
Human Genome Assembly in 100
Minutes

Chen-Shan Chin and Asif Khalak
Foundation for Biological Data Science
15 July 2019
chenshan@biologicaldatascience.org
asif@biologicaldatascience.org

Abstract
De novo genome assembly provides comprehensive, unbiased genomic information and makes
it possible to gain insight into new DNA sequences not present in reference genomes. Many de
novo human genomes have been published in the last few years, leveraging a combination of
inexpensive short-read and single-molecule long-read technologies. As long-read DNA
sequencers become more prevalent, the computational burden of generating assemblies
persists as a critical factor. The most common approach to long-read assembly, using an
overlap-layout-consensus (OLC) paradigm, requires all-to-all read comparisons, which
quadratically scales in computational complexity with the number of reads. We assert that
recently achievements in sequencing technology (i.e. with accuracy ~99% and read length
~10-15k) enables a fundamentally better strategy for OLC that is effectively linear rather than
quadratic. Our genome assembly implementation, Peregrine uses ​s​parse ​hi​erarchical
m​ini ​m​iz​er​s (SHIMMER) to index reads thereby avoiding the need for an all-to-all read
comparison step. Peregrine can assemble 30x human PacBio CCS read datasets in less than
30 CPU hours and around 100 wall-clock minutes to a high contiguity assembly (N50 > 20Mb).
The continued advance of sequencing technologies coupled with the Peregrine assembler
enables routine generation of human de novo assemblies. This will allow for population scale
measurements of more comprehensive genomic variations -- beyond SNPs and small indels --
as well as novel applications requiring rapid access to de novo assemblies.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

mailto:chenshan@biologicaldatascience.org
mailto:asif@biologicaldatascience.org
https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Introduction
The initial human genome project and the development of technologies of cheap DNA
sequencing technologies have advanced both academic research and industrialization of using
genomic information to improve human health ​1,2​. The fast decreasing cost of second generation
sequencing technologies makes population scale study of certain type of variations, e.g., SNPs
and small indel variants, possible. It leads to valuable information for genotype and phenotype
association and many important and clinical relevant applications​3–5​. Meanwhile, the recent
development long read technologies, e.g. sequencers from Oxford Nanopore Technology (ONT)
and Pacific Biosciences (PacBio), can read DNA sequences that are orders of magnitude longer
than those of second generation sequencing. With longer read lengths, it makes de novo
assembly relatively easier and we can generate more contiguous assemblies​6–13​. The de novo
reconstruction of a genome reduces the dependence on using a reference as prior information.
A re-sequencing approach depending on a reference may not be effective to explore those
genomic structures that are deviated from the references significantly. Recent studies with
directly human genome assemblies have discovered new sequences that are not in the current
reference genome ​12,14–16​. Systematic approach for discovering structural variations identifies
many new structural variations and projects that we still needs more samples to generate a
more comprehensive catalogs of larger variants in human population other than SNPs and small
indels.

The current barrier for big scale utilization of long reads is the relative cost and throughput
compared to the second generation sequencing technologies. We expect the long read
sequencing cost will follow the trajectory of the second generation sequencing which will
continue to decrease. On reducing the computing cost of genome assembly, there are also
many recent progresses that significantly reduce the total amount computational resources
needed ​17,18​. In a recent report, researchers were able to assemble 30x human genome in a
couple hundreds to thousands of CPU hours with consensus reads that were longer than 10kb
with average accuracy better than 99%​8,19​.

For long-read genome assembly, overlap-layout-consensus (OLC) paradigm​20,21​ is used in most
of the current long-read assemblers for production. The quadratic comparison between reads
remains the main bottleneck for further improving computation efficiency. For example, the
hierarchical genome assembly process, HGAP​10​, initially designed for assembly noisy PacBio
reads takes two overlapping steps, one for error correction and one for assembly graph
generation needs 20,000 to 30,000 cpu hours to assemble a human genome from noisy
sequences. Most high performance assemblers developed recently, e.g. Flye ​17​, wtdbg2 ​18​ and
Shasta ​22​, adapt new strategies to avoid such expensive explicit overlapping steps between two
full reads. Such optimization is likely necessary for efficiently assembling noisy long reads.
Meanwhile, we can start with consensus reads with better accuracy to improve computation
efficiency of overlapping reads for genome assembly. We find it is possible to reduce the
computation complexity of the overlap detection by exploiting the better read accuracy. We have

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

http://f1000.com/work/citation?ids=148019,3882376&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=171552,3904976,1399202&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=3507037,234970,7104254,1464874,463543,4768207,6715166,7150284&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
http://f1000.com/work/citation?ids=111989,3287070,6715166,1435783&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
http://f1000.com/work/citation?ids=6744810,6335410&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=6280480,7104254&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=94992,7104278&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=463543&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6744810&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6335410&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7187208&pre=&suf=&sa=0
https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

developed a new genome assembler Peregrine (https://github.com/cschin/peregrine). It utilizes
an efficient indexing scheme to reduce computation time as low as 20 cpu hours for assembling
a human size genome starting with consensus reads.

The genome assembly approach presented here can effectively make genome assembly
become routine work without special setup for cluster computation. Simplifying such
fundamental process for a genome project is key to routinely generating de novo genome
assembly that avoids missing information from re-sequencing approach. The cost of de novo
approach is currently more expensive than re-sequencing. Nevertheless, with the fast pace in
advance of computational methods and sequencing technologies, the cost to generate de novo
human genome may drop to a price point that it has become affordable for personalized
medicine soon. Our method will also help to build pan-human-genomics references which
allows us to capture novel human genome sequences that are not available in the current
human reference GRCh38 ​12,15​. Given the potential to provide more comprehensive view for
human genomes, we are hoping, the whole genome assembly approach will provide important
information for genetic diseases that can not be revealed easily with re-sequencing approach.

