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ABSTRACT Haldane notably showed in 1927 that the probability of fixation for an advantageous allele is approximately 2s, for
selective advantage s. This widely known result is variously interpreted as either the fixation probability or the establishment
probability, where the latter is considered the likelihood that an allele will survive long enough to have effectively escaped loss
by drift. While Haldane was concerned with escape from loss by drift in the same paper, in this short note we point out that: 1)
Haldane’s ‘probability of survival’ is analogous to the probability of fixation in a Wright-Fisher model (as also shown by others);
and 2) This result is unrelated to Haldane’s consideration of how common an allele must be to ‘probably spread through the
species’. We speculate that Haldane’s survival probability may have become misunderstood over time due to a conflation of
terminology about surviving drift and ‘ultimately surviving’ (i.e., fixing). Indeed, we find that the probability of establishment
remarkably appears to have been overlooked all these years, perhaps as a consequence of this misunderstanding. Using
straightforward diffusion and Markov chain methods, we show that under Haldane’s assumptions, where establishment is
defined by eventual fixation being more likely that extinction, the establishment probability is actually 4s when the fixation
probability is 2s. Generalizing consideration to deleterious, neutral, and adaptive alleles in finite populations, if establishment
is defined by the odds ratio between eventual fixation and extinction, k, the general establishment probability is (1 + k)/k
times the fixation probability. It is therefore 4s when k = 1, or 3s when k = 2 for beneficial alleles in large populations. As
k is made large, establishment becomes indistinguishable from fixation, and ceases to be a useful concept. As a result, we
recommend establishment be generally defined as when the odds of ultimate fixation are greater than for extinction (k = 1,
following Haldane), or when fixation is twice as likely as extinction (k = 2).
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Introduction1

Established alleles are those that have persisted long enough2

in a population so that they are unlikely to be lost by chance,3

and can thus be said to have escaped loss by drift. The concept4

of establishment traces back at least to Fisher (1922, p. 419).5
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Fisher argued that the fate of a new positively selected mutant 6

is determined more by random drift when it is rare than if it 7

persists long enough to spread through much of the population. 8

Later, Haldane (1927) sought to “consider the course of events 9

in a population where the new factor is present in such numbers 10

as to be in no danger of extinction by mere bad luck”. In that 11

work, Haldane used a branching process formulation to derive 12

his famous probability of eventual fixation for a beneficial mu- 13

tant with selection coefficient s (PFix ≈ 2s), which was termed 14

the “probability of survival”. Perhaps because of context and 15

the use of this term, which comes from the theory of branching 16

processes, 2s is now commonly interpreted as both the fixation 17

probability (e.g., Kimura 1962; Otto and Whitlock 1997) and as 18

the establishment probability (i.e., the probability that an allele 19
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will reach a sufficiently high frequency to have effectively es-1

