- 1 Identification, characterization, and application of a highly sensitive lactam biosensor from
- 2 Pseudomonas putida
- 3 Mitchell G. Thompson^{1,2,3}, Allison N. Pearson^{1,2}, Jesus F. Barajas^{2,4}, Pablo Cruz-Morales^{1,2,5},
- 4 Nima Sedaghatian^{1,2}, Zak Costello^{1,2,6}, Megan E. Garber^{1,2,7}, Matthew R. Incha^{1,2,3}, Luis E.
- 5 Valencia^{1,2,8}, Edward E. K. Baidoo^{1,2}, Hector Garcia Martin^{1,2,6,9}, Aindrila Mukhopadhyay^{1,2,7},
- 6 Jay D. Keasling^{1,2,8,10,11,12}
- ¹Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.
- 8 ²Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley,
- 9 CA 94720, USA.
- ³Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720,
- 11 USA
- ⁴Department of Energy Agile BioFoundry, Emeryville, California, USA
- ⁵Centro de Biotecnologia FEMSA, Instituto Tecnologico y de Estudios superiores de Monterrey,
- 14 Mexico
- ⁶DOE Agile BioFoundry, Emeryville, CA, USA
- ⁷Comparative Biochemistry Graduate Group, University of California, Berkeley, Berkeley,
- 17 California, USA
- ⁸Joint Program in Bioengineering, University of California, Berkeley/San Francisco, CA 94720,
- 19 USA
- 20 ⁹BCAM, Basque Center for Applied Mathematics, Bilbao, Spain
- ¹⁰Department of Chemical and Biomolecular Engineering, University of California, Berkeley,
- 22 CA 94720, USA

¹¹The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark,
Denmark

¹²Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for
Advanced Technologies, Shenzhen, China

27

28 ABSTRACT

29 Caprolactam is an important polymer precursor to nylon traditionally derived from petroleum and produced on a scale of 5 million tons per year. Current biological pathways for 30 31 the production of caprolactam are inefficient with titers not exceeding 2 mg/L, necessitating 32 novel pathways for its production. As development of novel metabolic routes often requires 33 thousands of designs and results in low product titers, a highly sensitive biosensor for the final 34 product has the potential to reduce development time. Here we report a highly sensitive 35 biosensor for valerolactam and caprolactam from *Pseudomonas putida* KT2440 which is >1000x 36 more sensitive to exogenous ligand than previously reported sensors. Manipulating the 37 expression of the sensor oplR (PP_3516) substantially altered the sensing parameters, with various vectors showing K_d values ranging from 700 nM to 1.2 mM. Our most sensitive 38 construct was able to detect *in vivo* production of caprolactam above background at 11 µg/L. The 39 40 high sensitivity and range of OplR is a powerful tool towards the development of novel routes to 41 the biological synthesis of caprolactam.

42

43 INTRODUCTION

44 Caprolactam is an important chemical precursor to the polymer nylon 6, with a global
45 demand approximately 5 million tons per year ¹. Currently the majority of caprolactam is

46	synthesized from cyclohexanone, which is derived from petroleum ² . In addition to being
47	inherently unsustainable, the chemical process to synthesize caprolactam requires toxic reagents
48	and produces unwanted byproducts such as ammonium sulfate ² . Multiple attempts have been
49	made to produce caprolactam biologically, however the highest titers achieved to date are no
50	greater than 1-2 mg/L ^{1,3} . All current published strategies to produce caprolactam rely on the
51	cyclization of 6-aminocaproic acid (6ACA) via a promiscuous acyl-coA ligase ^{1,3} . While similar
52	strategies to make C4 butyrolactam and C5 valerolactam produce gram per liter titers, it is
53	thought that both the entropy and enthalpy properties of 7-membered ring formation of
54	caprolactam present an inherent barrier to the cyclization of 6ACA ^{4,5} . Clearly, novel routes to
55	renewable biological production of caprolactam are needed.
56	Genetically encoded biosensors can accelerate metabolic engineering efforts in many
57	ways, the foremost of which is the ability to rapidly screen for desirable phenotypes beyond the
58	throughput of analytical chemistry ⁶ . Multiple papers have reported transcription factors or
59	riboswitches that respond to lactams with varying degrees of sensitivity and specificity ^{4,7,8} . One
60	feature that unifies currently available lactam biosensors is that lactams are not the native ligand
61	for any of the corresponding biosensor systems. Zhang et al. used ChnR from Acinetobacter sp.
62	Strain NCIMB 9871 to sense multiple lactams with all ligands having a K_d of > 30 mM.
63	However, ChnR natively regulates cyclohexanol catabolism and is activated by its natural ligand,
64	cyclohexanone, at sub-millimolar concentrations ^{9,10} . Yeom et al. selected mutants of the NitR
65	biosensor to sense caprolactam at concentrations as low as 100 μ M when added exogenously,
66	and leveraged this sensor to identify novel cyclases to convert 6ACA to caprolactam ⁸ . Natively,
67	NitR regulates nitrile catabolism in Rhodococcus rhodochrous J1, and is responsive to
68	micromolar concentrations of isovalernitrile ^{11,12} . Therefore, it is reasonable to assume that if

69 natural lactam catabolic pathways are identified, highly sensitive biosensors could also be70 found.

71	Recently, two groups have identified pathways of lactam degradation in both P. putida
72	and Pseudomonas jessenii ^{13,14} . Work in P. putida demonstrated that the enzyme OplBA,
73	putatively responsible for the hydrolysis of valerolactam, is upregulated by the lactam but not its
74	cognate ω -amino acid ¹⁴ . These findings suggest there may be a lactam-sensitive transcription
75	factor controlling the expression of the hydrolytic enzyme that can be used as a biosensor. In this
76	work we demonstrate that the AraC-type regulator directly downstream of oplBA is indeed a
77	lactam biosensor with unprecedented sensitivity towards both valerolactam and caprolactam.
78	Through rational engineering we developed a suite of lactam sensing plasmids with dissociation
79	constants ranging from 700 nM to 1.2 mM, allowing for a dramatic dynamic range of sensing.
80	To demonstrate the utility of these sensors, we show that they are able to detect low titers of
81	caprolactam produced biologically in an Escherichia coli system.
82	RESULTS
83	Identification and development of oplR as a lactam biosensor
84	In <i>P. putida</i> , the <i>oplBA</i> locus is flanked by the LysR-family regulator PP_3513 upstream,
85	and the AraC-family regulator PP_3516 downstream. To infer if either of these transcription
86	factors regulates oplBA, we used publicly available fitness data to assess if either regulator is
87	cofit with <i>oplBA</i> (<u>http://fit.genomics.lbl.gov</u>) ¹⁵ . While no cofitness was observed between
88	PP_3513 and either oplA or oplB, PP_3516 was highly cofit with both genes (0.91:PP_3514,
89	0.80:PP_3515). To examine the hypothesis that PP_3516 is the regulator of <i>oplBA</i> , we examined
90	the genomic contexts of the oxoprolinase loci across multiple bacteria (Figure 1). While both
91	regulators were found in closely related species, in more distantly related <i>Pseudomonads</i> , such as

92 *Pseudomonas aeruginosa*, only the AraC-family regulator is conserved (Figure 1). Using

93 Multiple EM for Motif Elicitation (MEME)¹⁶ we attempted to identify conserved putative

94 binding sites upstream of *oplBA* as well as PP_3516. In closely related *Pseudomonads*, including

95 *P. aeruginosa*, a conserved motif was identified upstream of both *oplBA* as well PP_3516

96 (Figure 1). Attempts to confirm this as the binding site of PP_3516 were hampered by the

97 insolubility of PP_3516 when expressed heterologously (Figure S1), a common issue with AraC-

98 family proteins 17,18 .

