed to make the input data more suitable for 469 

machine learning algorithms. To achieve this, an optimal preprocessing procedure 470 

should transform any input data from the simulated samples or from the bulk RNA-seq 471 

to the same feature scale. Before any scaling procedure can be applied, it must be 472 

ensured that both the training data and the bulk RNA-seq data subject to prediction 473 

share the same features. Therefore, before scaling, both datasets are limited to 474 

contain features (genes) that are available in both datasets.. The two-step processing 475 

procedure used for Scaden is described in the following: 476 

First, to account for heteroscedasticity, a feature inherent to RNA-seq data, the data 477 

was transformed into logarithmic space by adding a pseudocount of 1 and then taking 478 

the Logarithm (base 2). Additional to stabilizing the variance, this transformation yields 479 

data that is approximately Gaussian.  480 

Second, every sample was scaled to the range [0,1] using the MinMaxScaler() class 481 

from the Sklearn preprocessing module. Per sample scaling, unlike per feature scaling 482 

that is more common in machine learning, assures that inter-gene relative expression 483 

patterns in every sample are preserved. This is important, as our hypothesis was that 484 

a neural network could learn the deconvolution from these inter-gene expression 485 

patterns.  486 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑,𝑖 =  (𝑥𝑖  −  𝑚𝑖𝑛(𝑿𝑖)) / (𝑚𝑎𝑥(𝑋𝑖)  −  𝑚𝑖𝑛(𝑋𝑖)) 487 

where 𝑥𝑠𝑐𝑎𝑙𝑒𝑑,𝑖  is the log2 expression value of gene x in sample i, 𝑋𝑖 is the vector of 488 

log2 expression values for all genes of sample i, 𝑚𝑖𝑛(𝑿𝑖) is the minimum gene 489 

expression of vector 𝑋𝑖, and 𝑚𝑎𝑥(𝑋𝑖) the maximum gene expression of vector 𝑋𝑖. 490 
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Note that all training datasets are stored as expression values and are only processed 491 

as described above. In the deployment use-case the simulated training data should 492 

contain the same features as in the bulk RNA-seq sample that shall be deconvolved. 493 

Model Selection  494 

The goal of model selection was to find an architecture and hyperparameters that 495 

robustly deconvolve simulated tissue RNA-seq data and, more importantly, real bulk 496 

RNA-seq data. Due to the very limited availability of bulk RNA-seq datasets with known 497 

cell fractions, model selection was mainly optimized on the simulated PBMC datasets. 498 

To capture inter-experimental variation, we used leave-one-dataset-out cross 499 

validation for model optimization: a model was trained on simulated data from all but 500 

one dataset, and performance was tested on simulated samples from the left-out 501 

dataset. This allows to simulate batch effects between datasets and helps to test the 502 

generalizability of the model. Model performance was evaluated based on pearson 503 

product moment correlation and absolute deviation between predicted and ground 504 

truth values. As averaging the predictions of models with different architectures 505 

increased performance, we decided to use an ensemble architecture for Scaden. For 506 

this ensemble, the three best performing architectures were chosen. Model training 507 

and prediction is done separately for each model, with the prediction averaging step 508 

combining all model predictions (Fig. S1). We provide a list of all tested parameters in 509 

the supplementary materials (Table S4).  510 

Final Scaden Model  511 

The Scaden model learns cell type deconvolution through supervised training on 512 

datasets of simulated bulk RNA-seq samples simulated with scRNA-seq data. To 513 

account for model biases and to improve performance, Scaden consists of an 514 
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ensemble of three deep neural networks with varying architectures and degrees of 515 

dropout regularization. All models of the ensemble use four layers of varying sizes 516 

between 32 and 1024 nodes, with dropout-regularization implemented in two of the 517 

three ensemble models. The exact layer sizes and dropout rates are listed in Table 518 