Results

We developed a new method for indexing sequence reads (See Figure 1 and Methods) to
identify overlaps between two reads and implement a new genome assembler "Peregrine" with
it. We test the Peregrine assembler on a number of public human genome datasets with
different parameter sets. The full summary of the results in terms of computational resource
usage are in Table 1. We utilized large memory compute nodes, e.g. Amazon Web Services
m5d.metal​ (384 Gb RAM​) ​ or ​r5d.12xlarge ​(384 Gb RAM​) ​instance types, so we can run 24
indexing and overlapping processes concurrently. Peregrine uses 9 to 25 cpu core hours
depending the sequencing coverage and parameters. The wall clock time of a typical assembly
run ranges from one to two hours from initial fasta or fastq files to final assembly. The
overlap-to-assembly graph module in Peregrine currently runs on a single core in about 30 to 40
minutes of wall clock time, depending on sequencing coverage and read length. This step takes
a significant fraction of the overall wall clock time. It may be possible to further optimize this step
with a parallel computing approach in the future. The single overlapping process may use
memory up to 120Gb RAM depending on the sequencing coverage and read lengths. When
running the overlapping processes concurrently the sequence data used for alignment
confirmation are shared among concurrent processes through a memory mapped file
approach ​23​. When we split the full index into 24 partitions, each overlap process requires about
~ 8 to 10Gb memory for ~30x human genome sequencing to store the index. The design for
index partitioning is simple and flexible in Peregrine. In order to run Peregrine in a computer
with smaller memory, we can just increase the number of partitions and run the overlapping
process in serial.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

http://f1000.com/work/citation?ids=3287070,6715166&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=7187124&pre=&suf=&sa=0
https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

The overlapping module generated a file that is compatible with the one used in the FALCON
assembler​24​. After the overlapping step, Peregrine uses the overlap-to-contig layout modules
from the FALCON assembler to generate contigs. The accuracy of overlap detection can affect
the contig lengths. Given our contig N50 lengths are on par with those generated by FALCON
with daligner, we expect the performance of detecting the correct overalps is close to the
daligner for these accurate reads. However, the Peregrine overlapper is designed specifically to
find overlaps that are longer than a couple hundred to thousand bases. Small overlaps induced
by repeats that is not significant for constructing contigs properly will be ignored by the design of
the overlapping searching algorithm.

To evaluate Peregrine's overlapping module, we simulate reads using E. coli genome and test
the overlapping performance at different level of error rates and length distributions. For
average 15kb reads and 1% error, within 55,935 overlapping read pairs detected, 99.94% are
true positive and there 32 false positives which are caused by repeats in the genome. We are
able to detect 53,858 (99.77%) of 53,982 true overlap pairs with overlap length > 10,000 bp.
When the error rates become higher, the false negative rates can become higher. Using more
dense or multiple indexes may help to detect overlaps with higher error rates. For larger and
more complicated genomes, false positive rates can increase because more repetitive
sequences in the genome. Even with the false positives and false negatives, the Peregrine
assembler generate one contig with 100% identity to the E. coli reference sequence from the
simulated read set.

The major improvement of Peregrine from FALCON for long low-noisy sequences is (1)
speeding up for read-to-read overlap detection and (2) polishing the draft-contig through
consensus to increase the contig base accuracy. The draft contig generated by Peregrine will
have the same error rate of the input sequences. Peregrine maps the reads back to the draft
contig and apply an updated FALCONsense algorithm ​25​ to polish the draft contig.

We perform the Benchmarking Universal Single-Copy Orthologs (BUSCO) evaluation with the
vertebrata lineage profile ​26​ on the selected assemblies of four different human genomes. The
BUSCO completeness ranges from 93.8% to 95.2% (Table 2). For this BUSCO evaluation, the
Peregrine's results are on-par or higher than most recently reported de novo human genome
assemblies from similar data ​19​. Our CPU core hour usage is significantly lower than other
assemblers previously applied to the same HG002 dataset and achieve the same or slightly
better BUSCO performance. For assembly contiguity, our results are also on-par or better than
those reported previously.

For accuracy assessment for the Peregrine's consensus polishing module, we utilize the
orthogonal sequenced VMRC59 BAC sequences collected for the hydatidiform mole human
genome CHM13 ​8​. Voller and colleagues identified 31 BACs that are not intersected with
segmental duplication (SD) regions for assessing the assembly accuracy (Figure 2(a)). For the
31 non-SD BACs, the estimated error rates in Phred QV scale range from 25 to 52 with a mean
at 42.2. Out of 4.64Mb from the 31 BACs that are fully aligned to the assembly contigs, there

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

http://f1000.com/work/citation?ids=1397433&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2282468&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=706970&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6280480&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7104254&pre=&suf=&sa=0
https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

are only 1 mismatch and the rest of the errors are from 337 insertions and 604 deletions. For
other 310 VMRC59 BACs which may come from segmental duplicated regions, only 78 are fully
aligned and the estimated error rates are significant highly than the non-SD regions (Figure
2(b)). The long repeats from those SD regions are definitely challenges for the assembler's
overlapping and contig layout models.

Methods

Indexing Reads With Sparse Hierarchical Minimizer

A minimizer (Yorke 2004) is a k-mer that is one of a curated list of k-mers such that any
significant overlapping exact match between reads is composed of ​w​ consecutive ​k​-mers
contained in the list. Such lists, which characterize significant matches will generically be ​far
smaller in size than the reads themselves. The process of generating minimizers is akin to
database indexing. We extend this concept further from a list of minimizers to a hierarchy of lists
of minimizers. Given a list of lower level minimizers, we can identify a hierarchical subset of
minimizers to further reducing the index size.