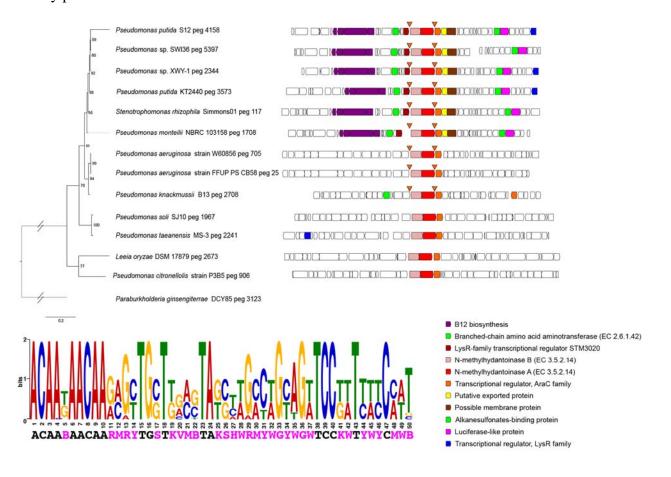


Figure 1 - Synteny analysis of *oplBA* homologs across genomes of related species. Triangles
 show the location of conserved putative binding sites of OplR. A consensus putative OplR
 binding site is shown below.

103	In order to screen the ability of PP_3516 to sense lactams, we employed a two-plasmid
104	test system wherein PP_3516 was cloned into an arabinose inducible medium-copy p15a plasmid
105	and the 200-bp upstream of oplB (Figure 2A) was cloned upstream of RFP on a compatible
106	medium-copy pBBR plasmid (Figure 2B). The relationship between fluorescence output, oplR
107	expression, and ligand induction was tested via a checkerboard assay where the levels of
108	arabinose and valerolactam were varied independently of one another in cultures of E. coli that
109	harbored both the "reporter" and "regulator" plasmids. A dose-dependent expression of RFP was
110	observed; both arabinose and valerolactam were required for high-level expression of RFP
111	(Figure 2C). Our initial screen also showed that the fluorescence was far above background RFP
112	expression even at the lowest concentration of valerolactam tested (10 μ M).
113	To quantify the sensing properties of PP_3516 the regulator was induced with a fixed
114	concentration of arabinose at 0.0125% w/v and concentrations of either valerolactam or
115	caprolactam were varied from 1 mM to 12 nM (Figure 2D). PP_3516 proved to be extremely
116	sensitive to both caprolactam and valerolactam, with both ligands having a $K_d \sim 5$ uM and limits
117	of detection ≤ 12 nM (Table 1). Based on these findings we propose PP_3516 be named <i>oplR</i> for
118	oxoprolinase regulator, which encodes a biosensor ~5000x more sensitive towards caprolactam
119	than the next most sensitive published biosensor ⁸ .
120	

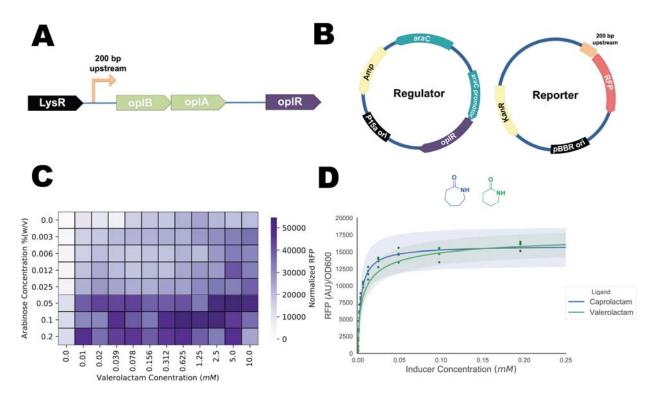


Figure 2 - Development of an *oplR*-based lactam biosensor. A) Operonic structure of *oplBA* 123 relative to *oplR* and putative promoter region used to construct the reporter. B) Diagram of 124 the two-plasmid system used to test OplR lactam sensing C) Checkerboard screen of OplR 125 126 biosensor two-plasmid system. Y-axis shows the concentration of arabinose (%w/v), X-axis shows the concentration of valerolactam (mM). Colorbar to right shows fluorescent 127 128 intensity normalized to OD₆₀₀. D) Fluorescence data fit to the Hill equation to derive biosensor performance characteristics for valerolactam and caprolactam. Points represent 129 130 individual measurements. Shaded area represents (+/-) one standard deviation, n=4. 131

132Table 1 - Two-plasmid biosensor parameters with caprolactam and valerolactam as

- 133 ligands. Max: Predicted maximal RFP, Hill Coef: Predicted Hill coefficient, Kd: Predicted
- 134 K_d in mM. LoD: Limit of detection determined experimentally. Standard deviation
- 135 estimates are in parentheses.

Ligand	Max	Hill Coef	K _d (mM)	LoD (mM)
Valerolactam	17817 (414)	0.62 (0.05)	0.007 (0.001)	≤ 0.000012
Caprolactam	15943 (483)	0.94 (0.16)	0.004 (0.001)	≤ 0.000012

136

137 <u>Development of One Plasmid Systems</u>

As a two-plasmid system is not convenient for engineering biological systems, we then sought to consolidate both the reporter and regulator into a single vector. Initial screening of OplR in the checkerboard assay suggested that varying the level of expression of OplR could dramatically influence the resulting sensing properties of the system (Figure 2C). We therefore constructed a family of plasmids, pLACSENS, where *oplR* was constitutively expressed from five promoters of increasing strength divergent from the RFP reporter (Figure 3A).

144 Biosensor performance of pLACSENS vectors was then assessed using valerolactam as a 145 ligand across concentrations from 12.5 mM to 12.5 nM Figure (Figure 3B). As seen in the two-146 plasmid system, varying the strength of *oplR* expression dramatically changed the characteristics 147 of the biosensor (Table 2). The most sensitive vector, pLACSENS3, had an experimentally determined limit of detection (LoD) of ≤ 12 nM, and a K_d of 700 nM. The least sensitive vector, 148 149 pLACSENS5, had a limit of detection of 1.5 µM, and a K_d of 1.5 mM, but drives the expression 150 of *oplR* with the strongest predicted promoter. The maximal RFP expression also varied greatly 151 with *oplR* expression, with the highest and lowest RFP expression observed in pLACSENS3 and 152 pLACSENS5, respectively (26300 vs. 793 RFP (AU)/OD₆₀₀). Induction over background expression was also highly variable; pLACSENS1 and pLACSENS4 were both maximally 153 154 induced at ~250x over background, while pLACSENS5 was only induced ~25x over 155 background.