S3. The Rectified Linear Unit (ReLU) is used as activation function in every internal 519 

layer. We used a Softmax function to predict cell fractions, as we did not see any 520 

improvements in using a linear output function with consecutive non-negativity 521 

correction and sum-to-one scaling. Python (v. 3.6.6) and the TensorFlow library (v. 522 

1.10.0) were used for implementation of Scaden. A complete list of all software used 523 

for the implementation of Scaden is provided in Table S12. 524 

Training and Prediction  525 

After the preprocessing of the data a Scaden ensemble can be trained on simulated 526 

tissue RNA-seq data or mixtures of simulated and real tissue RNA-seq data. 527 

Parameters are optimized using Adam with a learning rate of 0.0001 and a batch size 528 

of 128. We used an L1 loss as optimization objective: 529 

𝐿1(𝑦𝑖, �̂�𝑖)  =  |𝑦𝑖 − 𝑦�̂�| 530 

where 𝑦𝑖 is the vector of ground truth fractions of sample 𝑖 and 𝑦�̂� is the vector of 531 

predicted fractions of sample 𝑖. Each of the three ensemble models is trained 532 

independently for 5,000 steps. This ‘early stopping’ serves to avoid domain overfitting 533 

on the simulated tissue data, which would decrease the model performance on the 534 

real tissue RNA-seq data. We observed that training for more steps lead to an average 535 

performance decrease on real tissue RNA-seq data. To perform deconvolution with 536 

Scaden, a bulk RNA-seq sample is fed into a trained Scaden ensemble and three 537 

independent predictions for the cell type fractions of this sample are generated by the 538 
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trained deep neural networks. These three predictions are then averaged per cell type 539 

to yield the final cell type composition for the input bulk RNA-seq sample: 540 

𝑦�̂� =
𝑦𝑐

1̂  +  𝑦𝑐
2  ̂ +  𝑦𝑐

3̂

3
 541 

where 𝑦�̂� is the final predicted fraction for cell type 𝑐 and 𝑦𝑐
�̂� is the predicted fraction for 542 

cell type 𝑐 of model 𝑖. 543 

Algorithm Comparison 544 

We used several performance measures to compare Scaden to four existing cell 545 

deconvolution algorithms, CIBERSORT with LM22 GEP (CS), CIBERSORTx (CSx), 546 

MuSiC and CPM. To compare the performance of the five deconvolution algorithms 547 

we measured the root mean squared error (RMSE), Lin’s concordance correlation 548 

coefficient 𝐶𝐶𝐶, Pearson product moment correlation coefficient 𝑟, and 𝑅2 values  549 

comparing real and predicted cell fractions estimates. Additionally, to identify 550 

systematic prediction errors and biases, slope and intercept for the regression lines 551 

were calculated. These metrics are defined as follows: 552 

𝑅𝑀𝑆𝐸(𝑦, �̂�)  =  √𝑎𝑣𝑔(𝑦 − �̂�)2 553 

𝑟(𝑦, �̂�)  =  
𝑐𝑜𝑣(𝑦, �̂�)

𝜎𝑦𝜎�̂�
 554 

𝑅2(𝑦, �̂�)  =  𝑟(𝑦, �̂�)2 555 

𝑠𝑙𝑜𝑝𝑒(𝑦, �̂�)  =  
𝛥𝑦

𝛥�̂�
 556 

𝐶𝐶𝐶(𝑦, �̂�)  =  
2𝑟𝜎𝑦𝜎�̂�

𝜎𝑦
2 + 𝜎�̂�

2 + (𝜇𝑥 − 𝜇�̂�)
 557 

where 𝑦 are the ground truth fractions, �̂� are the prediction fractions, 𝜎𝑥 is the standard 558 

deviation of 𝑥, 𝑐𝑜𝑣(𝑦, �̂�) is the covariance of 𝑦 and �̂�, and 𝜇𝑦, 𝜇�̂� are the mean of the 559 

predicted and ground truth fractions, respectively.  560 
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All metrics were calculated for all data points of a dataset, and separately for all data 561 

points of a specific cell type. For the latter approach, we then averaged the resulting 562 

values to recover single values. While in general the metrics calculated on all data 563 

points are sufficient, good performance on cell type-level is important if one is to 564 

compare fractions of a specific cell type between samples.  565 

CIBERSORT (CS)  566 

CS is a cell convolution algorithm based on specialized GEPs and support vector 567 

regression. Cell composition estimations were obtained using the CS web application 568 