In detail, the level-0 minimizers are the k-mers which have lowest hash values over the moving
windows along the read sequence. The hash function is usually chosen to avoid picking
minimizers from simple context, e.g. homopolymer stretches. The details of the hash function
are typically not important, other than avoiding collisions over the set of k-mers. After generating
the level-0 minimizers, we scan through the list of level-0 minimizers and identify the subset of
minimizers which themselves have the lowest hash values in the level-0 list over moving
windows of a given size. We call this new subset of minimizer level-1 minimizers and the size of
the window as reduction factor ​r​. Similarly, we can repeat the same process over the level-1
minimizers to create a hierarchical structure of minimizers. In our implementation, we generate
one or two extra levels of minimizers from the level-0 ones for indexing the reads.

An example of the process generating different levels of minimizers over a simulated read with
1% error from E. coli is shown in Figure 3. We retain the original hash values and the positions
of the minimizers in the reads in the different level of indices. In the simulated E. coli dataset,
the index size of level-2 minimizers is just 10% (4.98 Mbyte) of the level-0 minimizer index (49.9
M byte) for window size ​w​=80, kmer size ​k​=16 and reduction factor ​r​=6 between the level.

Aggregating Reads by Minimizer Pairs and Confirming The Overlaps

We build a hashmap using neighboring minimizer pairs (NMP) as the key from the last level of
minimizer list of each read. The value of the hashmap of a NMP is the list of read identifier
where NMP can be identified in those reads. Each NMP can be considered as a digest that
represents the sequence context across their span. For example, the distance between two

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

neighboring level-0 minimizers is 47.3 +/- 1.8 bp with ​w​=80 and ​k​=16 in the E. coli dataset. In
such case, the two sequences of 47 bps with the same NMP will has likelihood that they are
identical to each other. The NMP from higher level minimizers spans larger greater range across
the reads. The distance between two neighboring level-2 minimizers is 527.9 +/ 74.6 bp after
two levels of reduction of the minimizer with a reduction factor r=6 (Figure 4). It is about 7.1
times longer than the neighboring distance of the level-0 minimizers. As sparse hierarchical
minimizers are used for such indexing schema, we call this "SHIMMER index".

Figure 5 shows the number of unique NMP keys and the number of reads that are gathered by
each NMP. To avoid indexing NMP with two minimizers that are too close to each other, we
impose a minimum distance requirement. Two minimizers that are within 100bp are not used for
indexing. As the most level-1 or level-2 minimizers are spread out, this filter will have little effect
on overall overlapping performance but it helps to avoid high density NMPs from a repetitive
region getting indexed.

The reads that are grouped by each NMP has high probability coming from the same region of
the genome and we perform a detailed alignment​27​ between the reads of each group to confirm
the overlaps. As we only need to compare the reads with each group, we avoid global
read-to-read comparison. Multiple NMPs may identify the same read pairs for overlapping, we
record reads that has been tested for overlapping to avoid duplicated computation.

Long repetitive sequences in genome usually pose computational challenges for the
overlapping step. For example, if a sequence are repeated ​M​ times and the sequencing
coverage is ​C​, there are potentially ​M​ 2​C​ 2​ reads are mostly identical to each other. The extra ​M​ 2
factor can significantly increase the computation time and storage requirements for the read
overlapping step. Various heuristics are used to reduce this extra computation burden due to
repeats​18,25,28​. In our indexing schema, if an NMP is mapped to too many reads, we know the
sequence that the NMP represents are from repetitive sequences in the genome, and we
choose to ignore them for the initial assembly and process them with extra steps
(Supplementary Figure S1).

Generating Consensus
The SHIMMER indexing schema are also useful for fast read to contig or contig to reference
mapping. For the consensus step, we map the reads back to the contig using the SHIMMER
indices from the contigs and the reads. Once the reads are mapped to each contig is then used
to generate the final consensus to improve the contig accuracy.

The final consensus base accuracy is affected by multiple factors: (1) input quality in terms of
read length, accuracy and overall sequencing coverage, (2) repeat content and (3)
heterozygosity. For simulated ​E. coli​ reads, we are able to achieve 100% accuracy after
consensus as the errors in the simulated reads are mathematically "random" and lend
themselves to straightforward denoising approaches. Real world sequencing data (especially for

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

http://f1000.com/work/citation?ids=5746578&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2282468,6335410,5038458&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

eukaryotes) are rarely sufficiently random for straightforward denoising, both in read errors and
in sequence content. On the heterozygous SNP sites, the algorithm is designed to pick an allele
with majority read support and may fail to pick the correct one if there are complicated multiple
local variants between the two haplotypes. Our current assembly process after the SHIMMER
indexing and overlapping steps does consider diploid or polyploid genome. The techniques
developed by earlier work. e.g. FALCON-Unzip ​25​ or Canu Trio binning ​29​, can be adapted to the
downstream or the upstream processing to obtain pseudo-haplotigs or haplotigs.

Discussion
The overlap-layout-consensus (OLC) approach is advantageous for de novo sequencing
because the raw read information is largely preserved in the final assembly, making it possible
to trace back to original reads that provide direct evidence of the content of contigs in the
assembly. In previous work, this has only been possible by performing an all read-to-read
comparison in the form of a string graph ​20​ or an overlap graph ​21​. This implies that the number of
read comparisons scales quadratically with the number of input reads. It becomes the main
computational bottleneck for the overlap-based assembly approach. Our proposal for
hyper-rapid assembly (i.e. in 100 minutes) overcomes quadratic scaling with a linear
pre-processing step.