156	Given the wide range of biosensing parameters within the pLACSENS vectors, we
157	sought to characterize which ligand concentration ranges each vector is most suited to detect. To
158	do this, we utilized a recently developed model to probabilistically relate inducer concentration
159	and fluorescence data via Markov Chain Monte Carlo (MCMC) sampling ¹⁹ . A resolution
160	window is defined as the concentrations of inducer that are statistically compatible with the
161	fluorescence data fit to the Hill function at a 95% confidence interval (cI). Resolution windows
162	for each pLACSENS plasmid were graphed from their experimentally determined LoD to ligand
163	concentrations compatible with 75% maximal fluorescence (Figure 3C). Overall, the family of
164	vectors showed resolution from 5 nM to 1 mM valerolactam, with pLACSENS3 having the
165	highest resolution at the lowest concentrations and pLACSENS5 having the best resolution at
166	high concentrations (Figure 3C).

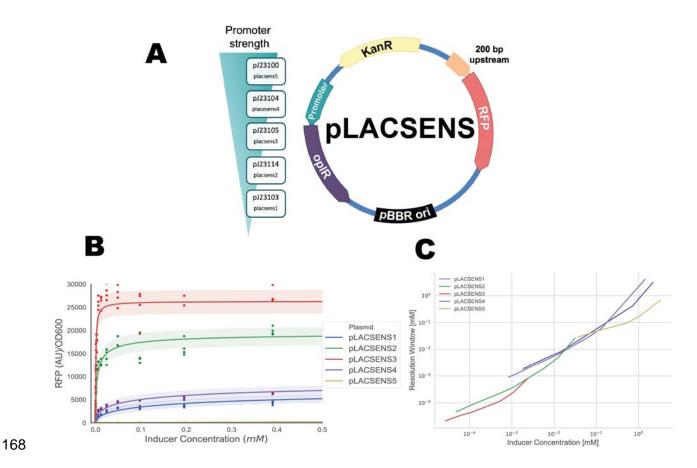


Figure 3 - Development of pLACSENS lactam biosensors A) Diagram of the pLACSENS
vector design, with the relative predicted strength of the promoter driving *oplR* on the left
B) Fluorescence data fit to the Hill equation to derive biosensor performance

172 characteristics for valerolactam against all 5 pLACSENS vectors. Points represent

173 individual measurements. Shaded area represents (+/-) one standard deviation, n=4. C)

174 Resolution window of each pLACSENS vector over a range of valerolactam concentrations.

- 177 Predicted Hill coefficient, K_d: Predicted K_d in mM, Exp. LoD: Limit of detection
- 178 determined experimentally. Induction: maximal induction over background based on
- 179 experimental data.

Plasmid	Max	Hill Coef	K _d (mM)	LoD (mM)	Induction
pLACSENS1	8284 (358)	0.54 (0.05)	0.19 (0.05)	0.000024	253x
pLACSENS2	19614 (419)	0.63 (0.05)	0.004 (0.0006)	≤ 0.000012	93x
pLACSENS3	26300 (390)	0.90 (0.07)	0.0007 (0.0001)	≤ 0.000012	38x
pLACSENS4	9877 (421)	0.52 (0.05)	0.09 (0.02)	0.000024	256x
pLACSENS5	793 (25)	0.96 (0.10)	1.23 (0.15)	0.0015	25x

180

181

182

183 OplR is selective for valerolactam and caprolactam

184 To assess lactam specificity of OplR, we measured fluorescence induction of

185 pLACSENS3 in the presence of lactams (laurolactam, caprolactam, valerolactam, butyrolactam,

186 5-oxoproline), ω-amino acids (4-aminobutyrate, 5AVA, 6ACA), the lactone valerolactone, and

187 piperidine (Figure 4). Robust fluorescence induction was observed with caprolactam,

188 valerolactam, and 5AVA (Table 3), but no other tested chemicals were capable of induction at

- 189 the concentrations tested in the work (data not shown).
- 190 Given the dissimilarity in chemical structure of 5AVA and lactams, the ability of
- 191 pLACSENS3 to detect 5AVA was surprising. Previously it has been shown in *E. coli* that 5AVA
- 192 can spontaneously be converted into valerolactam by the activity of native acyl-coA ligases¹.
- 193 This led us to believe that rather than detecting 5AVA, pLACSENS3 was detecting valerolactam
- derived from the added 5AVA. LC-TOF analysis revealed that when 1 mM of 5AVA was fed to

- 195 *E. coli* cultures harboring pLACSENS3 ~600 nM of valerolactam was produced, while no
- 196 valerolactam could be detected in *E. coli* not supplemented with 5AVA (Figure S2).
- 197 Valerolactam concentration at this level would explain the high levels of fluorescence observed
- 198 when 5AVA is added to cultures.
- 199

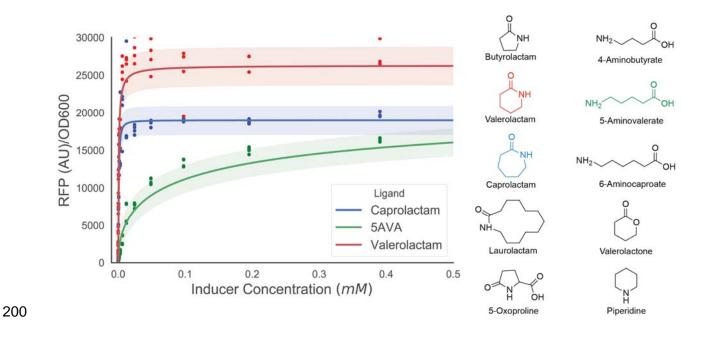


Figure 4 - Ligand range of pLACSENS3. Fluorescence data fit to the Hill equation to
derive biosensor performance characteristics for ligands that activated pLACSENS3.
Points represent individual measurements. Shaded area represents (+/-) one standard
deviation, n=4. To the right, chemical structures of ligands that were tested.

Ligand	Max	Hill Coef	K _d (mM)
Valerolactam	26300 (390)	0.90 (0.07)	0.0007 (0.0001)
Caprolactam	18974 (272)	1.36 (0.14)	0.0009 (0.0001)

	5AVA	23766 (1093)	0.52 (0.05)	0.12 (0.04)	
206					
207	Table 3 - pLA	CSENS3 biosens	sor parameter	s against different li	igands: Max: Predicted
208	maximal RFP,	, Hill Coef: Pred	licted Hill coef	fficient, K _d : Predicte	ed K _d in mM.
209					
210	Detection of ca	prolactam produ	ction in vivo		
211	To dem	onstrate the utilit	y of <i>oplR</i> base	d systems for metabo	lic engineering applications
212	we introduced	our most sensitiv	e pLACSENS	plasmid (pLACSENS	53) into <i>E. coli</i> harboring
213	various acyl-co	A ligases on an I	PTG-inducible	orthogonal plasmid	(Figure 5A). Multiple reports
214	have utilized ac	cyl-coA ligases to	o cyclize exoge	enously added 6ACA	to produce low titers of
215	caprolactam, w	ith production ra	nging from 0.8	-2 mg/L 1,3 . Strains	harboring both plasmids
216	were grown in	LB medium with	or without 10	mM 6ACA added for	r 24 hours. Cells grown in the
217	presence of 6A	CA demonstrated	d fluorescence	greater than cells gro	wn without 6ACA (Figure
218	5B). LC-MS an	alysis confirmed	that no caprol	actam was produced	in cells grown without
219	6ACA, while c	ells grown with 6	ACA had proc	luced 11 ug/L (Figure	e 6B). The ability of
220	pLACSENS3 to	o detect such mir	nute production	validates its utility a	s a means to rapidly and
221	accurately scree	en novel pathway	s for caprolact	am production.	