(https://cibersort.stanford.edu/). For all deconvolutions with CS, we used the LM22 569 

GEP, which was generated by the CS authors from 22 leukocyte subsets profiled on 570 

the HGU133A microarray platform. 571 

Because the LM22 GEP matrix contains cell types at a finer granularity than what was 572 

used for this study, predicted fractions of sub-cell types were added together. For cell 573 

grouping, we used the mapping of sub-cell types to broader types given by Figure 6 574 

from Monaco et al.10. We provide a table with the exact mappings used here in the 575 

supplementary material (Table S13). The deconvolution was performed using 500 576 

permutations with quantile normalization disabled for all datasets but GSE65133 577 

(Microarray), as is recommended for RNA-seq data. We used default settings for all 578 

other CS parameters. 579 

CIBERSORTx (CSx)  580 

CSx is a recent variant of CS that can generate GEP matrices from scRNA-seq data 581 

and use these for deconvolution. For additional deconvolution robustness, it applies 582 

batch normalization to the data. All signature matrices were created by uploading the 583 

labeled scRNA-seq expression matrices and using the default options. Quantile 584 
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normalization was disabled. For deconvolution on simulated data, no batch 585 

normalization was used. For all bulk RNA-seq datasets, the S-Mode batch 586 

normalization was chosen. All PBMC datasets were deconvolved using a GEP matrix 587 

generated from the data6k dataset (for simulated samples from data6k, a donorA GEP 588 

matrix was chosen).  589 

MuSiC  590 

MuSiC is a deconvolution algorithm that uses multi-subject scRNA-seq datasets as 591 

GEP matrices in an attempt to include heterogeneity in the matrices to improve 592 

generalization. While MuSiC tries to address similar issues of previous deconvolution 593 

algorithms by using scRNA-seq data, the approach is very different. For 594 

deconvolution, MuSiC applies a sophisticated GEP-based deconvolution algorithm 595 

that uses weighted non-negative least squares regression with an iterative estimation 596 

procedure that imposes more weight on informative genes and less weight on non-597 

informative genes. 598 

The MuSiC R package contains functionality to generate the necessary GEP matrix 599 

given a scRNA-seq dataset and cell type labels. To generate MuSiC deconvolution 600 

predictions on PBMC datasets, we used the data8k scRNA-seq dataset as reference 601 

data for MuSiC and follow the tutorial provided by the authors to perform the 602 

deconvolution. For deconvolution of artificial samples generated from the data8k 603 

dataset, we provided MuSiC with the data6k dataset as reference instead. 604 

MuSiC was developed with a focus on multi-subject scRNA-seq datasets, in which the 605 

algorithm tries to take advantage from the added heterogeneity that these datasets 606 

contain, by calculating a measure of cross-subject consistency for marker genes. To 607 

assess how Scaden performs on multi-subject datasets compared to MuSiC, we 608 

evaluated both methods on artificial bulk RNA-seq samples from human pancreas. We 609 
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used the ‘bulk_construct’ function from MuSiC to combine the cells from all 18 subjects 610 

contained in the scRNA-seq dataset from Xin et al to generate artificial bulk samples 611 

for evaluation. Next, as a multi-subject reference dataset, we used the pancreas 612 

scRNA-seq dataset from Segerstolpe et al.19, which contains single-cell expression 613 

data from 10 different subjects, 4 of which with type-2 Diabetes. For Scaden, the 614 