caped loss by drift) (e.g., Gerrish and Lenski 1998; Peck 1994;2

Messer and Petrov 2013). However, while fixation implies prior3

establishment, establishment should not necessarily imply fix-4

ation with complete certainty, or else it is at best a redundant5

concept. The probability of establishment should thus nearly6

always be greater than the probability of fixation, and the differ-7

ence between the two should vary according to how exactly we8

define establishment.9

A reading of Haldane’s paper (Haldane 1927) supports this10

view. In particular, after deriving the probability of fixation,11

Haldane went on to argue that a dominant allele achieving a12

population count of log(2)/2s will “probably” spread through13

the species. Although it was not stated explicitly, this is an14

approximation to the number of initial mutants that make the15

probability of fixation equal to 1/2, so that exceeding this thresh-16

old implies better than even odds that the allele will go on to17

become fixed (derivation below). Here we clarify that, unlike18

in the branching process formulation (Ewens 2004, p. 29), fixa-19

tion and survival to establishment can be easily differentiated in20

a Wright-Fisher model. A Wright-Fisher perspective will thus21

clarify that Haldane’s 2s is unrelated to his establishment count,22

since the probability of fixation given the establishment count23

of log(2)/2s is 1/2 (not 2s). Under Haldane’s assumptions, we24

will see that the establishment probability of a beneficial allele25

is rather approximated by 4s, and is therefore off by a factor of26

2 compared to the probability of fixation. This result applies to27

both haploid and diploid populations with zygote/heterozygote28

fitness of 1 + s. When heterozygote fitness is defined as (1 + hs)29

for h = 1/2, the probabilities of fixation and establishment are30

rather s and 2s respectively.31

We begin by reviewing Haldane’s treatment and its assump-32

tions. We next consider some related arguments by Gillespie33

(2004), before moving to a diffusion approach and eventually34

to a direct analysis of the discrete-time Wright-Fisher model35

(where we are not required to assume weak mutation, weak36

selection, or large population size). Moving to a full Markov37

chain treatment is important for validation, and because the38

cases where establishment are most of interest occur when pop-39

ulation mutation rates may be very large and thus could violate40

assumptions that diffusion approximations usually require (de41

Koning and de Sanctis 2018). We focus on the general case where42

mutants may be deleterious, neutral, or advantageous and show43

that a diffusion approximation to the establishment probability44

has a pleasing simplicity when defined appropriately. We con-45

clude that both the probability and rate of establishment (Messer46

and Petrov 2013) are different from what has been previously47

understood by as much as a factor of 2.48

Establishment count in a branching-process model49

Haldane used a branching process formulation to consider the50

ultimate survival of a mutant allele. Assuming individuals leave51

a Poisson-distributed number of offspring in the next generation,52

and that the number of mutant offspring has mean 1 + s, the53

probability that the mutant population will eventually go extinct54

in the limit of t → ∞ can be determined by considering the55

probability that a newly arisen mutant in the current generation,56

t, will eventually go extinct, PExt(Xt = 1) (where Xt indicates57

the number of mutants present in generation t). Noting that58

PExt(Xt = 1) is equivalent to 1 − PFix(Xt = 1), this can be59

expressed by writing the probability that an allele will leave i60

mutant offspring in the next generation times the probability that61

every one of the i mutants will eventually go extinct, integrated 62

over all i: 63

1− PFix(Xt = 1) =
∞

∑
i=0

e−(1+s) (1 + s)i

i!
(1− PFix(Xt+1 = 1))i

= e−(1+s)PFix(Xt+1=1)

By noting that the probability of fixation of a newly arisen 64

mutant should be the same in each generation under constant 65

population size and selective effect (Otto and Whitlock 1997), 66

we can set PFix(Xt = 1) and PFix(Xt+1 = 1) to PFix(X0 = 1) and 67

solve for s in terms of PFix. This yields 68

s = −PFix(X0 = 1) + log(1− PFix(X0 = 1))
PFix(X0 = 1)

.

Suppressing the dependence on Xt for convenience, we take 69

the Taylor series expansion of the solution for s around PFix = 0, 70

s =
PFix

2
+

P2
Fix
3

+
P3

Fix
4

+ O(P4
Fix)

and obtain Haldane’s famous result for the probability of 71

fixation of a beneficial allele when using the leading term: 72

PFix ≈ 2s

As noted above, Haldane next derived a minimum allele 73

count, c∗ = log(2)/2s, that if exceeded would ensure that the al- 74

lele will probably spread through the species (i.e., establish). To 75

see how he obtained this result, we begin with an approximation 76

to the probability that c mutants will eventually go extinct based 77

on the above result, (1− 2s)c (Haldane 1927; Otto and Whit- 78

lock 1997). This approximation works well when s is small and 79

positive, and indeed it corresponds to Kimura’s extinction prob- 80

ability from diffusion theory for a starting frequency of c/(2N) 81

in the limit of infinite population size (and to a first order ap- 82

proximation when s is small; not shown). To find the minimum 83

number of starting copies such that fixation and extinction are 84

equally likely, c∗, we use Haldane’s expression for the extinction 85

probability and set this to (1− 2s)c∗ = 1
2 , so that c∗ represents 86

the count at which fixation becomes more likely than extinction 87

when it is exceeded. Solving for c∗ yields 88

c∗ = − log(2)
log(1− 2s)

