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Abstract 
De novo genome assembly provides comprehensive, unbiased genomic information and makes 
it possible to gain insight into new DNA sequences not present in reference genomes. Many de 
novo human genomes have been published in the last few years, leveraging a combination of 
inexpensive short-read and single-molecule long-read technologies. As long-read DNA 
sequencers become more prevalent, the computational burden of generating assemblies 
persists as a critical factor. The most common approach to long-read assembly, using an 
overlap-layout-consensus (OLC) paradigm, requires all-to-all read comparisons, which 
quadratically scales in computational complexity with the number of reads. We assert that 
recently achievements in sequencing technology (i.e. with accuracy ~99% and read length 
~10-15k) enables a fundamentally better strategy for OLC that is effectively linear rather than 
quadratic.  Our genome assembly implementation, Peregrine uses ​s​parse ​hi​erarchical 
m​ini ​m​iz​er​s (SHIMMER) to index reads thereby avoiding the need for an all-to-all read 
comparison step.  Peregrine can assemble 30x human PacBio CCS read datasets in less than 
30 CPU hours and around 100 wall-clock minutes to a high contiguity assembly (N50 > 20Mb). 
The continued advance of sequencing technologies coupled with the Peregrine assembler 
enables routine generation of human de novo assemblies. This will allow for population scale 
measurements of more comprehensive genomic variations -- beyond SNPs and small indels -- 
as well as novel applications requiring rapid access to de novo assemblies.  
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Introduction 
The initial human genome project and the development of technologies of cheap DNA 
sequencing technologies have advanced both academic research and industrialization of using 
genomic information to improve human health ​1,2​. The fast decreasing cost of second generation 
sequencing technologies makes population scale study of certain type of variations, e.g., SNPs 
and small indel variants, possible. It leads to valuable information for genotype and phenotype 
association and many important and clinical relevant applications​3–5​. Meanwhile, the recent 
development long read technologies, e.g. sequencers from Oxford Nanopore Technology (ONT) 
and Pacific Biosciences (PacBio), can read DNA sequences that are orders of magnitude longer 
than those of second generation sequencing. With longer read lengths, it makes de novo 
assembly relatively easier and we can generate more contiguous assemblies​6–13​. The de novo 
reconstruction of a genome reduces the dependence on using a reference as prior information. 
A re-sequencing approach depending on a reference may not be effective to explore those 
genomic structures that are deviated from the references significantly. Recent studies with 
directly human genome assemblies have discovered new sequences that are not in the current 
reference genome ​12,14–16​. Systematic approach for discovering structural variations identifies 
many new structural variations and projects that we still needs more samples to generate a 
more comprehensive catalogs of larger variants in human population other than SNPs and small 
indels. 
 
The current barrier for big scale utilization of long reads is the relative cost and throughput 
compared to the second generation sequencing technologies. We expect the long read 
sequencing cost will follow the trajectory of the second generation sequencing which will 
continue to decrease. On reducing the computing cost of genome assembly, there are also 
many recent progresses that significantly reduce the total amount computational resources 
needed ​17,18​. In a recent report, researchers were able to assemble 30x human genome in a 
couple hundreds to thousands of CPU hours with consensus reads that were longer than 10kb 
with average accuracy better than 99%​8,19​.  
 
For long-read genome assembly, overlap-layout-consensus (OLC) paradigm​20,21​ is used in most 
of the current long-read assemblers for production. The quadratic comparison between reads 
remains the main bottleneck for further improving computation efficiency. For example, the 
hierarchical genome assembly process, HGAP​10​, initially designed for assembly noisy PacBio 
reads takes two overlapping steps, one for error correction and one for assembly graph 
generation needs 20,000 to 30,000 cpu hours to assemble a human genome from noisy 
sequences. Most high performance assemblers developed recently, e.g. Flye ​17​, wtdbg2 ​18​ and 
Shasta ​22​, adapt new strategies to avoid such expensive explicit overlapping steps between two 
full reads. Such optimization is likely necessary for efficiently assembling noisy long reads. 
Meanwhile, we can start with consensus reads with better accuracy to improve computation 
efficiency of overlapping reads for genome assembly. We find it is possible to reduce the 
computation complexity of the overlap detection by exploiting the better read accuracy. We have 
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developed a new genome assembler Peregrine (https://github.com/cschin/peregrine). It utilizes 
an efficient indexing scheme to reduce computation time as low as 20 cpu hours for assembling 
a human size genome starting with consensus reads. 
 