Our method scans all the reads to construct a hashmap that records the read locations of
neighboring minimizer pairs (NMPs), which act as indices in the hashmap. Let N be the total
number of reads, C be the sequencing coverage and L be the average read length, the number
of operations to build the hashmap is proportional to the total number bases ~ G​C​ = NL, where
G​ is the genome size. The number of hashmap indices is therefore proportional to the genome
size ​G​. For each unique hashmap index across the entire genome, the number of reads
associated with this index is proportional to the sequencing coverage ​C​. Thus, the algorithmic
runtime complexity to construct the SHIMMER index is O(​GC​) or O(​NL ​).

Assuming roughly uniform distribution across indices, applicable to non-repetitive sequence
regions, the computational cost to determine overlaps scales quadratically with coverage, ​C​.
This is due to an all to all comparison within each subset of reads that shares an index -- that is,
for the same neighboring minimizer pair. The number of minimizer indexes in the index is ​G/d​,
where ​d ​is the average distance between the minimizers, about 500 (Figure 4). The overall
runtime complexity for the comparison step is thus, O(​GC​ 2​/​d ​), which compares favorably with
standard OLC approaches whose algorithmic runtime complexity is quadratic with the number of
reads O(​N​2​) or O(​G ​ 2​C​ 2​/​L ​ 2​), where each read must be compared against all others to checking
the overlapping condition. The ratio of complexity estimates from standard OLC to SHIMMER,
Gd/L ​2​, is roughly 5000x for current reads on a human-size genome where ​G​ ~ 10 ​9​, ​d ​ ~ 500, and
L​~ 10 ​4​. We anticipate that if ​L ​ increases substantially, then adjustments to indexing parameters
may be needed to increase ​d​ for optimal results. In practice, we similarly find dramatic benefits
of SHIMMER indexing from a runtime perspective.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

http://f1000.com/work/citation?ids=2282468&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6092140&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=94992&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7104278&pre=&suf=&sa=0
https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

For any eukaryotic genome, one must identify repeats in the early stages of assembly so as to
avoid unnecessary computation. In highly repetitive genome regions, the ​C​2​ scaling breaks
down because a single NMP may correspond to many loci in the genome, each over which has
a certain coverage. The NMPs that are likely to correspond to long repetitive sequences are
therefore identified in the indexing process since the number of corresponding reads is greater,
in a statistically significant way, from that predicted by uniform coverage. These receive special
treatment in the current implementation, and reads which have no unique part in the genome
will be ignored. However, it would be straightforward to include these reads in the final
assembled contigs for further processing without compromising the runtime complexity.

The current SHIMMER indexing method has been designed and tested on reads longer than
10kb and with an error rate smaller than 1%. When the error rate increases from this, the
sensitivity of finding correct minimizer pairs decreases. For instance, we might not find all
overlapping pairs necessary for constructing the assembly graph to lay out contigs successfully.
There is a natural dependency of the final genome assembly quality on the input sequencing
read quality in terms of length and accuracy. It might be possible to adapt the current SHIMMER
index approach to accommodate lower accuracy reads by modifying the indexing parameters
and incorporating additional denoising steps to the process. Meanwhile, if sequencing
technology significantly improves read lengths beyond the current technology limit (~15kb), the
use of sparse minimizers to index reads will become an even more effective approach for de
novo assembly.

The performance characteristics of this method brings de novo human genome assembly
towards being rapid, affordable, and universally accessible. We have demonstrated that a
human genome assembly can be performed in about two hours with cloud-accessible hardware,
on a single node. Similarly, a dedicated desktop computer with sufficient physical memory (e.g.
2019 Mac Pro) can also perform this task without the need for a cluster computer setup, which
avoids both software infrastructure requirements and the need for specialized skills in grid
computing.

This universal access, coupled with the speedy advance of DNA sequencing technologies, will
enable routine generation of reference grade genome assemblies -- as rapidly as one or two
days from sample collection to result. Thus, de novo sequencing has been seen as solely
investigational and essentially an end in itself -- to document and discover the unknown
sequences. We foresee these new capabilities as enabling the use of full de novo sequences as
part of more complex efforts which integrate sample collection, sequencing, and other steps
towards a larger goal in the areas of industrial, agricultural, and medical biotechnology. Both
the completeness and timeliness of such outputs have potential for novel use-cases. The rapid
turnaround will make this useful for diagnostic or confirmatory measurements -- including clinical
or therapeutic efforts one day.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Acknowledgements
We like to thank Eichler Lab for sharing the CHM13 dataset for us to test out Peregrine. Special
thanks to Mitchell R. Vollger and Glennis A. Logsdon for providing the information about
VMRC59 BAC dataset for evaluating accuracy of the CHM13 assembly. We also like to thank
many unsung scientists and engineers at PacBio who have figured out how to make longer and
more accurate reads possible.

Conflicts of Interest Statement
The authors have no competing interests.

Data Source
HG002:
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CC
S_15kb/

HG002 (Sequel II):
https://downloads.pacbcloud.com/public/dataset/HG002_SV_and_SNV_CCS/

CHM13: https://www.ncbi.nlm.nih.gov/sra/SRX5633451

NA12878: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA540705

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Figures

Figure 1. SHIMMER index generation and the Peregrine assembler workflow.