Taking the first term in a series expansion of this result around 89

s = 0 then gives 90

c∗ =
log(2)

2s
− log(2)

2
− log(2)s

6
− log(2)s2

6
+ O(s3)

≈ log(2)
2s

recovering Haldane’s result. We will refer to this quantity as 91

Haldane’s establishment count. Throughout this paper, we refer 92

to the minimum population frequency required to become estab- 93

lished as the establishment frequency ( f ∗), and the corresponding 94

allele count as the establishment count (c∗). Based on the above 95

definitions, a population that achieves exactly Haldane’s estab- 96

lishment count will have a fixation probability of 1/2 (not 2s, 97

which is the fixation probability assuming we started with a 98

single mutant copy). 99
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Establishment frequency in a Wright-Fisher diffusion (s >1

0, N → ∞)2

Kimura (1962, 1964) considered the fixation probability in a3

diffusion approximation to a Wright-Fisher model including4

selection and drift in a series of celebrated papers. Given an5

initial mutant allele frequency X0 = f0, a population size of6

N diploid reproducing individuals, selection coefficient s and7

heterozygote fitness 1 + s, Kimura’s probability of fixation is8

given by:9

PFix(X0 = f0) =
1− e−4Ns f0

1− e−4Ns (1)

For a single starting copy ( f0 = 1/(2N)), this yields10

PFix(X0 =
1

2N
) =

1− e−2s

1− e−4Ns

As Kimura (1962, eq. 11) noted, in the limit of infinite pop-11

ulation size, this equation agrees with Haldane’s result to a12

first-order approximation:13

lim
N→∞

PFix(X0 =
1

2N
) = 1− e−2s

= 2s− 2s2 +
4s3

s
+ O(s4)

≈ 2s

for s > 0 (where the series expansion was again taken around14

s = 0). This result supports the standard interpretation that Hal-15

dane’s 2s represents the fixation (not establishment) probability.16

Using equation 1 as a starting point, Gillespie (2004, sec.17

3.9, eq. 3.25) later derived an expression for the establishment18

frequency, f ∗, that makes the probability of fixation close to 119

(within a prescribed margin of error, ε ≈ 0, so that 1− ε ≈ 1).20

Gillespie first assumed that 2Ns is large enough that the denom-21

inator of equation 1 approaches 1 and can be ignored. If we22

define heterozygote fitness as 1 + s and homozygote fitness as23

1 + 2s (rather than the 1 + 1
2 s and 1 + s that Gillespie used), we24

obtain25

1− ε = PFix(X0 = f ∗)

≈ 1− e−4Ns f ∗ .

Solving for f ∗, we then obtain26

f ∗ =
− log(ε)