The genome assembly approach presented here can effectively make genome assembly 
become routine work without special setup for cluster computation. Simplifying such 
fundamental process for a genome project is key to routinely generating de novo genome 
assembly that avoids missing information from re-sequencing approach. The cost of de novo 
approach is currently more expensive than re-sequencing. Nevertheless, with the fast pace in 
advance of computational methods and sequencing technologies, the cost to generate de novo 
human genome may drop to a price point that it has become affordable for personalized 
medicine soon. Our method will also help to build pan-human-genomics references which 
allows us to capture novel human genome sequences that are not available in the current 
human reference GRCh38 ​12,15​. Given the potential to provide more comprehensive view for 
human genomes, we are hoping, the whole genome assembly approach will provide important 
information for genetic diseases that can not be revealed easily with re-sequencing approach.  
 

Results 
 
We developed a new method for indexing sequence reads (See Figure 1 and Methods) to 
identify overlaps between two reads and implement a new genome assembler "Peregrine" with 
it. We test the Peregrine assembler on a number of public human genome datasets with 
different parameter sets. The full summary of the results in terms of computational resource 
usage are in Table 1. We utilized large memory compute nodes, e.g. Amazon Web Services 
m5d.metal​ (384 Gb RAM​) ​ or ​r5d.12xlarge ​(384 Gb RAM​) ​instance types, so we can run 24 
indexing and overlapping processes concurrently. Peregrine uses 9 to 25 cpu core hours 
depending the sequencing coverage and parameters. The wall clock time of a typical assembly 
run ranges from one to two hours from initial fasta or fastq files to final assembly. The 
overlap-to-assembly graph module in Peregrine currently runs on a single core in about 30 to 40 
minutes of wall clock time, depending on sequencing coverage and read length. This step takes 
a significant fraction of the overall wall clock time. It may be possible to further optimize this step 
with a parallel computing approach in the future. The single overlapping process may use 
memory up to 120Gb RAM depending on the sequencing coverage and read lengths. When 
running the overlapping processes concurrently the sequence data used for alignment 
confirmation are shared among concurrent processes through a memory mapped file 
approach ​23​. When we split the full index into 24 partitions, each overlap process requires about 
~ 8 to 10Gb memory for ~30x human genome sequencing to store the index. The design for 
index partitioning is simple and flexible in Peregrine. In order to run Peregrine in a computer 
with smaller memory, we can just increase the number of partitions and run the overlapping 
process in serial. 
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The overlapping module generated a file that is compatible with the one used in the FALCON 
assembler​24​. After the overlapping step, Peregrine uses the overlap-to-contig layout modules 
from the FALCON assembler to generate contigs. The accuracy of overlap detection can affect 
the contig lengths. Given our contig N50 lengths are on par with those generated by FALCON 
with daligner, we expect the performance of detecting the correct overalps is close to the 
daligner for these accurate reads. However, the Peregrine overlapper is designed specifically to 
find overlaps that are longer than a couple hundred to thousand bases. Small overlaps induced 
by repeats that is not significant for constructing contigs properly will be ignored by the design of 
the overlapping searching algorithm. 
 
To evaluate Peregrine's overlapping module, we simulate reads using E. coli genome and test 
the overlapping performance at different level of error rates and length distributions. For 
average 15kb reads and 1% error, within 55,935 overlapping read pairs detected, 99.94% are 
true positive and there 32 false positives which are caused by repeats in the genome. We are 
able to detect 53,858 (99.77%) of 53,982 true overlap pairs with overlap length > 10,000 bp. 
When the error rates become higher, the false negative rates can become higher. Using more 
dense or multiple indexes may help to detect overlaps with higher error rates. For larger and 
more complicated genomes, false positive rates can increase because more repetitive 
sequences in the genome. Even with the false positives and false negatives, the Peregrine 
assembler generate one contig with 100% identity to the E. coli reference sequence from the 
simulated read set. 
 