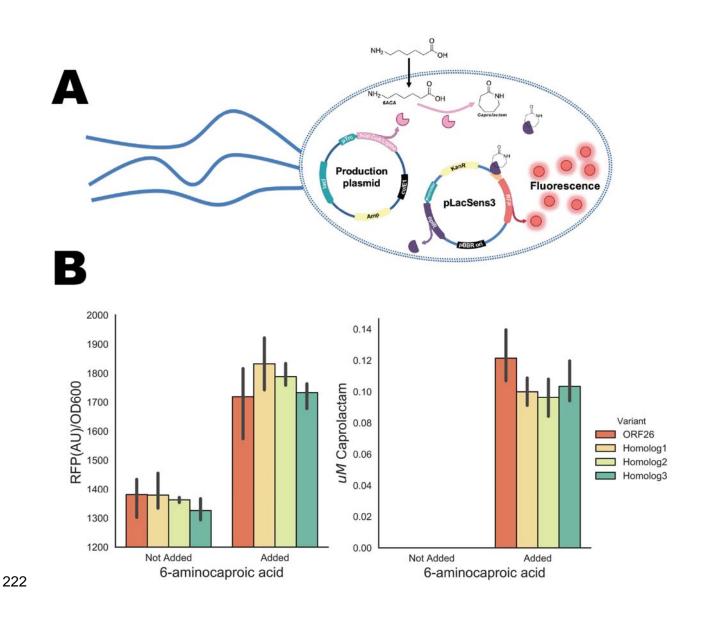


Figure 5 - Detection of caprolactam production in *E. coli* via pLACSENS3. A) Diagram of the pLACSENS vector design, with the relative predicted strength of the promoter driving *oplR* on the left B) Fluorescence data fit to the Hill equation to derive biosensor performance characteristics for valerolactam against all five pLACSENS vectors. Shaded area represents (+/-) one standard deviation, n=4. Different acyl-CoA ligases were tested for the *in vivo* cyclization of 6ACA to caprolactam. These included the previously studied

ORF26 CoA-ligase (red)¹ and three additional homologs. Homolog 1 (yellow), Homolog 2
(light green) and homolog 3 (dark green).

231

232 DISCUSSION

233 Previously, we have leveraged shotgun proteomics to infer local regulation within the lysine catabolism of *P. putida*^{14,19–21}. From these data, multiple glutarate biosensors were 234 engineered and used to measure relative metabolite amounts in the native host ¹⁹. Here we again 235 236 leveraged previously published proteomics data that showed OpIBA to be specifically upregulated in the presence of valerolactam to develop a biosensor ¹⁴. The AraC-family regulator 237 238 tentatively named OplR was shown to have limits of detection for exogenously added 239 valerolactam or caprolactam ≤ 12 nM when expressed at particular levels. This is remarkably 240 more sensitive than the previously published valerolactam and caprolactam sensors, which showed limits of detection between 10-100 μ M⁸. We attribute this high degree of sensitivity to 241 242 the fact that, to our knowledge, it is the first sensor to control the catabolism of lactams 243 specifically.

244 The range of detection of either caprolactam or valerolactam was highly dependent on the 245 expression of oplR, with the K_d varying from 700 nM to 1.23 mM depending on the constitutive 246 promoter used to drive expression. Previous work has also demonstrated that the sensing 247 parameters of transcription factors can be readily modulated by changing the strength of transcription factor expression²². At both the highest and lowest levels of predicted expression 248 249 OplR was less sensitive to lactams than when *oplR* was expressed more moderately. This may be 250 explained by the fact that some AraC-family regulators are known to act as both positive and negative regulators, thus overexpression of OplR could result in hyper-repression ¹⁸. 251

252 Unfortunately, insoluble expression of OplR prevented further examination of the biochemical 253 means of transcriptional control.

OplR was shown to be highly specific for valerolactam and caprolactam as ligands, but 254 255 not butyrolactam or laurolactam. These findings are consistent with previous observations that 256 showed *oplBA* mutants were not defective in their ability to hydrolyze butyrolactam. The 257 inability of *oplR* to sense the annotated substrate of OplBA, 5-oxoproline, suggests that the 258 natural function of the amidohydrolase is not that of a 5-oxoprolinase. While the 5-membered 259 lactam rings tested here were not able to induce OpIR-mediated expression, further work should 260 be conducted to test derivatives of valerolactam and caprolactam. Additional functional groups added to these lactams could be used to produce both pharmaceutical precursors ²³ and polymers 261 262 with novel nylon properties. Identifying biological routes to their synthesis is highly attractive. 263 Furthermore, recent work has shown that directed evolution may also be applied to broaden the ligand range ²⁴, which could allow OplR to accommodate different lactam ligands. 264 265 Current published routes to caprolactam biosynthesis rely on the cyclization of 6ACA via the activity of promiscuous CoA-ligase activity ^{1,3}. While *oplR*-based biosensors may be able to 266

267 aid in the selection of mutant acyl-coA ligases with enhanced activity, there remains a sizeable

thermodynamic barrier for the cyclization of the 7-membered ring 1 . Novel routes to caprolactam 268

269 or naturally occurring caprolactam-containing natural products that can mitigate this barrier 270 would be ideal for high-level production. For example, a better understanding of pestalactam A-271 C biosynthesis may provide new and more efficient chemoenzymatic routes to 7-ring cyclization 25. 272

273 In addition to the value of OplR as a biosensor for metabolic engineering purposes, it 274 may also be useful as an inducible system. Valerolactam is inexpensive (\sim \$2/gram), and highly water soluble (291 mg/mL). The vector pLACSENS2 demonstrated ~100x induction over
background, with a K_d toward valerolactam of 4 uM, and the second highest maximal expression
of any single vector tested. Additional engineering of the system could improve upon these
qualities. Furthermore, as OplR works well in *E. coli* and is derived from the distantly related *P. putida*, it may work well in other bacterial systems. Future work could evaluate which hosts are
suitable for this inducible system.