4Ns
,

which is consistent with Gillespie’s reported result given our27

redefinition of heterozygote fitness. By setting ε = 1
2 so that28

exceeding the establishment frequency makes the probability29

of fixation greater than the probability of extinction, this yields30

an establishment frequency that is equivalent to Haldane’s es-31

tablishment count divided by 2N. Note that in both Haldane32

and Gillespie’s derivations, s was assumed positive and N was33

effectively assumed large so that the results do not necessarily34

apply to deleterious or neutral alleles, and do not account for35

finite population size effects.36

We will now generalize the concept of allele establishment by37

combining the approaches of Haldane, Gillespie, and Kimura,38

and by relaxing assumptions about s and N. As we show, both 39

the establishment frequency and probability have simple closed 40

form approximations in the diffusion framework, even when 41

the definition of establishment is varied according to the relative 42

odds of eventual fixation to extinction. 43

Results 44

Diffusion approximations to the establishment frequency and 45

probability are now developed. These will be contrasted with 46

numerical results obtained by independent analyses of discrete 47

Wright-Fisher models, which are based only on the definitions 48

of establishment and the model itself. The method used to effi- 49

ciently analyze the discrete models is described in the Appendix. 50

Establishment frequency in a Wright-Fisher diffusion (general 51

case) 52

As above, we define the establishment frequency f ∗ = c∗
2N for a 53

given establishment count, c∗. For generality, we define estab- 54

lishment in terms of the odds ratio k, such that eventual fixation 55

is k times more likely than extinction. Definitions based on quan- 56

tities other than the odds ratio are possible, however, as we will 57

see, the odds ratio produces a convenient simplification and al- 58

lows existing arguments as special cases (e.g., k = 1 for Haldane, 59

k = (1− ε)/ε for Gillespie). Thus, the desired probability of 60

fixation, PFix(X0 = f ∗), can be written as: 61

PFix(X0 = f ∗) = kPExt(X0 = f ∗)
= k(1− PFix(X0 = f ∗))

=
k

1 + k
(2)

Following the approach used by Gillespie (2004), but without 62

applying his approximations, equation 1 can be used to directly 63

solve for the initial allele frequency X0 = f ∗ that satisfies equa- 64

tion 2: 65

1− e−4Ns f ∗

1− e−4Ns =
k

1 + k

f ∗ =
log
(

1−
(

k
1+k

)
(1− e−4Ns)

)
−4Ns

(3)

Immediately, we can confirm the intuitive result that when 66

fixation and extinction are equally likely (k = 1), the establish- 67

ment frequency (equation 3) of a neutral variant is 1
2 : 68

lim
s→0

f ∗ =
1
2

As a further check, multiplying the general solution in equa- 69

tion 3 by 2N and taking the limit as N → ∞ gives: 70

lim
N→∞

2N f ∗ =
log(1 + k)

2s

for s > 0. As expected, this result with k = 1 is equivalent to 71

Haldane’s establishment count when s > 0. 72

3
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Figure 1 Establishment probability compared to fixation probability for a range of fixation-to-extinction odds ratios (k). The dashed
yellow line shows results of calculations made assuming p = 1/(2N) and using the diffusion method. Solid lines show results
based on direct computation of the establishment count and its corresponding probability using the discrete-time Wright-Fisher
model. Note, the methods agree and numerically correspond with (1 + k)/k as implied by equation 5. Accordingly, the results
are invariant to N and s; these results were computed for s = 0 and N = 10, 000. Values of k = 1 and k = (1 − ε)/ε capture
the assumptions of Haldane and Gillespie, respectively. At Haldane’s more liberal definition of establishment, the probability of
establishment is twice the probability of fixation, whereas for Gillespie’s definition, PEstablish → PFix approximately as ε→ 0).

Establishment probability in a Wright-Fisher diffusion1

Establishment probability can be defined as the probability of2

reaching the establishment frequency (or count) before going3

to extinction. Establishment may therefore be considered in a4

two absorbing-state Wright-Fisher model, with absorbing states5

defined at Xt ∈ {0, f ∗} (in the continuous state-space). An ex-6

pression for the establishment probability can then be found7

using diffusion theory in a manner analogous to how Kimura8

derived the fixation probability, but where the fixation absorb-9

ing boundary is moved to the establishment frequency and its10

meaning redefined.11

Following Kimura (Kimura 1962), let u( f0, t) be the proba-12

bility that the mutant allele will absorb at the upper absorbing13

boundary during time interval t, given initial frequency f0. We14

are interested in a solution to limt→∞ u( f0, t) = u( f0), with the15

boundary conditions u(0) = 0 and u( f ∗) = 1. We solve for u( f0)16

by setting up the appropriate Kolmogorov backward equation,17

ignoring higher-order terms, and solving the ordinary differen-18

tial equation:19

M
du( f0)

d f0
+

V
2

d2u( f0)