The major improvement of Peregrine from FALCON for long low-noisy sequences is (1) 
speeding up for read-to-read overlap detection and (2) polishing the draft-contig through 
consensus to increase the contig base accuracy. The draft contig generated by Peregrine will 
have the same error rate of the input sequences. Peregrine maps the reads back to the draft 
contig and apply an updated FALCONsense algorithm ​25​ to polish the draft contig. 
 
We perform the Benchmarking Universal Single-Copy Orthologs (BUSCO) evaluation with the 
vertebrata lineage profile ​26​ on the selected assemblies of four different human genomes. The 
BUSCO completeness ranges from 93.8% to 95.2% (Table 2). For this BUSCO evaluation, the 
Peregrine's results are on-par or higher than most recently reported de novo human genome 
assemblies from similar data ​19​. Our CPU core hour usage is significantly lower than other 
assemblers previously applied to the same HG002 dataset and achieve the same or slightly 
better BUSCO performance. For assembly contiguity, our results are also on-par or better than 
those reported previously. 
 
For accuracy assessment for the Peregrine's consensus polishing module, we utilize the 
orthogonal sequenced VMRC59 BAC sequences collected for the hydatidiform mole human 
genome CHM13 ​8​. Voller and colleagues identified 31 BACs that are not intersected with 
segmental duplication (SD) regions for assessing the assembly accuracy (Figure 2(a)). For the 
31 non-SD BACs, the estimated error rates in Phred QV scale range from 25 to 52 with a mean 
at 42.2. Out of 4.64Mb from the 31 BACs that are fully aligned to the assembly contigs, there 
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are only 1 mismatch and the rest of the errors are from 337 insertions and 604 deletions. For 
other 310 VMRC59 BACs which may come from segmental duplicated regions, only 78 are fully 
aligned and the estimated error rates are significant highly than the non-SD regions (Figure 
2(b)). The long repeats from those SD regions are definitely challenges for the assembler's 
overlapping and contig layout models.  

Methods 

Indexing Reads With Sparse Hierarchical Minimizer 
 
A minimizer (Yorke 2004) is a k-mer that is one of a curated list of k-mers such that any 
significant overlapping exact match between reads is composed of ​w​ consecutive ​k​-mers 
contained in the list. Such lists, which characterize significant matches will generically be ​far 
smaller in size than the reads themselves. The process of generating minimizers is akin to 
database indexing. We extend this concept further from a list of minimizers to a hierarchy of lists 
of minimizers. Given a list of lower level minimizers, we can identify a hierarchical subset of 
minimizers to further reducing the index size.  
 
In detail, the level-0 minimizers are the k-mers which have lowest hash values over the moving 
windows along the read sequence. The hash function is usually chosen to avoid picking 
minimizers from simple context, e.g. homopolymer stretches. The details of the hash function 
are typically not important, other than avoiding collisions over the set of k-mers. After generating 
the level-0 minimizers, we scan through the list of level-0 minimizers and identify the subset of 
minimizers which themselves have the lowest hash values in the level-0 list over moving 
windows of a given size. We call this new subset of minimizer level-1 minimizers and the size of 
the window as reduction factor ​r​. Similarly, we can repeat the same process over the level-1 
minimizers to create a hierarchical structure of minimizers. In our implementation, we generate 
one or two extra levels of minimizers from the level-0 ones for indexing the reads. 
 
An example of the process generating different levels of minimizers over a simulated read with 
1% error from E. coli is shown in Figure 3. We retain the original hash values and the positions 
of the minimizers in the reads in the different level of indices. In the simulated E. coli dataset, 
the index size of level-2 minimizers is just 10% (4.98 Mbyte) of the level-0 minimizer index (49.9 
M byte) for window size ​w​=80, kmer size ​k​=16 and reduction factor ​r​=6 between the level.  

Aggregating Reads by Minimizer Pairs and Confirming The Overlaps 
 
We build a hashmap using neighboring minimizer pairs (NMP) as the key from the last level of 
minimizer list of each read. The value of the hashmap of a NMP is the list of read identifier 
where NMP can be identified in those reads. Each NMP can be considered as a digest that 
represents the sequence context across their span. For example, the distance between two 
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neighboring level-0 minimizers is 47.3 +/- 1.8 bp with ​w​=80 and ​k​=16 in the E. coli dataset. In 
such case, the two sequences of 47 bps with the same NMP will has likelihood that they are 
identical to each other. The NMP from higher level minimizers spans larger greater range across 
the reads. The distance between two neighboring level-2 minimizers is 527.9 +/ 74.6 bp after 
two levels of reduction of the minimizer with a reduction factor r=6 (Figure 4). It is about 7.1 
times longer than the neighboring distance of the level-0 minimizers. As sparse hierarchical 
minimizers are used for such indexing schema, we call this "SHIMMER index". 
 