(a) The gray tick-marks represent the locations of the level-0 minimizer along a read. The
crosses represents the hash value of the minimizers. The level-1 minimizers (red tick-marks and
circles) are the local minima of the windows through the neighboring minimizers. Similarly, the
level-2 minimizers (blue tick-marks m​1​ to m​4​, and filled circles) are local minima of the level-1
minimizers over moving windows. (b) For each read, we scan the level-2 minimizers and
generate a hash map that maps neighboring minimizer pair to a set of reads to speed up
overlap finding. (c) The Peregrine assembler workflow. The overlapping module of Peregrine
generates file that is compatible to FALCON assembler's overlap-to-contig modules. After we
get the draft contigs from FALCON assembler, we apply the FALCON-sense algorithm to polish
the draft contig to increase the contig accuracy.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Figure 2. Error rate estimation using VMRC59 BACs and the CHM13 assembly

(a) Error estimation comparison for draft and polished contigs using the 31 non-SD BACs. All
data point is above the y=x dashed line showing the consensus module significantly reduces the
error rates. (b) The estimated errors vs. the aligned fraction for all 341 VMCRC59 BACs.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Figure 3. Example of two level of minimizer reductions for a single read.

Upper Panel: The locations and hash values of multiple level minimizers across a read. The
black crosses are the level 0 minimizers compute with k=16 and w=80. The red diamonds and
the blue dots are the level-1 and level-2 minimizer respectively.

Lower Panel: The steps for building higher level SHIMMERs. Left: the level-0 minimizer in the
given window. Middle: The level 1 minimizers (red diamonds) are the minimizers from those
level 0 minimizers. The red lines connect the level 1 minimizers to those level 0 ones that the
level 1 minimizers are derived from. Right: the level 2 minimizers (blue dots) are generated by
finding the minimizers of the level 1 minimizers.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Figure 4.

Left: The distribution of the average distance between minimizers of different level. Right: the
distribution of the reduction ratio (= (number of level 1 or 2 minimizers) / (number of level 0
minimizers) per read).

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Figure 5(a)

Without filtering the NMPs that the minimizers are close to each other: Left: the distribution of
number of hits per unique NMP. Right: the distribution of the number reads that can be identified
as overlapped reads using all NMPs in a read. (Average number of hits per NMP key: level-0:
483869 unique NMPs, 6.15 hits / per key, level-1: 174744 unique NMPs, 5.19 hits / per NMP,
level-2: 57842 unique NMPs, 4.68 hits / per NMP. Average Number of read overlaps from each
read: level-0: 51.3, level-1: 44.8, level-2: 32.5.)

Figure 5(b)

With a filter removing NMPs that the minimizers are less than 100bp apart: Left: the distribution
of number of hits per unique NMP. Right: the distribution of the number reads that can be
identified as overlapped reads using all NMPs in a read. (Average number of hits per NMP key:
level-0: 483869 unique NMPs, 0.218 hits / per key, level-1: 174744 unique NMPs, 3.24 hits / per
NMP, level-2: 57842 unique NMPs, 3.95 hits / per NMP. Average Number of read overlaps from
each read: level-0: 11.67, level-1: 42.8, level-2: 31.9.)

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Table 1(a)
Disk Usage

Genome parameters read length # reads seqdb L0 index
L2 or L1

index
Peregrine

version

HG002 r=3, l=2 13478.3 6610240 89.1 Gb 44.7 Gb 15.2 Gb 0.1.5.3

HG002 r=4, l=2 13478.3 6610240 89.1 Gb 44.7 Gb 9.51 Gb 0.1.4.rc8

HG002 r=6, l=2 13478.3 6610240 89.1 Gb 44.7 Gb 4.46 Gb 0.1.4.rc4

HG002 r=18 ,l=1 13478.3 6610240 89.1 Gb 44.7Gb 4.84 Gb 0.1.4.rc6

HG002 r=36, l=1 13478.3 6610240 89.1 Gb 44.7Gb 2.38 Gb 0.1.4.rc6

HG002 (Sequel II) r=6, l=2 11301.3 3895357 44.2 Gb 24.2 Gb 5.13 Gb 0.1.4.rc4

chm13 r=4, l=2 10960.1 6902752 75.7 Gb 38.6 Gb 8.20 Gb 0.1.4.rc4

chm13 r=3, l=2 10960.1 6902752 75.7 Gb 38.6 Gb 13.08 Gb 0.1.4.rc4

NA12878 r=3, l=2 9963.2 9082038 90.5 Gb 45.3 Gb 15.34 Gb 0.1.5.0

Table 1(b)

Run Time (CPU Hours)

Genome parameters
seqdb

building indexing overlapping
overlaps to

contigs consensus total
instance

type

HG002 r=3, l=2 0.072 0.441 15.241 0.976 8.674 25.404 m5d.metal

HG002 r=4, l=2 0.080 0.511 11.880 0.800 7.325 20.596 m5d.metal

HG002 r=6, l=2 0.073 0.493 6.687 0.716 8.290 16.259 m5d.metal

HG002 r=18 ,l=1 0.081 0.491 7.767 0.743 6.736 15.818 m5d.metal

HG002 r=36, l=1 0.075 0.494 3.646 0.641 7.023 11.879 m5d.metal

HG002 (Sequel II) r=6, l=2 0.027 0.256 4.139 0.463 4.397 9.282 m5d.metal

chm13 r=4, l=2 0.067 0.443 6.822 0.630 7.453 15.415
r5d.12xlarg

e

chm13 r=3, l=2 0.061 0.452 8.897 0.682 6.297 16.389
r5d.12xlarg

e

NA12878 r=3, l=2 0.075 0.519 13.785 1.911 9.038 25.328 m5d.metal

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Table 1(c)
Assembly Statistics Summary

Genome parameters Total N50 max # seq

HG002 r=3, l=2 2,915,831,858 35,323,946 108,396,683 2,571

HG002 r=4, l=2 2,906,581,718 33,364,927 108,396,082 2,438

HG002 r=6, l=2 2,896,918,528 27,848,727 108,387,980 2,398

HG002 r=18 ,l=1 2,897,055,690 26,459,768 102,052,462 2,384

HG002 r=36, l=1 2,894,701,861 6,746,698 32,267,778 3,194

HG002 (Sequel II) r=6, l=2 2,872,604,008 21,936,975 109,829,231 2,022

chm13 r=4, l=2 2,839,105,926 29,260,433 102,007,116 978

chm13 r=3, l=2 2,838,663,153 33,307,555 95,435,791 844

NA12878 r=3, l=2 2,880,983,308 25,483,577 109,846,404 3,061

Table 2

 parameters Complete (%)