Segerstolpe scRNA-seq dataset was split by subjects, and training datasets were 615 

generated for each subject, yielding in total 10,000 samples. For MuSiC, a processed 616 

version of this dataset was downloaded from the resources provided by the MuSiC 617 

authors8 and used as input reference dataset for the MuSiC deconvolution. 618 

Deconvolution was then performed according to the MuSiC tutorial, and performance 619 

compared according to the above-defined metrics. 620 

Cell Population Mapping (CPM)  621 

CPM is a deconvolution algorithm that uses single-cell expression profiles to identify 622 

a so-called ‘cell population map’ from bulk RNA-seq data9. In CPM, the cell population 623 

map is defined as composition of cells over a cell-state space, where a cell-state is 624 

defined as a current phenotype of a single cell. Contrary to other deconvolution 625 

methods, CPM tries to estimate the abundance of all cell-states and types for a given 626 

bulk mixture, instead of only deconvolving the cell types. As input, CPM requires a 627 

scRNA-seq dataset and a low-dimensional embedding of all cells in this dataset, which 628 

represents the cell-state map. As CPM estimates abundances of both cell-states and 629 

types, it can be used for cell type deconvolution by summing up all estimated fractions 630 

for all cell-states of a given cell type - a method that is implemented in the scBio R 631 

package, which contains the CPM method. To perform deconvolution with CPM, we 632 

used the data6k PBMC scRNA-seq dataset as input reference for all PBMC samples. 633 

For samples simulated from the data6k dataset, we used the data8k dataset as 634 
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reference. According to the CPM paper, a dimension reduction method can be used 635 

to obtain the cell-state space. We therefore used UMAP, a dimension reduction 636 

method widely used for scRNA-seq data, to generate the cell-state space mapping for 637 

the input scRNA-seq data. Deconvolution was then performed using the CPM function 638 

of the scBio package with a scRNA-seq and accompanying UMAP embedding as 639 

input. 640 

 641 
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Data Availability 642 

Only publicly available datasets were used during this study. The scRNA-seq PBMC 643 

datasetse donorA, donorC, data6k and data8k were all downloaded from 10X 644 

Genomics (https://support.10xgenomics.com/single-cell-gene-expression/datasets), 645 

were they are listed as ‘Frozen PBMCs (Donor A)’, ‘Frozen PBMCs (Donor C)’, ‘6k 646 

PBMCs from a Healthy Donor’ and ‘8k PBMCs from a Healthy Donor’, respectively. 647 

The Segerstolpe et al. scRNA-seq pancreas dataset was downloaded from 648 

ArrayExpress with accession code E-MTAB-5061. The scRNA-seq datasets from 649 

Baron et al. (pancreas), Tasic et al., Zeisel et al., Romanov et al., Campbell et al. 650 

and Chen et al. (all mouse brain) were all downloaded from https://hemberg-651 

lab.github.io/scRNA.seq.datasets/. The ascites scRNA-seq dataset was downloaded 652 

from https://figshare.com/s/711d3fb2bd3288c8483a. The bulk RNA-seq dataset 653 

PBMC1 is accessible from ImmPort with accession code SDY67. The PBMC2 654 

dataset was downloaded from GEO with accession code GSE107011. The 655 

ROSMAP human brain RNA-seq dataset was downloaded from Synapse (ID: 656 

syn3219045). The bulk RNA-seq data from ascites was kindly provided by Schelker 657 

et al. The pancreas scRNA-seq dataset from Xin et al. was accessed from the 658 

MuSiC tutorial site (https://xuranw.github.io/MuSiC/articles/pages/data.html). 659 
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Code Availability 660 

The source code for Scaden is available at https://github.com/KevinMenden/scaden. 661 

Documentation is published at https://scaden.readthedocs.io. Code to generate the 662 

figures along with the training datasets used in this study is published at figshare: 663 

https://figshare.com/projects/Scaden/62834. 664 
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List of abbreviations 666 

RNA-seq : Next Generation RNA Sequencing 667 

GEP : gene expression profile matrix 668 

SVR : Support Vector Regression 669 

DNN : Deep Neural Network 670 

scRNA-seq : single cell RNA-seq 671 

simulated tissue : training data generated by mixing proportions of scRNA-seq data 672 