Figure 5 shows the number of unique NMP keys and the number of reads that are gathered by 
each NMP. To avoid indexing NMP with two minimizers that are too close to each other, we 
impose a minimum distance requirement. Two minimizers that are within 100bp are not used for 
indexing. As the most level-1 or level-2 minimizers are spread out, this filter will have little effect 
on overall overlapping performance but it helps to avoid high density NMPs from a repetitive 
region getting indexed.  
 
The reads that are grouped by each NMP has high probability coming from the same region of 
the genome and we perform a detailed alignment​27​ between the reads of each group to confirm 
the overlaps. As we only need to compare the reads with each group, we avoid global 
read-to-read comparison. Multiple NMPs may identify the same read pairs for overlapping, we 
record reads that has been tested for overlapping to avoid duplicated computation.  
 
Long repetitive sequences in genome usually pose computational challenges for the 
overlapping step. For example, if a sequence are repeated ​M​ times and the sequencing 
coverage is ​C​, there are potentially ​M​ 2​C​ 2​ reads are mostly identical to each other. The extra ​M​ 2 
factor can significantly increase the computation time and storage requirements for the read 
overlapping step. Various heuristics are used to reduce this extra computation burden due to 
repeats​18,25,28​. In our indexing schema, if an NMP is mapped to too many reads, we know the 
sequence that the NMP represents are from repetitive sequences in the genome, and we 
choose to ignore them for the initial assembly and process them with extra steps 
(Supplementary Figure S1). 

Generating Consensus 
The SHIMMER indexing schema are also useful for fast read to contig or contig to reference 
mapping. For the consensus step, we map the reads back to the contig using the SHIMMER 
indices from the contigs and the reads. Once the reads are mapped to each contig is then used 
to generate the final consensus to improve the contig accuracy.  
 
The final consensus base accuracy is affected by multiple factors: (1) input quality in terms of 
read length, accuracy and overall sequencing coverage, (2) repeat content and (3) 
heterozygosity. For simulated ​E. coli​ reads, we are able to achieve 100% accuracy after 
consensus as the errors in the simulated reads are mathematically "random" and lend 
themselves to straightforward denoising approaches. Real world sequencing data (especially for 
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eukaryotes) are rarely sufficiently random for straightforward denoising, both in read errors and 
in sequence content. On the heterozygous SNP sites, the algorithm is designed to pick an allele 
with majority read support and may fail to pick the correct one if there are complicated multiple 
local variants between the two haplotypes. Our current assembly process after the SHIMMER 
indexing and overlapping steps does consider diploid or polyploid genome. The techniques 
developed by earlier work. e.g. FALCON-Unzip ​25​ or Canu Trio binning ​29​, can be adapted to the 
downstream or the upstream processing to obtain pseudo-haplotigs or haplotigs. 

Discussion 
The overlap-layout-consensus (OLC) approach is advantageous for de novo sequencing 
because the raw read information is largely preserved in the final assembly, making it possible 
to trace back to original reads that provide direct evidence of the content of contigs in the 
assembly. In previous work, this has only been possible by performing an all read-to-read 
comparison in the form of a string graph ​20​ or an overlap graph ​21​. This implies that the number of 
read comparisons scales quadratically with the number of  input reads. It becomes the main 
computational bottleneck for the overlap-based assembly approach. Our proposal for 
hyper-rapid assembly (i.e. in 100 minutes) overcomes quadratic scaling with a linear 
pre-processing step. 
 
Our method scans all the reads to construct a hashmap that records the read locations of 
neighboring minimizer pairs (NMPs), which act as indices in the hashmap. Let N be the total 
number of reads, C be the sequencing coverage and L be the average read length, the number 
of operations to build the hashmap is proportional to the total number bases ~ G​C​ = NL, where 
G​ is the genome size. The number of hashmap indices is therefore proportional to the genome 
size ​G​. For each unique hashmap index across the entire genome, the number of reads 
associated with this index is proportional to the sequencing coverage ​C​. Thus, the algorithmic 
runtime complexity to construct the SHIMMER index is O(​GC​) or O(​NL ​).  
 