d f0
2 = 0

Under a diploid Wright-Fisher model accounting for drift
and selection, the effective per generation mean and variance
of the diffusion are M = sp(1 − p) and V = p(1/p)/(2N),
respectively (when heterozygote fitness is 1 + s)). With the
appropriate boundary conditions defined above, the solution is
then

u( f0) =
1− e−4Ns f0

1− e−4Ns f ∗ , (4)

which has an obvious similarity to the fixation probability 20

in equation 1. Substituting in the establishment frequency from 21

equation 3, we obtain the simple result: 22

PEstablish( f0) =

(
1 + k

k

)
1− e−4Ns f0

1− e−4Ns (5)

or simply (1 + k)/k · PFix( f0). While f0 will usually be as- 23

sumed to be 1/(2N), it need not be so and could reasonably 24

take any value between 1/(2N) and f ∗ − 1/(2N). This result 25

also holds for dominant and recessive variants (not shown for 26

brevity). 27
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Figure 2 Comparison of establishment frequencies and probabilities for k = 1. As before, dashed yellow lines show analytic dif-
fusion solutions, solid blue lines show discrete solutions. The diffusion approximation agrees with the discrete solution in this
parameter range. (A) Establishment frequency as a function of selection. At neutrality, establishment frequency is 1

2 , increasing
for negatively selected, and decreasing for positively selected alleles. (B) Probability of establishment as a function of selection (Y-
axis on log scale). Establishment probability of a neutral variant is 1

N , increasing for positively selected, and sharply decreasing for
negatively selected alleles. Population size N = 10, 000, heterozygote fitness (1 + s)