281 Since naturally-occuring genetically encoded biosensors for chemicals of interest have 282 the potential to be much more sensitive than those repurposed or evolved in the laboratory, it is 283 critical to pursue rapid and efficient means of identifying them. The recent development of other 284 high-throughput methods to associate genotypes with phenotypes, such as RB-TnSeq and 285 CRISPRi, has created a large reservoir of data that can be easily mined for transcription factors useful in synthetic biology ^{20,26–28}. Bacteria often locally regulate catabolism, thus allowing 286 287 inference of genetic control by adjacent transcription factors once a catabolic pathway has been 288 discovered. Empirical evidence of catabolism is critical for assigning transcription factor function as orthologous transcription is often utilized differently by different species ²⁹. Future 289 290 work to generalize approaches to develop useful synthetic biology tools from genome-wide 291 fitness data has the potential to dramatically increase the genetically encoded chemical sensor 292 space.

293

294 METHODS

295 Media, chemicals, and culture conditions

296 General *E. coli* cultures were grown in Lysogeny Broth (LB) Miller medium (BD
297 Biosciences, USA) at 37 °C. When indicated, *E. coli* was also grown on EZ-RICH medium

298	(Teknova, Hollister, CA) supplemented with 1% glucose. Cultures were supplemented with
299	kanamycin (50 mg/L, Sigma Aldrich, USA), or carbenicillin (100mg/L, Sigma Aldrich, USA),
300	when indicated. All other compounds were purchased through Sigma Aldrich (Sigma Aldrich,
301	USA).
302	Strains and plasmids
303	All bacterial strains and plasmids used in this work are listed in Table 4. All strains and
304	plasmids created in this work are available through the public instance of the JBEI registry.
305	(https://public-registry.jbei.org/folders/XXX). All plasmids were designed using Device Editor
306	and Vector Editor software, while all primers used for the construction of plasmids were
307	designed using j5 software ^{30–32} . Plasmids were assembled via Gibson Assembly using standard
308	protocols ³³ , or Golden Gate Assembly using standard protocols ³⁴ . Plasmids were routinely
309	isolated using the Qiaprep Spin Miniprep kit (Qiagen, USA), and all primers were purchased
310	from Integrated DNA Technologies (IDT, Coralville, IA).
311	Expression and purification of proteins
312	Proteins were purified as described previously 35 . The cultures were grown at 37 $^{\circ}$ C
313	until the OD_{600} nm reached 0.8 and cooled on ice for 20 min. 1 mM IPTG was added to induce
314	overexpression for 16 h at 18 °C. The cells were harvested by centrifugation (8000g, 10 min, 4
315	°C), resuspended in 40 mL of lysis buffer (50 mM HEPES, pH 8.0, 0.3 M NaCl, 10% glycerol
316	(v/v) and 10 mM imidazole), and lysed by sonication on ice. Cellular debris was removed by
317	centrifugation (20000g, 60 min, 4 °C).
318	The supernatant was applied to a fritted column containing Ni-NTA resin (Qiagen, USA)
319	and the proteins were purified using the manufacturer's instructions. Fractions were collected

320 and analyzed via SDS-PAGE.

321 <u>Fluorescence biosensor assays</u>

322	All assays were conducted in 96-deep well plates (Corning Costar, 3960), with each well
323	containing 500 μ L of medium with appropriate ligands, antibiotics, and/or inducers inoculated at
324	1% v/v from overnight cultures. Plates were sealed with AeraSeal film (Excel Scientific,
325	AC1201-02 and incubated at 37 C in a 250 rpm shaker rack. After 24 hours, 100 μ L from each
326	well was aliquoted into a black, clear-bottom 96-well plate for measurements of optical density
327	and fluorescence using an Infinite F200 (Tecan Life Sciences, San Jose, CA) plate reader.
328	Optical density was measured at 600 nm (OD_{600}), while fluorescence was measured using an
329	excitation wavelength of 535 nm, an emission wavelength of 620 nm, and a manually set gain of
330	60.
331	For the checkerboard assay of the two-plasmid system, LB medium supplemented with
332	both kanamycin and carbenicillin was inoculated with E. coli containing the regulator and
333	reporter plasmids grown overnight in the same medium. Arabinose concentration was decreased
334	from 0.2 to 0% w/v along the y-axis, while valerolactam concentration was increased from 0-10
335	mM along the x-axis.
336	To find the Hill fit to the two-plasmid system, EZ-RICH medium containing kanamycin,
337	carbenicillin, and 0.0125 w/v% arabinose was inoculated with an overnight culture of the two-
338	plasmid system in LB medium supplemented with both kanamycin and carbenicillin. Both
339	valerolactam and caprolactam were tested at concentrations ranging from 0 to 50 mM.
340	Characterization of the 5 variations of the one-plasmid pLACSENS plasmids was
341	conducted using EZ-rich medium containing kanamycin and inoculated with overnight cultures
342	of the appropriate E. coli strain. Valerolactam concentrations was varied from 0 to 50 mM. This
343	same assay was repeated on pLACSENS3 with various ligands—using concentrations between 0

to 50 mM of caprolactam and 5AVA, and 0 to 10 mM of butyrolactam, 5-oxoproline, gamma-

- aminobutyric acid, 6ACA, valerolactone, and piperidine. The maximum concentration of
- laurolactam tested was 0.1 mM due to its poor solubility.
- 347 Production assays and analytical methods

348 Caprolactam production assays were carried out in 10 mL of LB medium supplemented with 10

349 mM 6ACA, as well as kanamycin, carbenicillin, and 1 mM IPTG. Cultures were inoculated

- 350 1:100 with overnight culture harboring both pLACSENS3 and expression vectors for acyl-coA
- 351 ligases and grown at 30 °C shaking at 200 rpm for 24 hours. After 24 hours optical density was

measured at 600 nm (OD₆₀₀), while fluorescence was measured using an excitation wavelength

of 535 nm, an emission wavelength of 620 nm, and a manually set gain of 60. To sample for

254 caprolactam production $200 \ \mu L$ of culture was quenched with an equal volume of ice-cold

355 methanol and then stored at -20 °C until analysis. The different acyl-CoA ligases tested for the *in*

vivo cyclization of 6ACA to caprolactam included the previously studied ORF26 CoA-ligase

357 (red) ¹ and three additional homologs. Homolog 1 refers to A0A0D4DX08_9ACTN, homolog 2

358 refers to G2NX2_STRVO and homolog 3 refers to A0A0C1VDH3_9ACTN.