PBMC : peripheral blood mononuclear cells 673 

CCC : concordance correlation coefficient 674 

r : Pearson’s correlation coefficient 675 

CS : CIBERSORT 676 

CSx : CIBERSORTx 677 

CPM : Cell Population Mapping  678 
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Supplementary Figures & Tables 784 

Tissue Name # cells # Subjects Source 

PBMC data6k 5,419 1 10X Genomics 

PBMC data8k 8,381 1 10X Genomics 

PBMC donorA 2,900 1 10X Genomics 

PBMC donorC 9,519 1 10X Genomics 

Mouse 

Brain 

Tasic 1,679 1 Tasic et al., Nat. 

Neurosci., 2016 

Mouse 

Brain 

Zeisel 3,005 1 Zeisel et al., Science, 

2015 

Mouse 

Brain 

Romanov 2,881 1 Romanov et al., Nat. 

Neurosci., 2018 

Mouse 

Brain 

Campbell 21,086 1 Campbell et al, Nat. 

Neurosci., 2017 

Mouse 

Brain 

Chen 14,437 1 Chen et al., Cell Rep., 

2017 

Pancreas Segerstolpe 3,514 10 Segerstolpe et al., Cell 

Metab., 2016 

Pancreas Baron 8,569 4 Baron et al., Cell Syst., 

2016 

Ascites Ascites 3,114 3 Schelker et al, Nat. 

Comm., 2018 

Table S1 scRNA-seq datasets used for the generation of simulated tissues for Scaden 785 

training. 786 
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 788 

Tissue # Samples # Datasets Size 

PBMC 32,000 4 1.2 GB 

Pancreas 14,000 2 0.6 GB 

Mouse Brain 30,000 5 1.5 GB 

Ascites 6,000 1 0.38 GB 

Table S2 Number of samples, datasets, and size of the simulated training data. 789 
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 791 

Parameter Values tested 

Batch size 32, 64, 128, 256, 512 

# Layers 2, 3, 4 

Layer sizes 2048, 1024, 512, 256, 128, 64, 32, 16 

Dropout rate [0, 0.8] 

Loss function L1, L2 

Table S3 Hyperparameters used for model optimization. 792 
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 794 

Figure S1 Overview of the Scaden neural network ensemble model. A bulk RNA-seq 795 

sample is the input to three separate deep neural networks with varying layer sizes 796 

and dropout regularization. The predictions of all three models are subsequently 797 

averaged to obtain the final Scaden predictions. During training, predictions are not 798 

averaged and each model is trained separately. 799 

  800 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 16, 2019. ; https://doi.org/10.1101/659227doi: bioRxiv preprint 

https://doi.org/10.1101/659227
http://creativecommons.org/licenses/by-nc/4.0/


44 
 

Model # Layers Layer sizes Dropout rates 

M256 4 256, 128, 64, 32 0, 0, 0, 0 

M512 4 512, 256, 128, 64 0, 0.3, 0.2., 0.1 

M1024 4 1024, 512, 256, 128 0, 0.6, 0.3, 0.1 

Table S4 Architectures of deep neural network models used in Scaden ensemble. 801 

  802 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 16, 2019. ; https://doi.org/10.1101/659227doi: bioRxiv preprint 