Establishment and fixation probabilities differ according to1

the definition of establishment2

Establishment and fixation probabilities differ according to how3

certain we wish to be that establishment implies likely fixation4

(Figure 1). On the left, establishment is defined as exceeding the5

frequency at which eventual fixation and extinction are equally6

likely (k = 1). As explained in the introduction, this roughly7

corresponds to the assumptions of Haldane (although he consid-8

ered only the case of s > 0 in a branching-process model). With9

k = 1, the probability of establishment is twice the probability10

of fixation, while with k = 2 (where fixation is twice as likely as11

extinction), the establishment probability is 1.5× larger than that12

for fixation. On the right of Figure 1, establishment is defined13

such that fixation is extremely likely (100 times more likely than14

extinction, k = 100). This corresponds to Gillespie’s definition15

of establishment with ε set to ∼ 0.01 (1/101 to be precise). Com-16

parison of a direct analysis of the discrete Wright-Fisher model17

with the diffusion results of the previous sections confirms the18

results in equation 5. Since the direct analysis of the discrete19

model is agnostic to details of the model itself, results for several20

values of the population mutation rate parameter, θ, were com-21

puted where both forward and backward recurrent mutation22

were allowed. The close correspondence of these results with23

the diffusion results (which assumed no new mutations) sug-24

gests that the relationship between PFix and PEstablish is robust25

as defined in equation 5.26

In Figure 2, establishment frequency and probability are con-27

trasted under Haldane’s definition of establishment (k = 1),28

using both the general diffusion solutions presented above, and29

the direct analysis of the discrete Wright-Fisher model. Establish-30

ment frequency is large and close to one for deleterious alleles,31

illustrating that strongly deleterious alleles are only expected32

to establish in an equilibrium population when they start at33

frequencies that are already very high. Contrariwise, beneficial34

alleles have comparatively low establishment frequencies, which35

decrease as the strength of positive selection is increased. For36

neutral mutations, the establishment frequency is 0.5, and the 37

shape of the curve is symmetric with respect to the neutral estab- 38

lishment frequency. Only minor variations are observed when 39

bidirectional recurrent mutation is introduced (where faster mu- 40

tation generally exaggerates the effects of selection). 41

In the discrete framework, we can also easily find the ex- 42

pected time to establishment (for those variants that establish; 43

Figure 3A), the expected time of segregation after establishment 44

(Figure 3B), and the expected time to fixation after establish- 45

ment (for those variants that go on to be fixed; Figure 3C). These 46

quantities could also be found using diffusion theory for partic- 47

ular model parameterizations, which we do not pursue here for 48

brevity. As expected, the establishment time for advantageous 49

alleles is shortest (Figure 3A). However, it is interesting to note 50

that mildly deleterious alleles take a significantly longer time to 51

establish than do either neutral or strongly deleterious alleles. 52

Similar effects have been observed in computations of expected 53

allele age and times to absorption, and have been attributed 54

to ‘stochastic slowdowns’ under weak selection in the presence 55

of dominance (Mafessoni and Lachmann 2015; de Sanctis et al. 56

2017) and mutation (de Sanctis et al. 2017). Notably, we see 57

these effects here even when the mutation rate is zero. Similarly, 58

we observe that once established, weakly adaptive alleles take 59

longer to go to fixation than do neutral alleles (Figure 3C). Con- 60

trariwise, the average time to absorption (at either boundary) 61

after establishment is symmetric with respect to selection about 62

s = 0 (Figure 3B). 63

Discussion 64

We have shown that establishment (survival until escaping loss 65

by drift) and fixation (taking over the population) are easily dif- 66

ferentiated in a Wright-Fisher model, and that clearly defining 67

the establishment frequency and probability clarifies the mean- 68

ing of Haldane’s important result (PFix ≈ 2s, s > 0). Despite that 69

Haldane’s fixation probability is widely interpreted as if it were 70

5
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Figure 3 Expected times to establishment and absorption in the discrete Wright-Fisher model with establishment defined by k = 1.
(A) Expected time to establishment (from f0 = 1/(2N)); (B) Expected time to absorption, post-establishment (at either absorbing
boundary); and (C) Expected time to fixation, post-establishment. Solid blue lines correspond to different values of the bidirectional
mutation rate. Population size N = 10, 000, heterozygote fitness (1 + s).

the establishment probability, we have argued that the probabil-1

ity of reaching the establishment frequency does not appear to2

have been addressed until now (except in the trivial case where3

k is large and establishment therefore implies certain fixation).4

Accordingly, we do not believe Haldane intended his probability5

of fixation to be interpreted as the probability of reaching the es-6

tablishment count. Indeed, it is plausible that his result has been7

misinterpreted owing to the use of terminology from the theory8

of branching processes that may be ambiguous when taken out9

of context. For example, Haldane called 2s the ‘probability of10

survival’, alluding to the so-called ultimate survival probability11

in branching process theory. While this sounds very much like12

survival to escape of loss by drift, which he also discussed, it13

really means fixation since it refers to the ultimate fate of an14

allele in the limit of infinite (or very long) time.15

We recognize that there could be reasonable disagreement16

amongst geneticists about the definition of establishment in17

comparison to fixation. After all, historical usage of the term18

‘establishment’ has been inconsistent, with some authors using it19

as a synonym for complete fixation (e.g., Kimura and Ohta 1969)20

and others using it specifically to mean survival to escape from21

loss by drift (e.g., Haldane 1927). Nevertheless, the modern22

usage is more consistent with the latter definition, which we23

have assumed throughout this work. Due to this ambiguous24

legacy, it would probably be helpful to avoid future colloquial25

uses of the term ‘establishment’, sensu lato, without explicitly26

defining what is intended.27

Defining establishment with respect to the odds ratio of even-28

tual fixation to extinction provides a flexible definition that gen-29

eralizes previous approaches, and which allows the establish-30

ment probability to be simply computed as (1 + k)/k times PFix.31

Under Haldane’s assumptions, this corresponds to an establish-32

ment probability of 4s (when PFix = 2s; k = 1), and 3s when33

establishment is defined by fixation being twice as likely as34

extinction (k = 2). When heterozygote fitness is 1 + sh and35

h = 1/2, the establishment and fixation probabilities are half of36

these values (not shown). For larger values of k (e.g., k > 10),37

PEstablish is quite close to PFix and the concept itself becomes38

equivalent to fixation. We therefore suggest that k = 1 and k = 239

are reasonable choices for defining establishment in practice.40
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Appendix 16