359

Valerolactam and caprolactam were measured via LC-QTOF-MS as described
previously ¹⁴. Liquid chromatographic separation was conducted at 20°C with a Kinetex HILIC
column (50-mm length, 4.6-mm internal diameter, 2.6-µm particle size; Phenomenex, Torrance,
CA) using a 1260 Series HPLC system (Agilent Technologies, Santa Clara, CA, USA). The
injection volume for each measurement was 5 µL. The mobile phase was composed of 10 mM
ammonium formate and 0.07% formic acid in water (solvent A) and 10 mM ammonium formate
and 0.07% formic acid in 90% acetonitrile and 10% water (solvent B) (HPLC grade, Honeywell

367	Burdick & Jackson, CA, USA). High purity ammonium formate and formic acid (98-100%
368	chemical purity) were purchased from Sigma-Aldrich, St. Louis, MO, USA. Lactams were
369	separated with the following gradient: decreased from 90%B to 70%B in 2 min, held at 70%B
370	for 0.75 min, decreased from 70%B to 40%B in 0.25 min, held at 40%B for 1.25 min, increased
371	from 40%B to 90%B for 0.25 min, held at 90%B for 1 min. The flow rate was varied as follows:
372	0.6 mL/min for 3.25 min, increased from 0.6 mL/min to 1 mL/min in 0.25 min, and held at 1
373	mL/min for 2 min. The total run time was 5.5 min.
374	The HPLC system was coupled to an Agilent Technologies 6520 quadrupole time-of-
375	flight mass spectrometer (QTOF MS) with a 1:6 post-column split. Nitrogen gas was used as
376	both the nebulizing and drying gas to facilitate the production of gas-phase ions. The drying and
377	nebulizing gases were set to 12 L/min and 30 lb/in ² , respectively, and a drying gas temperature
378	of 350°C was used throughout. Fragmentor, skimmer and OCT 1 RF voltages were set to 100 V,
379	50 V and 300 V, respectively. Electrospray ionization (ESI) was conducted in the positive-ion
380	mode for the detection of $[M + H]^+$ ions with a capillary voltage of 4000 V. The collision energy
381	voltage was set to
382	0 V. MS experiments were carried out in the full-scan mode (75–1100 m/z) at 0.86

spectra/s. The QTOF-MS system was tuned with the Agilent ESI-L Low concentration tuning mix in the range of 50-1700 *m/z*. Lactams were quantified by comparison with 8-point calibration curves of authentic chemical standards from 0.78125 μ M to 100 μ M. R² coefficients of \geq 0.99[EB1] were achieved for the calibration curves. Data acquisition was performed by Agilent MassHunter Workstation (version B.05.00), qualitative assessment by Agilent MassHunter Qualitative Analysis (version B.05.00 or B.06.00), and data curation by Agilent Profinder (version B.08.00)

390 Bioinformatic Analysis

For the phylogenetic reconstructions, the best amino acid substitution model was selected
 using ModelFinder as implemented on IQ-tree ³⁶ phylogenetic trees were constructed using IQ-

- tree, nodes were supported with 10,000 bootstrap replicates. The final tree figures were edited
- 394 using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). Orthologous syntenic regions of
- 395 OplBA were identified with CORASON-BGC ³⁷ and manually colored and annotated. DNA-
- 396 binding sites were predicted with MEME 16 .
- 397 Analysis of Biosensor Performance

Fluorescent measurements were fit to the Hill equation and biosensor parameters we estimated as described previously ¹⁹. Briefly, fluorescent values were OD_{600} normalized, and had their background fluorescent subtracted. A probabilistic model relating inducer concentrations (*C*) and fluorescence measurements (*F*) to characterize the performance of a biosensor was used where *F* :

403

$$P(F|C, \theta, \alpha) = \mathcal{N}(h_{\theta}(C), \sigma)$$

where is the Hill function, are the parameters of the hill function, is the estimated
standard deviation, and N represents a gaussian (normal) distribution. Using the probabilistic
model which captures our constraints on the problem the log likelihood function is expressed as:

$$\ell(\theta, \sigma | \mathcal{D}) = \sum_{i=1}^{N} \log P(F = f_i | C = c_i, \sigma, \theta).$$

408 The log likelihood is used to express the maximum likelihood estimation (MLE) problem:

$$\hat{\theta}, \hat{\sigma} = \arg \max_{\theta, \sigma} \ell(\theta, \sigma | \mathcal{D})$$

409

407

which when solved results in the optimal parameters of the model given the characterizationdata. In order to estimate the distribution of ligand concentrations that are compatible with

412 experimental fluorescence data, MCMC sampling was used to solve the following MLE

413 problem:

$$\hat{c} = \arg \max_{c} \sum_{i=1}^{N} \log P(F = f_i | C = c, \hat{\theta}, \hat{\sigma})$$

414

We determined biosensor resolution by solving the above maximum likelihood estimation
problem iteratively over the range of observed fluorescences during the biosensor
characterization process. This can determine the relationship between an inducer concentration
estimate and the estimated standard deviation. The standard deviation of the estimate of inducer
concentration can be interpreted as the resolution window. Here, two standard deviations is
considered the resolution window of the sensor, as 95% of the compatible inducer concentration
estimates fall within the interval

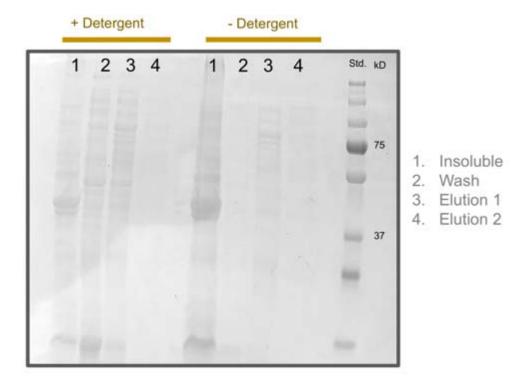
422 Induction above background was calculated by dividing the maximal experimental 423 normalized RFP expression by background fluorescence in uninduced cultures. The experimental 424 limit of detection was defined as the minimal concentration of inducer that produced normalized 425 fluorescence that was statistically above uninduced cultures harboring the same plasmid via 426 Student's t-test (p<0.05).

427 Acknowledgements

We would like to thank the Koret Research Scholars Program for providing funding to
ANP to conduct summer research. This work was part of the DOE Joint BioEnergy Institute
(https://www.jbei.org) supported by the U. S. Department of Energy, Office of Science, Office of
Biological and Environmental Research, supported by the U.S. Department of Energy, Energy
Efficiency and Renewable Energy, Bioenergy Technologies Office, through contract DE-AC0205CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of

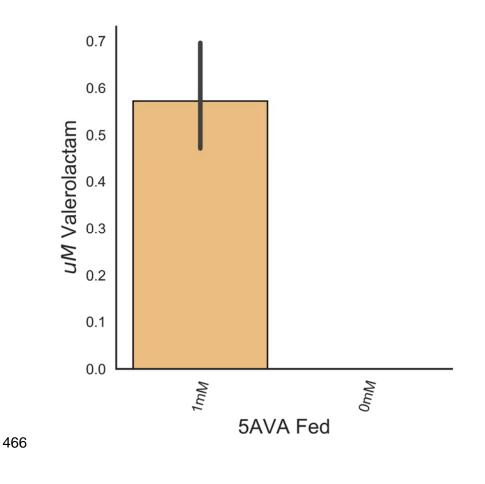
434	Energy. The views and opinions of the authors expressed herein do not necessarily state or
435	reflect those of the United States Government or any agency thereof. Neither the United States
436	Government nor any agency thereof, nor any of their employees, makes any warranty, expressed
437	or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
438	usefulness of any information, apparatus, product, or process disclosed, or represents that its use
439	would not infringe privately owned rights. The United States Government retains and the
440	publisher, by accepting the article for publication, acknowledges that the United States
441	Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
442	reproduce the published form of this manuscript, or allow others to do so, for United States
443	Government purposes. The Department of Energy will provide public access to these results of
444	federally sponsored research in accordance with the DOE Public Access Plan
445	(http://energy.gov/downloads/doe-public-access-plan). HGM was also supported by the Basque
446	Government through the BERC 2018-2021 program and by Spanish Ministry of Economy and
447	Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2017-0718.