https://doi.org/10.1101/659227
http://creativecommons.org/licenses/by-nc/4.0/


45 
 

Method DS RMSE Slope Correlation Intercept CCC 

CPM data6k 0.192 0.03 0.082 0.162 0.053 

CPM data8k 0.185 0.048 0.263 0.159 0.093 

CPM donorA 0.239 -0.081 -0.259 0.18 -0.147 

CPM donorC 0.189 0.038 0.102 0.16 0.066 

CS data6k 0.163 0.508 0.57 0.082 0.566 

CS data8k 0.136 0.551 0.708 0.075 0.687 

CS donorA 0.137 0.605 0.767 0.066 0.746 

CS donorC 0.168 0.45 0.522 0.092 0.517 

CSx data6k 0.106 0.756 0.824 0.041 0.821 

CSx data8k 0.097 0.744 0.863 0.043 0.854 

CSx donorA 0.125 0.696 0.81 0.051 0.801 

CSx donorC 0.094 0.829 0.865 0.029 0.864 

MuSiC data6k 0.086 0.848 0.887 0.025 0.886 

MuSiC data8k 0.136 0.663 0.728 0.056 0.725 

MuSiC donorA 0.1 0.811 0.883 0.031 0.88 

MuSiC donorC 0.084 0.897 0.896 0.017 0.896 

Scaden data6k 0.104 0.747 0.83 0.042 0.825 

Scaden data8k 0.133 0.625 0.73 0.063 0.722 

Scaden donorA 0.035 0.92 0.988 0.013 0.985 

Scaden donorC 0.046 0.849 0.973 0.025 0.964 

Table S5 Deconvolution evaluation on simulated PBMC data. 803 
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 805 

Table S6 Deconvolution performance on simulated pancreas data from Xin et al.. 806 

 807 

  808 

Method Celltype RMSE Correlation Slope Intercept CCC 

CSx ALPHA 0.282 0.816 0.691 0.431 0.375 

CSx BETA 0.309 0.833 0.175 -0.017 0.078 

CSx DELTA 0.04 0.812 1.567 -0.013 0.647 

CSx GAMMA 0.052 0.921 1.131 0.0 0.897 

CSx Total 0.212 0.79 1.113 -0.028 0.746 

MuSiC ALPHA 0.11 0.887 1.108 -0.042 0.863 

MuSiC BETA 0.148 0.752 1.067 0.017 0.694 

MuSiC DELTA 0.023 0.817 0.716 -0.003 0.707 

MuSiC GAMMA 0.068 0.881 0.552 -0.003 0.711 

MuSiC Total 0.099 0.938 1.078 -0.019 0.929 

Scaden ALPHA 0.067 0.949 1.071 -0.034 0.942 

Scaden BETA 0.07 0.936 1.152 -0.045 0.916 

Scaden DELTA 0.024 0.807 1.012 0.008 0.764 

Scaden GAMMA 0.045 0.914 0.89 -0.008 0.901 

Scaden Total 0.055 0.978 1.033 -0.008 0.976 
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 809 

Tissue Name # Samples Reference 

PBMC PBMC1 12 Zimmermann et al., PLOS one, 2016 

PBMC PBMC2 12 Monaco et al., Cell Reports, 2019 

Pancreas Xin 18 Xin et al., Cell Metab., 2016 

Human 

Brain 

ROSMAP 390 Bennett et al., Curr Alzheimer Res., 

2012 

Ascites Ascites 3 Schelker at al., Nat. Comm. 2018 

Table S7 Tissue RNA-seq datasets used for performance evaluation. 810 
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 813 
Figure S2 Deconvolution performance on datasets with added unknown mixture contents. 814 

Unknown cell type content was added to the simulated bulk mixture in fixed concentrations 815 

(5%, 10%, 20%, 30%). The deconvolution performance was assessed on samples 816 

generated from the data6k, donorA and donorC datasets. 817 
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Method Content RMSE CCC 