Assuming roughly uniform distribution across indices, applicable to non-repetitive sequence 
regions, the computational cost to determine overlaps scales quadratically with coverage, ​C​. 
This is due to an all to all comparison within each subset of reads that shares an index -- that is, 
for the same neighboring minimizer pair. The number of minimizer indexes in the index is ​G/d​, 
where ​d ​is the average distance between the minimizers, about 500 (Figure 4). The overall 
runtime complexity for the comparison step is thus, O(​GC​ 2​/​d ​), which compares favorably with 
standard OLC approaches whose algorithmic runtime complexity is quadratic with the number of 
reads O(​N​2​) or O(​G ​ 2​C​ 2​/​L ​ 2​), where each read must be compared against all others to checking 
the overlapping condition. The ratio of complexity estimates from standard OLC to SHIMMER, 
Gd/L ​2​, is roughly 5000x for current reads on a human-size genome where ​G​ ~ 10 ​9​, ​d ​ ~ 500, and 
L​~ 10 ​4​.  We anticipate that if ​L ​ increases substantially, then adjustments to indexing parameters 
may be needed to increase ​d​ for optimal results.  In practice, we similarly find dramatic benefits 
of SHIMMER indexing from a runtime perspective.  
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For any eukaryotic genome, one must identify repeats in the early stages of assembly so as to 
avoid unnecessary computation. In highly repetitive genome regions, the ​C​2​ scaling breaks 
down because a single NMP may correspond to many loci in the genome, each over which has 
a certain coverage. The NMPs that are likely to correspond to long repetitive sequences are 
therefore identified in the indexing process since the number of corresponding reads is greater, 
in a statistically significant way, from that predicted by uniform coverage. These receive special 
treatment in the current implementation, and reads which have no unique part in the genome 
will be ignored. However, it would be straightforward to include these reads in the final 
assembled contigs for further processing without compromising the runtime complexity. 
 
The current SHIMMER indexing method has been designed and tested on reads longer than 
10kb and with an error rate smaller than 1%. When the error rate increases from this, the 
sensitivity of finding correct minimizer pairs decreases. For instance, we might not find all 
overlapping pairs necessary for constructing the assembly graph to lay out contigs successfully. 
There is a natural dependency of the final genome assembly quality on the input sequencing 
read quality in terms of length and accuracy. It might be possible to adapt the current SHIMMER 
index approach to accommodate lower accuracy reads by modifying the indexing parameters 
and incorporating additional denoising steps to the process. Meanwhile, if sequencing 
technology significantly improves read lengths beyond the current technology limit (~15kb), the 
use of sparse minimizers to index reads will become an even more effective approach for de 
novo assembly.  
 
The performance characteristics of this method brings de novo human genome assembly 
towards being rapid, affordable, and universally accessible.  We have demonstrated that a 
human genome assembly can be performed in about two hours with cloud-accessible hardware, 
on a single node.  Similarly, a dedicated desktop computer with sufficient physical memory (e.g. 
2019 Mac Pro) can also perform this task without the need for a cluster computer setup, which 
avoids both software infrastructure requirements and the need for specialized skills in grid 
computing. 
 
This universal access, coupled with the speedy advance of DNA sequencing technologies, will 
enable routine generation of reference grade genome assemblies -- as rapidly as one or two 
days from sample collection to result. Thus, de novo sequencing has been seen as solely 
investigational and essentially an end in itself -- to document and discover the unknown 
sequences. We foresee these new capabilities as enabling the use of full de novo sequences as 
part of more complex efforts which integrate sample collection, sequencing, and other steps 
towards a larger goal in the areas of industrial, agricultural, and medical biotechnology.  Both 
the completeness and timeliness of such outputs have potential for novel use-cases. The rapid 
turnaround will make this useful for diagnostic or confirmatory measurements -- including clinical 
or therapeutic efforts one day. 
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Figures  
 
Figure 1. SHIMMER index generation and the Peregrine assembler workflow. 