Complete
Single Copy

(%)
Complete and
duplicated (%)

Fragmented
(%) Missing (%)

Total BUSCO
groups

HG002 r=3, l=2 95.0 93.7 1.3 2.3 2.7 2586

CHM13 r=3, l=2 94.0 92.8 1.2 2.7 3.3 2586

NA12878 r=3, l=2 95.2 93.9 1.3 2.3 2.5 2586

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Supplementary Figures:

Figure S1
An example of filtering out high repeat count minimizers in a read. The minimizer count shows
there is a repetitive segment from 5,000bp to 11,000bp in this read. If we filter out minimizers
that has excessive count, e.g. greater than 50 in this example, we can reduce false hits caused
by such repeats. We can still use the minimizers for the unique part to find proper overlaps.
Upper: The blue dots show the level-2 minimizers before high repeat count filtering. Lower: The
blue dots show the level-2 minimizers after filtering.

Figure S2
The distribution of the distances between level-2 minimizers (r=4) from a subset of reads in the
28x HG002 dataset. Right: The distribution of the number of overlap candidate identified per
read from a subset of reads in the 28x HG002 dataset. It shows that we only need to check
about 40 to 65 overlaps per read.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

Bibliography

1. Lander, E. S. Initial impact of the sequencing of the human genome. ​Nature​ ​470,​ 187–197

(2011).

2. Hood, L. & Rowen, L. The Human Genome Project: big science transforms biology and

medicine. ​Genome Med.​ ​5,​ 79 (2013).

3. Welter, D. ​et al. ​ The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.

Nucleic Acids Res.​ ​42,​ D1001-6 (2014).

4. Visscher, P. M. ​et al. ​ 10 years of GWAS discovery: biology, function, and translation. ​Am. J.

Hum. Genet.​ ​101,​ 5–22 (2017).

5. Denny, J. C. ​et al. ​ PheWAS: demonstrating the feasibility of a phenome-wide scan to

discover gene-disease associations. ​Bioinformatics​ ​26,​ 1205–1210 (2010).

6. Schneider, V. A. ​et al.​ Evaluation of GRCh38 and de novo haploid genome assemblies

demonstrates the enduring quality of the reference assembly. ​Genome Res.​ ​27,​ 849–864

(2017).

7. Berlin, K. ​et al.​ Assembling large genomes with single-molecule sequencing and

locality-sensitive hashing. ​Nat. Biotechnol.​ ​33,​ 623–630 (2015).

8. Vollger, M. R. ​et al.​ Improved assembly and variant detection of a haploid human genome

using single-molecule, high-fidelity long reads. ​BioRxiv​ (2019). doi:10.1101/635037

9. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.

Bioinformatics​ ​32,​ 2103–2110 (2016).

10. Chin, C.-S. ​et al.​ Nonhybrid, finished microbial genome assemblies from long-read SMRT

sequencing data. ​Nat. Methods​ ​10,​ 563–569 (2013).

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

http://f1000.com/work/bibliography
http://f1000.com/work/bibliography/148019
http://f1000.com/work/bibliography/148019
http://f1000.com/work/bibliography/148019
http://f1000.com/work/bibliography/148019
http://f1000.com/work/bibliography/148019
http://f1000.com/work/bibliography/148019
http://f1000.com/work/bibliography/148019
http://f1000.com/work/bibliography/3882376
http://f1000.com/work/bibliography/3882376
http://f1000.com/work/bibliography/3882376
http://f1000.com/work/bibliography/3882376
http://f1000.com/work/bibliography/3882376
http://f1000.com/work/bibliography/3882376
http://f1000.com/work/bibliography/3882376
http://f1000.com/work/bibliography/171552
http://f1000.com/work/bibliography/171552
http://f1000.com/work/bibliography/171552
http://f1000.com/work/bibliography/171552
http://f1000.com/work/bibliography/171552
http://f1000.com/work/bibliography/171552
http://f1000.com/work/bibliography/171552
http://f1000.com/work/bibliography/171552
http://f1000.com/work/bibliography/3904976
http://f1000.com/work/bibliography/3904976
http://f1000.com/work/bibliography/3904976
http://f1000.com/work/bibliography/3904976
http://f1000.com/work/bibliography/3904976
http://f1000.com/work/bibliography/3904976
http://f1000.com/work/bibliography/3904976
http://f1000.com/work/bibliography/3904976
http://f1000.com/work/bibliography/3904976
http://f1000.com/work/bibliography/1399202
http://f1000.com/work/bibliography/1399202
http://f1000.com/work/bibliography/1399202
http://f1000.com/work/bibliography/1399202
http://f1000.com/work/bibliography/1399202
http://f1000.com/work/bibliography/1399202
http://f1000.com/work/bibliography/1399202
http://f1000.com/work/bibliography/1399202
http://f1000.com/work/bibliography/1399202
http://f1000.com/work/bibliography/3507037
http://f1000.com/work/bibliography/3507037
http://f1000.com/work/bibliography/3507037
http://f1000.com/work/bibliography/3507037
http://f1000.com/work/bibliography/3507037
http://f1000.com/work/bibliography/3507037
http://f1000.com/work/bibliography/3507037
http://f1000.com/work/bibliography/3507037
http://f1000.com/work/bibliography/3507037
http://f1000.com/work/bibliography/3507037
http://f1000.com/work/bibliography/234970
http://f1000.com/work/bibliography/234970
http://f1000.com/work/bibliography/234970
http://f1000.com/work/bibliography/234970
http://f1000.com/work/bibliography/234970
http://f1000.com/work/bibliography/234970
http://f1000.com/work/bibliography/234970
http://f1000.com/work/bibliography/234970
http://f1000.com/work/bibliography/234970
http://f1000.com/work/bibliography/7104254
http://f1000.com/work/bibliography/7104254
http://f1000.com/work/bibliography/7104254
http://f1000.com/work/bibliography/7104254
http://f1000.com/work/bibliography/7104254
http://f1000.com/work/bibliography/7104254
http://f1000.com/work/bibliography/7104254
http://f1000.com/work/bibliography/1464874
http://f1000.com/work/bibliography/1464874
http://f1000.com/work/bibliography/1464874
http://f1000.com/work/bibliography/1464874
http://f1000.com/work/bibliography/1464874
http://f1000.com/work/bibliography/1464874
http://f1000.com/work/bibliography/463543
http://f1000.com/work/bibliography/463543
http://f1000.com/work/bibliography/463543
http://f1000.com/work/bibliography/463543
http://f1000.com/work/bibliography/463543
http://f1000.com/work/bibliography/463543
http://f1000.com/work/bibliography/463543
http://f1000.com/work/bibliography/463543
http://f1000.com/work/bibliography/463543
https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