Establishment count in a Wright-Fisher Markov model (gen- 17

eral case) 18

Here we derive establishment properties for arbitrary discrete- 19

time Wright-Fisher models. Detailed discussion of efficient com- 20

putational solutions to the discrete-time model can be found in 21

Krukov et al. (2017); de Sanctis et al. (2017); de Koning and de 22

Sanctis (2018). 23

Consider a discrete-time Wright-Fisher model with the tran- 24

sition probability matrix: 25

P(i,j) =

(
2N

j

)
ψ

j
i (1− ψi)

2N−j (S1)

States 0, 2N ∈ A are absorbing states, corresponding to ex- 26

tinction and fixation, respectively. The rest of the states are tran- 27

sient, i ∈ A. The transition probability matrix (equation S1) can 28

be partitioned into transient-to-transient transition probabilities 29

Q(i,j)|i, j ∈ A, and transient-to-absorbing transition probabilities 30

R(i,k)|i ∈ A, k ∈ A: 31

P =

Q R

0 I2

 (S2)

In this case, R = [RExt, RFix] has two columns, correspond- 32

ing to extinction and fixation. The full model has 2N + 1 states, 33

corresponding to allele counts from 0 to 2N, inclusive. The 34

fundamental matrix of the Markov chain is: 35

N(i,j) =
∞

∑
n=0

Qn = (I−Q)−1 (S3)

The entries N(i,j) express the expected number of generations 36

spent in each state j prior to absorption, conditional on starting 37

in state i. The probability of absorbing in each absorbing state, 38

conditional on starting in state i, is given by the matrix: 39

B = NR, (S4)

which has one column of probabilities for each of the absorb- 40

ing states. 41

We can find the establishment count c∗ directly by scanning 42

B for increasing values of c0 (the initial state), until we find the 43

first entry of B’s second column such that Bc0,2 ≥ kBc0,1. Note 44

that this does not require solving for every row of N, since we 45

can rearrange 46

B = NR

= (I−Q)−1R

R = (I−Q)B, (S5)

which can be easily computed using an LU decomposition of 47

the matrix I−Q. 48

Probability of establishment in a Wright-Fisher Markov model 49

(general case) 50

Given the establishment count c∗, we can define a new Markov 51

model with c∗ as the upper absorbing boundary, yielding a 52

model with c∗− 1× c∗− 1 transient-to-transient state transitions. 53

This reduced model is constructed by truncation of Q, and by 54

setting the second column of R to R2,i = 1− R1,i −∑c∗−1
j=1 Q(i,j). 55
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With the full transition matrix P′ thus defined, where we call1

the corresponding transient-to-transient submatrix Q′, and the2

transient-to-absorbing submatrix R′, we can find the properties3

of interest by using N′ = (I−Q′), as in equation S3. We can then4

use N′ to derive properties such as probabilities and expected5

times using standard definitions (Krukov et al. 2017; de Sanctis6

et al. 2017). The matrix Q′ (just as matrix Q) can be based on7

any parameterization of the underlying model, including with8

arbitrary mutation, dominance, and selection.9

To integrate quantities of interest over the likely distribution10

of starting states c0, which can become important when the11

population mutation rate is not small, we integrate over each12

state according to the probability of mutation creating 1, 2, 3, ...13

copies in a single generation, starting from zero mutant copies14

(i.e., P0,1, P0,2, ...). As in de Sanctis et al. (2017) and de Koning and15

de Sanctis (2018), the summation can be truncated at x terms for16

x when P0,x falls below some small threshold (e.g., 10−7).17

8 Krukov and de Koning

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/704577doi: bioRxiv preprint 

https://doi.org/10.1101/704577
http://creativecommons.org/licenses/by-nc-nd/4.0/