  
 
(a) The gray tick-marks represent the locations of the level-0 minimizer along a read. The 
crosses represents the hash value of the minimizers. The level-1 minimizers (red tick-marks and 
circles) are the local minima of the windows through the neighboring minimizers. Similarly, the 
level-2 minimizers (blue tick-marks m​1​ to m​4​, and filled circles) are local minima of the level-1 
minimizers over moving windows. (b) For each read, we scan the level-2 minimizers and 
generate a hash map that maps neighboring minimizer pair to a set of reads to speed up 
overlap finding. (c) The Peregrine assembler workflow. The overlapping module of Peregrine 
generates file that is compatible to FALCON assembler's overlap-to-contig modules. After we 
get the draft contigs from FALCON assembler, we apply the FALCON-sense algorithm to polish 
the draft contig to increase the contig accuracy.  
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Figure 2. Error rate estimation using VMRC59 BACs and the CHM13 assembly 
 

 
(a) Error estimation comparison for draft and polished contigs using the 31 non-SD BACs. All 
data point is above the y=x dashed line showing the consensus module significantly reduces the 
error rates. (b) The estimated errors vs. the aligned fraction for all 341 VMCRC59 BACs. 
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Figure 3. Example of two level of minimizer reductions for a single read.  

 
 
Upper Panel: The locations and hash values of multiple level minimizers across a read. The 
black crosses are the level 0 minimizers compute with k=16 and w=80. The red diamonds and 
the blue dots are the level-1 and level-2 minimizer respectively. 
  
Lower Panel: The steps for building higher level SHIMMERs. Left: the level-0 minimizer in the 
given window. Middle: The level 1 minimizers (red diamonds) are the minimizers from those 
level 0 minimizers. The red lines connect the level 1 minimizers to those level 0 ones that the 
level 1 minimizers are derived from. Right: the level 2 minimizers (blue dots) are generated by 
finding the minimizers of the level 1 minimizers.  
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Figure 4.  

 
Left: The distribution of the average distance between minimizers of different level. Right: the 
distribution of the reduction ratio (= (number of level 1 or 2 minimizers) / (number of level 0 
minimizers) per read).  
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Figure 5(a) 

 
Without filtering the NMPs that the minimizers are close to each other: Left: the distribution of 
number of hits per unique NMP. Right: the distribution of the number reads that can be identified 
as overlapped reads using all NMPs in a read. (Average number of hits per NMP key: level-0: 
483869 unique NMPs, 6.15 hits / per key, level-1: 174744 unique NMPs, 5.19 hits / per NMP, 
level-2: 57842 unique NMPs, 4.68 hits / per NMP. Average Number of read overlaps from each 
read: level-0: 51.3, level-1: 44.8, level-2: 32.5.) 
 
 
 
Figure 5(b) 

 
With a filter removing NMPs that the minimizers are less than 100bp apart: Left: the distribution 
of number of hits per unique NMP. Right: the distribution of the number reads that can be 
identified as overlapped reads using all NMPs in a read. (Average number of hits per NMP key: 
level-0: 483869 unique NMPs, 0.218 hits / per key, level-1: 174744 unique NMPs, 3.24 hits / per 
NMP, level-2: 57842 unique NMPs, 3.95 hits / per NMP. Average Number of read overlaps from 
each read: level-0: 11.67, level-1: 42.8, level-2: 31.9.) 
 
 
  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/705616doi: bioRxiv preprint 