11. Jain, M. ​et al.​ Nanopore sequencing and assembly of a human genome with ultra-long

reads. ​Nat. Biotechnol.​ ​36,​ 338–345 (2018).

12. Ameur, A. ​et al. ​ De Novo Assembly of Two Swedish Genomes Reveals Missing Segments

from the Human GRCh38 Reference and Improves Variant Calling of Population-Scale

Sequencing Data. ​Genes (Basel)​ ​9,​ (2018).

13. Motahari, A. S., Bresler, G. & Tse, D. N. C. Information theory of DNA shotgun sequencing.

IEEE Trans. Inform. Theory ​ ​59,​ 6273–6289 (2013).

14. Chaisson, M. J. P. ​et al. ​ Resolving the complexity of the human genome using

single-molecule sequencing. ​Nature​ ​517,​ 608–611 (2015).

15. Seo, J.-S. ​et al. ​ De novo assembly and phasing of a Korean human genome. ​Nature​ ​538,

243–247 (2016).

16. Chaisson, M. J. P., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo

assembly of human genomes. ​Nat. Rev. Genet.​ ​16,​ 627–640 (2015).

17. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads

using repeat graphs. ​Nat. Biotechnol.​ ​37,​ 540–546 (2019).

18. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. ​BioRxiv​ (2019).

doi:10.1101/530972

19. Wenger, A. M. ​et al. ​ Highly-accurate long-read sequencing improves variant detection and

assembly of a human genome: Supplementary Material. ​BioRxiv​ (2019).

doi:10.1101/519025

20. Myers, E. W. The fragment assembly string graph. ​Bioinformatics​ ​21 Suppl 2, ​ ii79-85

(2005).

21. Kececioglu, J. D. & Myers, E. W. Combinatorial algorithms for DNA sequence assembly.

Algorithmica​ ​13,​ 7–51 (1995).

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

http://f1000.com/work/bibliography/4768207
http://f1000.com/work/bibliography/4768207
http://f1000.com/work/bibliography/4768207
http://f1000.com/work/bibliography/4768207
http://f1000.com/work/bibliography/4768207
http://f1000.com/work/bibliography/4768207
http://f1000.com/work/bibliography/4768207
http://f1000.com/work/bibliography/4768207
http://f1000.com/work/bibliography/4768207
http://f1000.com/work/bibliography/6715166
http://f1000.com/work/bibliography/6715166
http://f1000.com/work/bibliography/6715166
http://f1000.com/work/bibliography/6715166
http://f1000.com/work/bibliography/6715166
http://f1000.com/work/bibliography/6715166
http://f1000.com/work/bibliography/6715166
http://f1000.com/work/bibliography/6715166
http://f1000.com/work/bibliography/6715166
http://f1000.com/work/bibliography/6715166
http://f1000.com/work/bibliography/7150284
http://f1000.com/work/bibliography/7150284
http://f1000.com/work/bibliography/7150284
http://f1000.com/work/bibliography/7150284
http://f1000.com/work/bibliography/7150284
http://f1000.com/work/bibliography/7150284
http://f1000.com/work/bibliography/111989
http://f1000.com/work/bibliography/111989
http://f1000.com/work/bibliography/111989
http://f1000.com/work/bibliography/111989
http://f1000.com/work/bibliography/111989
http://f1000.com/work/bibliography/111989
http://f1000.com/work/bibliography/111989
http://f1000.com/work/bibliography/111989
http://f1000.com/work/bibliography/111989
http://f1000.com/work/bibliography/3287070
http://f1000.com/work/bibliography/3287070
http://f1000.com/work/bibliography/3287070
http://f1000.com/work/bibliography/3287070
http://f1000.com/work/bibliography/3287070
http://f1000.com/work/bibliography/3287070
http://f1000.com/work/bibliography/3287070
http://f1000.com/work/bibliography/3287070
http://f1000.com/work/bibliography/3287070
http://f1000.com/work/bibliography/1435783
http://f1000.com/work/bibliography/1435783
http://f1000.com/work/bibliography/1435783
http://f1000.com/work/bibliography/1435783
http://f1000.com/work/bibliography/1435783
http://f1000.com/work/bibliography/1435783
http://f1000.com/work/bibliography/1435783
http://f1000.com/work/bibliography/6744810
http://f1000.com/work/bibliography/6744810
http://f1000.com/work/bibliography/6744810
http://f1000.com/work/bibliography/6744810
http://f1000.com/work/bibliography/6744810
http://f1000.com/work/bibliography/6744810
http://f1000.com/work/bibliography/6744810
http://f1000.com/work/bibliography/6335410
http://f1000.com/work/bibliography/6335410
http://f1000.com/work/bibliography/6335410
http://f1000.com/work/bibliography/6335410
http://f1000.com/work/bibliography/6335410
http://f1000.com/work/bibliography/6280480
http://f1000.com/work/bibliography/6280480
http://f1000.com/work/bibliography/6280480
http://f1000.com/work/bibliography/6280480
http://f1000.com/work/bibliography/6280480
http://f1000.com/work/bibliography/6280480
http://f1000.com/work/bibliography/6280480
http://f1000.com/work/bibliography/6280480
http://f1000.com/work/bibliography/94992
http://f1000.com/work/bibliography/94992
http://f1000.com/work/bibliography/94992
http://f1000.com/work/bibliography/94992
http://f1000.com/work/bibliography/94992
http://f1000.com/work/bibliography/94992
http://f1000.com/work/bibliography/94992
http://f1000.com/work/bibliography/7104278
http://f1000.com/work/bibliography/7104278
http://f1000.com/work/bibliography/7104278
http://f1000.com/work/bibliography/7104278
http://f1000.com/work/bibliography/7104278
http://f1000.com/work/bibliography/7104278
https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