CSx 0.02 0.097 0.731 

CSx 0.05 0.092 0.751 

CSx 0.1 0.092 0.715 

CSx 0.2 0.091 0.694 

CSx 0.3 0.099 0.632 

MuSiC 0.02 0.084 0.793 

MuSiC 0.05 0.083 0.799 

MuSiC 0.1 0.089 0.739 

MuSiC 0.2 0.095 0.669 

MuSiC 0.3 0.101 0.665 

Scaden 0.02 0.041 0.934 

Scaden 0.05 0.044 0.925 

Scaden 0.1 0.046 0.902 

Scaden 0.2 0.054 0.846 

Scaden 0.3 0.063 0.798 

 819 

Table S8 Deconvolution performance on datasets with added unknown mixture 820 

contents. 821 
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 823 

Table S9 Deconvolution performance on real PBMC RNA-seq datasets PBMC1 and 824 

PBMC2. 825 

  826 

Method Dataset Celltype RMSE Correlation Slope Intercept CCC 

CPM PBMC1 Total 0.18 -0.003 -0.003 0.167 -0.003 

CPM PBMC2 Total 0.114 -0.203 -0.094 0.182 -0.155 

CS PBMC1 Total 0.147 0.437 0.491 0.085 0.434 

CS PBMC2 Total 0.101 0.594 0.754 0.041 0.577 

CSx PBMC1 Total 0.16 0.603 0.925 0.012 0.552 

CSx PBMC2 Total 0.13 0.456 0.67 0.055 0.424 

MuSiC PBMC1 Total 0.316 -0.235 -0.468 0.245 -0.189 

MuSiC PBMC2 Total 0.299 -0.197 -0.542 0.257 -0.127 

Scaden PBMC1 Total 0.104 0.722 0.805 0.032 0.717 

Scaden PBMC2 Total 0.052 0.855 0.848 0.025 0.855 
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 827 

Figure S3 Comparison of Scaden deconvolution results on PBMC1 and PBMC2 datasets 828 

with and withouth (Scaden_all, Scaden_SC, respectively) bulk RNA-seq samples included in 829 

training data. 830 
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 832 

Table S10 Deconvolution performance on real PBMC RNA-seq data for Scaden models 833 

trained only on scRNA-seq simulated tissues (Scaden_SC) or on a mix of simulated and real 834 