448


449 Contributions

- 450 Conceptualization, M.G.T.; Methodology, M.G.T., A.N.P., J.F.B, P.C.M., E.E.K.B., N.S, Z.C.;
- 451 Investigation, M.G.T., L.E.V., J.F.B, P.C.M, M.R.I., M.E.G., A.N.P., ; Writing Original Draft,
- 452 M.G.T.; Writing Review and Editing, All authors.; Resources and supervision,

453 H.G.M,A.M.,J.D.K.


454 **Competing Interests**

- 455 J.D.K. has financial interests in Amyris, Lygos, Constructive Biology, Demetrix, Napigen and
- 456 Maple Bio.
- 457 Supplementary Figures
- 458 Figure S1: Insolubility of OpIR expressed heterologously in *E. coli*: OpIR-6xHis expressed
- 459 in the insoluble fraction (~40 kD) of *E. coli* in the presence and absence of the detergent
- 460 Tween 20 (0.5% w/v).

461

- 463 Figure S2: Valerolactam produced from 5AVA in *E. coli* culture. Bars show the amount of
- 464 valerolactam produced in *E. coli* harboring pLACSENS3 when fed either 1 mM or 0 mM
- 465 5AVA. Error bars represent 95% cl.

468 Table 4: Strains and plasmids used in this study

Strain	JBEI Part ID	Reference
E. coli DH10B		38

E. coli BL21(DE3)		Novagen
P. putida KT2440		ATCC 47054
Plasmids		
pBADT		39
pBADT-PP_3516p-RFP	JBEI-104519	This work
pBbA8a-PP_3516	JBEI-104517	This work
pLacSens1	JBEI-104506	This work
pLacSens2	JBEI-104505	This work
pLacSens3	JBEI-104504	This work
pLacSens4	JBEI-104503	This work
pLacSens5	JBEI-104502	This work
pBbE7a-ORF26	JBEI-104322	This work
pBbE7a-G2NX2_STRVO	JBEI-104323	This work
pBbE7a-A0A0D4DX08_9ACTN	JBEI-104324	This work
pBbE7a-A0A0C1VDH3_9ACTN	JBEI-104325	This work

469

470 Bibliography

473 Synth. Biol. 6, 884–890.

- 474 (2) Thomas, J. M., and Raja, R. (2005) Design of a "green" one-step catalytic production of
- 475 epsilon-caprolactam (precursor of nylon-6). *Proc Natl Acad Sci USA 102*, 13732–13736.

^{471 (1)} Zhang, J., Barajas, J. F., Burdu, M., Wang, G., Baidoo, E. E., and Keasling, J. D. (2017)

⁴⁷² Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis. ACS

- 476 (3) Chae, T. U., Ko, Y.-S., Hwang, K.-S., and Lee, S. Y. (2017) Metabolic engineering of
- 477 Escherichia coli for the production of four-, five- and six-carbon lactams. *Metab. Eng.* 41, 82–91.
- 478 (4) Zhang, J., Barajas, J. F., Burdu, M., Ruegg, T. L., Dias, B., and Keasling, J. D. (2017)
- 479 Development of a Transcription Factor-Based Lactam Biosensor. ACS Synth. Biol. 6, 439–445.
- 480 (5) Casadei, M. A., Galli, C., and Mandolini, L. (1984) Ring-closure reactions. 22. Kinetics of
- 481 cyclization of diethyl (.omega.-bromoalkyl)malonates in the range of 4- to 21-membered rings.
- 482 Role of ring strain. J. Am. Chem. Soc. 106, 1051–1056.
- 483 (6) Dietrich, J. A., McKee, A. E., and Keasling, J. D. (2010) High-throughput metabolic
- 484 engineering: advances in small-molecule screening and selection. *Annu. Rev. Biochem.* 79, 563–
 485 590.
- 486 (7) Jang, S., Jang, S., Im, D.-K., Kang, T. J., Oh, M.-K., and Jung, G. Y. (2019) Artificial
- 487 caprolactam-specific riboswitch as an intracellular metabolite sensor. ACS Synth. Biol.
- 488 (8) Yeom, S.-J., Kim, M., Kwon, K. K., Fu, Y., Rha, E., Park, S.-H., Lee, H., Kim, H., Lee, D.-
- 489 H., Kim, D.-M., and Lee, S.-G. (2018) A synthetic microbial biosensor for high-throughput
- 490 screening of lactam biocatalysts. *Nat. Commun.* 9, 5053.
- 491 (9) Iwaki, H., Hasegawa, Y., Teraoka, M., Tokuyama, T., Bergeron, H., and Lau, P. C. (1999)
- 492 Identification of a transcriptional activator (ChnR) and a 6-oxohexanoate dehydrogenase (ChnE)
- in the cyclohexanol catabolic pathway in Acinetobacter sp. Strain NCIMB 9871 and localization
 of the genes that encode them. *Appl. Environ. Microbiol.* 65, 5158–5162.
- 495 (10) Steigedal, M., and Valla, S. (2008) The Acinetobacter sp. chnB promoter together with its
- 496 cognate positive regulator ChnR is an attractive new candidate for metabolic engineering
- 497 applications in bacteria. *Metab. Eng. 10*, 121–129.
- 498 (11) Komeda, H., Hori, Y., Kobayashi, M., and Shimizu, S. (1996) Transcriptional regulation of
- the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. *Proc Natl Acad Sci USA 93*,
 10572–10577.
- 501 (12) Pandey, A. K., Raman, S., Proff, R., Joshi, S., Kang, C.-M., Rubin, E. J., Husson, R. N., and
- Sassetti, C. M. (2009) Nitrile-inducible gene expression in mycobacteria. *Tuberculosis (Edinb)*89, 12–16.
- 504 (13) Otzen, M., Palacio, C., and Janssen, D. B. (2018) Characterization of the caprolactam
- 505 degradation pathway in Pseudomonas jessenii using mass spectrometry-based proteomics. Appl.
- 506 Microbiol. Biotechnol. 102, 6699–6711.
- 507 (14) Thompson, M., Valencia, L. E., Blake-Hedges, J., Cruz-Morales, P., Velasquez, A.,
- 508 Pearson, A., Sermeno, L., Sharpless, W., Benites, V., Chen, Y., Baidoo, E., Petzold, C. J.,
- 509 Deutschbauer, A., and Keasling, J. D. (2019) Host engineering for improved valerolactam
- 510 production in Pseudomonas putida. *BioRxiv*.
- 511 (15) Wetmore, K. M., Price, M. N., Waters, R. J., Lamson, J. S., He, J., Hoover, C. A., Blow, M.
- 512 J., Bristow, J., Butland, G., Arkin, A. P., and Deutschbauer, A. (2015) Rapid quantification of
- 513 mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. *MBio* 6,
- 514 e00306-15.
- 515 (16) Bailey, T. L., Williams, N., Misleh, C., and Li, W. W. (2006) MEME: discovering and