22. Carnevali, P. GitHub - chanzuckerberg/shasta. ​De novo assembly from Oxford Nanopore

reads.​ (2019). at <https://github.com/chanzuckerberg/shasta>

23. The GNU C Library. Memory mapped I/O. ​Memory mapped I/O​ (2019). at

<https://www.gnu.org/software/libc/manual/html_node/Memory_002dmapped-I_002fO.html

>

24. Gordon, D. ​et al.​ Long-read sequence assembly of the gorilla genome. ​Science​ ​352,

aae0344 (2016).

25. Chin, C.-S. ​et al.​ Phased diploid genome assembly with single-molecule real-time

sequencing. ​Nat. Methods​ ​13,​ 1050–1054 (2016).

26. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M.

BUSCO: assessing genome assembly and annotation completeness with single-copy

orthologs. ​Bioinformatics​ ​31,​ 3210–3212 (2015).

27. Myers, E. W. AnO(ND) difference algorithm and its variations. ​Algorithmica​ ​1,​ 251–266

(1986).

28. Myers, G. in ​Algorithms in Bioinformatics​ (eds. Brown, D. & Morgenstern, B.) ​8701,​ 52–67

(Springer Berlin Heidelberg, 2014).

29. Koren, S. ​et al. ​ De novo assembly of haplotype-resolved genomes with trio binning. ​Nat.

Biotechnol.​ (2018). doi:10.1038/nbt.4277

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint

http://f1000.com/work/bibliography/7187208
http://f1000.com/work/bibliography/7187208
http://f1000.com/work/bibliography/7187208
http://f1000.com/work/bibliography/7187208
http://f1000.com/work/bibliography/7187208
http://f1000.com/work/bibliography/7187124
http://f1000.com/work/bibliography/7187124
http://f1000.com/work/bibliography/7187124
http://f1000.com/work/bibliography/7187124
http://f1000.com/work/bibliography/7187124
http://f1000.com/work/bibliography/7187124
http://f1000.com/work/bibliography/1397433
http://f1000.com/work/bibliography/1397433
http://f1000.com/work/bibliography/1397433
http://f1000.com/work/bibliography/1397433
http://f1000.com/work/bibliography/1397433
http://f1000.com/work/bibliography/1397433
http://f1000.com/work/bibliography/1397433
http://f1000.com/work/bibliography/1397433
http://f1000.com/work/bibliography/1397433
http://f1000.com/work/bibliography/2282468
http://f1000.com/work/bibliography/2282468
http://f1000.com/work/bibliography/2282468
http://f1000.com/work/bibliography/2282468
http://f1000.com/work/bibliography/2282468
http://f1000.com/work/bibliography/2282468
http://f1000.com/work/bibliography/2282468
http://f1000.com/work/bibliography/2282468
http://f1000.com/work/bibliography/2282468
http://f1000.com/work/bibliography/706970
http://f1000.com/work/bibliography/706970
http://f1000.com/work/bibliography/706970
http://f1000.com/work/bibliography/706970
http://f1000.com/work/bibliography/706970
http://f1000.com/work/bibliography/706970
http://f1000.com/work/bibliography/706970
http://f1000.com/work/bibliography/706970
http://f1000.com/work/bibliography/5746578
http://f1000.com/work/bibliography/5746578
http://f1000.com/work/bibliography/5746578
http://f1000.com/work/bibliography/5746578
http://f1000.com/work/bibliography/5746578
http://f1000.com/work/bibliography/5746578
http://f1000.com/work/bibliography/5746578
http://f1000.com/work/bibliography/5038458
http://f1000.com/work/bibliography/5038458
http://f1000.com/work/bibliography/5038458
http://f1000.com/work/bibliography/5038458
http://f1000.com/work/bibliography/5038458
http://f1000.com/work/bibliography/5038458
http://f1000.com/work/bibliography/5038458
http://f1000.com/work/bibliography/6092140
http://f1000.com/work/bibliography/6092140
http://f1000.com/work/bibliography/6092140
http://f1000.com/work/bibliography/6092140
http://f1000.com/work/bibliography/6092140
http://f1000.com/work/bibliography/6092140
http://f1000.com/work/bibliography/6092140
https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/