https://doi.org/10.1101/705616
http://creativecommons.org/licenses/by-nc/4.0/


Table 1(a) 
Disk Usage 

Genome parameters read length # reads seqdb L0 index 
L2 or L1 

index 
Peregrine 

version 

HG002 r=3, l=2 13478.3 6610240 89.1 Gb 44.7 Gb 15.2 Gb 0.1.5.3 

HG002 r=4, l=2 13478.3 6610240 89.1 Gb 44.7 Gb 9.51 Gb 0.1.4.rc8 

HG002 r=6, l=2 13478.3 6610240 89.1 Gb 44.7 Gb 4.46 Gb 0.1.4.rc4 

HG002 r=18 ,l=1 13478.3 6610240 89.1 Gb 44.7Gb 4.84 Gb 0.1.4.rc6 

HG002 r=36, l=1 13478.3 6610240 89.1 Gb 44.7Gb 2.38 Gb 0.1.4.rc6 

HG002 (Sequel II) r=6, l=2 11301.3 3895357 44.2 Gb 24.2 Gb 5.13 Gb 0.1.4.rc4 

chm13 r=4, l=2 10960.1 6902752 75.7 Gb 38.6 Gb 8.20 Gb 0.1.4.rc4 

chm13 r=3, l=2 10960.1 6902752 75.7 Gb 38.6 Gb 13.08 Gb 0.1.4.rc4 

NA12878 r=3, l=2 9963.2 9082038 90.5 Gb 45.3 Gb 15.34 Gb 0.1.5.0 

 
Table 1(b) 

Run Time (CPU Hours) 

Genome parameters 
seqdb 

building indexing overlapping 
overlaps to 

contigs consensus total 
instance 

type 

HG002 r=3, l=2 0.072 0.441 15.241 0.976 8.674 25.404 m5d.metal 

HG002 r=4, l=2 0.080 0.511 11.880 0.800 7.325 20.596 m5d.metal 

HG002 r=6, l=2 0.073 0.493 6.687 0.716 8.290 16.259 m5d.metal 

HG002 r=18 ,l=1 0.081 0.491 7.767 0.743 6.736 15.818 m5d.metal 

HG002 r=36, l=1 0.075 0.494 3.646 0.641 7.023 11.879 m5d.metal 

HG002 (Sequel II) r=6, l=2 0.027 0.256 4.139 0.463 4.397 9.282 m5d.metal 

chm13 r=4, l=2 0.067 0.443 6.822 0.630 7.453 15.415 
r5d.12xlarg

e 

chm13 r=3, l=2 0.061 0.452 8.897 0.682 6.297 16.389 
r5d.12xlarg

e 

NA12878 r=3, l=2 0.075 0.519 13.785 1.911 9.038 25.328 m5d.metal 
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Table 1(c) 
Assembly Statistics Summary 

Genome parameters Total N50 max # seq 

HG002 r=3, l=2 2,915,831,858 35,323,946 108,396,683 2,571 

HG002 r=4, l=2 2,906,581,718 33,364,927 108,396,082 2,438 

HG002 r=6, l=2 2,896,918,528 27,848,727 108,387,980 2,398 

HG002 r=18 ,l=1 2,897,055,690 26,459,768 102,052,462 2,384 

HG002 r=36, l=1 2,894,701,861 6,746,698 32,267,778 3,194 

HG002 (Sequel II) r=6, l=2 2,872,604,008 21,936,975 109,829,231 2,022 

chm13 r=4, l=2 2,839,105,926 29,260,433 102,007,116 978 

chm13 r=3, l=2 2,838,663,153 33,307,555 95,435,791 844 

NA12878 r=3, l=2 2,880,983,308 25,483,577 109,846,404 3,061 

 
Table 2 

 parameters Complete (%) 

Complete 
Single Copy 

(%) 
Complete and 
duplicated (%) 

Fragmented 
(%) Missing (%) 

Total BUSCO 
groups 

HG002 r=3, l=2 95.0 93.7 1.3 2.3 2.7 2586 

CHM13 r=3, l=2 94.0 92.8 1.2 2.7 3.3 2586 

NA12878 r=3, l=2 95.2 93.9 1.3 2.3 2.5 2586 
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Supplementary Figures: 
 

 
Figure S1 
An example of filtering out high repeat count minimizers in a read. The minimizer count shows 
there is a repetitive segment from 5,000bp to 11,000bp in this read. If we filter out minimizers 
that has excessive count, e.g. greater than 50 in this example, we can reduce false hits caused 
by such repeats. We can still use the minimizers for the unique part to find proper overlaps. 
Upper: The blue dots show the level-2 minimizers before high repeat count filtering. Lower: The 
blue dots show the level-2 minimizers after filtering. 
 
 

  
Figure S2 
The distribution of the distances between level-2 minimizers (r=4) from a subset of reads in the 
28x HG002 dataset. Right: The distribution of the number of overlap candidate identified per 
read from a subset of reads in the 28x HG002 dataset. It shows that we only need to check 
about 40 to 65 overlaps per read. 
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