tissue data (Scaden_all). 835 

  836 

Method Dataset Celltype RMSE Correlation Slope Intercept CCC 

Scaden_SC PBMC1 Total 0.131 0.564 0.644 0.059 0.559 

Scaden_SC PBMC2 Total 0.077 0.684 0.689 0.052 0.684 

Scaden_all PBMC1 Total 0.104 0.722 0.805 0.032 0.717 

Scaden_all PBMC2 Total 0.052 0.855 0.848 0.025 0.855 

Scaden_SC PBMC1 Bcells 0.033 0.648 0.172 0.006 0.083 

Scaden_SC PBMC1 CD4Tcells 0.228 0.633 0.492 -0.055 0.149 

Scaden_SC PBMC1 CD8Tcells 0.101 0.603 0.761 0.108 0.562 

Scaden_SC PBMC1 Monocytes 0.178 0.556 0.885 0.173 0.186 

Scaden_SC PBMC1 NK 0.087 0.81 0.531 0.137 0.312 

Scaden_SC PBMC1 Unknown 0.029 0.577 0.361 0.009 0.287 

Scaden_SC PBMC2 Bcells 0.012 0.936 0.977 0.002 0.935 

Scaden_SC PBMC2 CD4Tcells 0.145 0.767 0.682 -0.057 0.119 

Scaden_SC PBMC2 CD8Tcells 0.049 0.67 0.403 0.129 0.587 

Scaden_SC PBMC2 Monocytes 0.078 0.865 0.994 0.071 0.558 

Scaden_SC PBMC2 NK 0.071 0.629 0.314 0.14 0.276 

Scaden_SC PBMC2 Unknown 0.025 0.247 0.217 0.044 0.209 

Scaden_all PBMC1 Bcells 0.031 0.668 0.188 0.007 0.1 

Scaden_all PBMC1 CD4Tcells 0.151 0.638 0.652 -0.017 0.345 

Scaden_all PBMC1 CD8Tcells 0.096 0.6 0.704 0.123 0.569 

Scaden_all PBMC1 Monocytes 0.172 0.518 0.777 0.184 0.177 

Scaden_all PBMC1 NK 0.036 0.804 0.488 0.058 0.71 

Scaden_all PBMC1 Unknown 0.026 0.64 0.41 0.01 0.365 

Scaden_all PBMC2 Bcells 0.013 0.936 0.94 0.0 0.917 

Scaden_all PBMC2 CD4Tcells 0.074 0.772 0.769 -0.005 0.373 

Scaden_all PBMC2 CD8Tcells 0.051 0.672 0.398 0.106 0.562 

Scaden_all PBMC2 Monocytes 0.072 0.895 1.058 0.049 0.614 

Scaden_all PBMC2 NK 0.045 0.69 0.301 0.103 0.467 

Scaden_all PBMC2 Unknown 0.023 0.241 0.178 0.043 0.203 
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Table S11 Deconvolution performance on real Ascites RNA-seq data. 837 

  838 

Method Type CCC Correlation Intercept RMSE Slope 

CPM Total -0.0 0.004 0.153 0.183 -0.0 

CSx Total 0.938 0.952 0.002 0.069 1.115 

MuSiC Total 0.876 0.907 0.033 0.079 0.696 

Scaden Total 0.948 0.955 -0.030 0.061 1.066 
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 839 

Figure S4 Deconvolution performance on real human brain RNA-seq data. Scaden was 840 

trained on mouse scRNA-seq data and the trained model was used to deconvolve cell 841 

fractions of ROSMAP human brain RNA-seq data. This data does not contain cell fraction 842 

ground-truth information. Instead, the box plot shows the decrease of neuronal cell fractions 843 

with increasing Braak disease stage, a well-known phenomenon in AD. 844 
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 846 

Figure S5 Deconvolution performance comparison of CS (LM22) and Scaden on the 847 

GSE65133 PBMC microarray dataset. 848 
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 850 

Table S12 Deconvolution performance on real PBMC microarray data. 851 

  852 

Method Celltype CCC Correlation Intercept RMSE Slope 

CS Bcells 0.122 0.33 0.029 0.068 0.109 

CS CD4Tcells 0.629 0.658 0.199 0.095 0.537 

CS CD8Tcells 0.285 0.635 0.018 0.12 0.375 

CS Monocytes 0.295 0.741 0.19 0.17 0.779 

CS NK 0.623 0.698 -0.003 0.059 0.78 

CS Total 0.717 0.728 0.026 0.11 0.869 

Scaden Bcells 0.431 0.728 0.012 0.055 0.388 

Scaden CD4Tcells 0.64 0.778 -0.195 0.153 1.474 

Scaden CD8Tcells 0.474 0.543 0.02 0.104 0.635 

Scaden Monocytes 0.43 0.838 0.033 0.191 1.764 

Scaden NK 0.516 0.741 -0.029 0.074 0.77 

Scaden Total 0.705 0.749 -0.015 0.126 1.067 
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 853 

Software Version 

pandas 0.23.4 

Python 3.6.8 

Tensorflow 1.10.0 

matplotlib 2.2.3 

nb_conda 2.2.1 

numpy 1.15.0 

scipy 1.1.0 

seaborn 0.9.0 

anndata 0.6.9 

scanpy 1.2.2 

scikit-learn 0.20.0 

ipython 6.5.0 

python-igraph 0.7.1.post6 

louvain 0.6.1 

tqdm 4.7.2 

igraph 0.7.1 

Table S13 Software packages and versions used. 854 
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 856 

Target Cell Type LM22 Cell Types 

B cells B cells naive, B cells memory 

CD8 T cells T cells CD8, T cells follicular helper, T cells 

gamma delta 

CD4 T cells T cells CD4 naive, T cells regulatory (Tregs), T 

cells CD4 memory resting, T cells CD4 

memory activated 

NK NK cells resting, NK cells activated 

Dendritic Dendritic cells resting, Dendritic cells activated 

Monocytes Monocytes, Macrophages M0, Macrophages 

M1, Macrophages M2 

Unknown Mast cells resting, Mast cells activated, 

Eosinophils, T cells folicular helper, T cells 

gamma delta, Plasma cells, Neutrophils, 

Dendritic 

Table S14 Mapping of the LM22 GEP to cell types. 857 
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