- analyzing DNA and protein sequence motifs. *Nucleic Acids Res.* 34, W369-73.
- 517 (17) Porter, M. E., and Dorman, C. J. (2002) In vivo DNA-binding and oligomerization
- 518 properties of the Shigella flexneri AraC-like transcriptional regulator VirF as identified by
- 519 random and site-specific mutagenesis. J. Bacteriol. 184, 531–539.
- 520 (18) Schleif, R. (2010) AraC protein, regulation of the l-arabinose operon in Escherichia coli,
- and the light switch mechanism of AraC action. *FEMS Microbiol. Rev.* 34, 779–796.
- 522 (19) Thompson, M. G., Cruz-Morales, P., Krishna, R. N., Blake-Hedges, J. M., Incha, M. R., and
- 523 Keasling, J. D. (2019) Glutarate metabolism in Pseudomonas putida is regulated by two distinct
- 524 glutarate sensing transcription factors. *BioRxiv*.
- 525 (20) Thompson, M. G., Blake-Hedges, J. M., Cruz-Morales, P., Barajas, J. F., Curran, S. C.,
- 526 Eiben, C. B., Harris, N. C., Benites, V. T., Gin, J. W., Sharpless, W. A., Twigg, F. F., Skyrud,
- 527 W., Krishna, R. N., Henrique Pereira, J., Baidoo, E. E. K., Petzold, C. J., Adams, P. D., Arkin, A.
- 528 P., Deutschbauer, A. M., and Keasling, J. D. (2019) Massively Parallel Fitness Profiling Reveals
- 529 Multiple Novel Enzymes in Pseudomonas putida Lysine Metabolism. *MBio 10*.
- 530 (21) Chen, Y., Vu, J., Thompson, M. G., Sharpless, W. A., Chan, L. J. G., Gin, J. W., Keasling,
- J. D., Adams, P. D., and Petzold, C. J. (2019) A rapid methods development workflow for highthroughput quantitative proteomic applications. *PLoS ONE 14*, e0211582.
- 533 (22) Rogers, J. K., Guzman, C. D., Taylor, N. D., Raman, S., Anderson, K., and Church, G. M.
- 534 (2015) Synthetic biosensors for precise gene control and real-time monitoring of metabolites.
 535 *Nucleic Acids Res.* 43, 7648–7660.
- 536 (23) Thai, K., Wang, L., Dudding, T., Bilodeau, F., and Gravel, M. (2010) NHC-catalyzed
- intramolecular redox amidation for the synthesis of functionalized lactams. *Org. Lett.* 12, 5708–
 5711.
- 539 (24) Kasey, C. M., Zerrad, M., Li, Y., Cropp, T. A., and Williams, G. J. (2018) Development of
- 540 Transcription Factor-Based Designer Macrolide Biosensors for Metabolic Engineering and
 541 Synthetic Biology. *ACS Synth. Biol.* 7, 227–239.
- 542 (25) Davis, R. A., Carroll, A. R., Andrews, K. T., Boyle, G. M., Tran, T. L., Healy, P. C.,
- 543 Kalaitzis, J. A., and Shivas, R. G. (2010) Pestalactams A-C: novel caprolactams from the 544 endophytic fungus Pestalotiopsis sp. *Org. Biomol. Chem.* 8, 1785–1790.
- 545 (26) Wang, T., Guan, C., Guo, J., Liu, B., Wu, Y., Xie, Z., Zhang, C., and Xing, X.-H. (2018)
- 546 Pooled CRISPR interference screening enables genome-scale functional genomics study in
- 547 bacteria with superior performance. *Nat. Commun.* 9, 2475.
- 548 (27) Price, M. N., Wetmore, K. M., Waters, R. J., Callaghan, M., Ray, J., Liu, H., Kuehl, J. V.,
- 549 Melnyk, R. A., Lamson, J. S., Suh, Y., Carlson, H. K., Esquivel, Z., Sadeeshkumar, H.,
- 550 Chakraborty, R., Zane, G. M., Rubin, B. E., Wall, J. D., Visel, A., Bristow, J., Blow, M. J., and
- 551 Deutschbauer, A. M. (2018) Mutant phenotypes for thousands of bacterial genes of unknown
- 552 function. *Nature* 557, 503–509.
- 553 (28) Sagawa, S., Price, M. N., Deutschbauer, A. M., and Arkin, A. P. (2017) Validating
- regulatory predictions from diverse bacteria with mutant fitness data. *PLoS ONE 12*, e0178258.
- 555 (29) Price, M. N., Dehal, P. S., and Arkin, A. P. (2007) Orthologous transcription factors in

- bacteria have different functions and regulate different genes. *PLoS Comput. Biol. 3*, 1739–1750.
- 557 (30) Ham, T. S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N. J., and Keasling, J. D. (2012)
- 558 Design, implementation and practice of JBEI-ICE: an open source biological part registry
- platform and tools. *Nucleic Acids Res.* 40, e141.
- (31) Chen, J., Densmore, D., Ham, T. S., Keasling, J. D., and Hillson, N. J. (2012) DeviceEditor
 visual biological CAD canvas. *J. Biol. Eng.* 6, 1.
- 562 (32) Hillson, N. J., Rosengarten, R. D., and Keasling, J. D. (2012) j5 DNA assembly design
- automation software. *ACS Synth. Biol. 1*, 14–21.
- 564 (33) Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., and Smith, H. O.

565 (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* 6,
566 343–345.

- 567 (34) Engler, C., Kandzia, R., and Marillonnet, S. (2008) A one pot, one step, precision cloning
- 568 method with high throughput capability. *PLoS ONE 3*, e3647.
- 569 (35) Jackson, D. R., Tu, S. S., Nguyen, M., Barajas, J. F., Schaub, A. J., Krug, D., Pistorius, D.,
- 570 Luo, R., Müller, R., and Tsai, S.-C. (2016) Structural Insights into Anthranilate Priming during
- 571 Type II Polyketide Biosynthesis. *ACS Chem. Biol.* 11, 95–103.
- 572 (36) Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S.
- 573 (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14,
 574 587–589.
- 575 (37) Cruz-Morales, P., Ramos-Aboites, H. E., Licona-Cassani, C., Selem-Mójica, N., Mejía-
- 576 Ponce, P. M., Souza-Saldívar, V., and Barona-Gómez, F. (2017) Actinobacteria phylogenomics,
- 577 selective isolation from an iron oligotrophic environment and siderophore functional
- 578 characterization, unveil new desferrioxamine traits. FEMS Microbiol. Ecol. 93.
- 579 (38) Grant, S. G., Jessee, J., Bloom, F. R., and Hanahan, D. (1990) Differential plasmid rescue
- from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. *Proc Natl Acad Sci USA* 87, 4645–4649.
- 582 (39) Bi, C., Su, P., Müller, J., Yeh, Y.-C., Chhabra, S. R., Beller, H. R., Singer, S. W., and
- 583 Hillson, N. J. (2013) Development of a broad-host synthetic biology toolbox for Ralstonia
- 584 eutropha and its application to engineering hydrocarbon biofuel production. *Microb. Cell Fact.*
- 585 *12*, 107.