
as Figure 2A.  

(C) Distance of mean position of cells between the atlas and the dataset.  

(D) Ratio of volume of ellipsoid (covariance of the positions of the cell) between the atlas and the 

dataset.  

(E) Comparing the variation of relative positions of dataset and that of atlas. The color indicates how 

many times the neuron pair is co-detected in an animal of the dataset. 

 

 

Figure 4 �± Figure Supplement 1:  

Variation of relative position of cell pairs. Orders of cells and colors are same as in Figure 2C. 
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Automatic annotation using bipartite matching and majority voting 

Having a set of atlases that capture the positional variations of the cells, we can account for the spatial 

uncertainty of cell annotation using majority voting. We propose an automatic annotation method that 

utilizes bipartite matching and majority voting (Figure 5A). Each part will be described below in brief 

(see Method for detail).  

In the bipartite matching step, the cells in a target animal were assigned to the cells in an 

atlas. An assignment of a cell in the target animal to a cell in the atlas has a cost based on the similarity 

(or dissimilarity) of the two cells including Euclidean distance, expressions of landmark promoters, 

and the feedback from human annotation. The optimal combination of the assignments that minimizes 

the sum of the costs was obtained by using Hungarian algorithm. The name of the cell in the target 

animal can be estimated as the name of the assigned cell in the atlas in this step. 

To handle the configurational variations of cells to be annotated, we used the majority voting 

technique. Assuming the generated atlases could capture the positional variations of the cells, we 

assigned unannotated cells in the target animal to those in 𝑁𝑎 atlases, then giving 𝑁𝑎 annotation 

results. Each assignment of a cell is considered as a vote, and the most voted assignment was 

considered as the top rank estimation of annotation.  

In order to validate our automatic annotation method, a 5-fold cross validation test was 

performed. All the animals in the annotation data set were randomly divided into five subsets. We 

perform a total of 5 tests. For each test, we exclude one of the subset from training of atlases, and use 

it to estimate the annotation performance based on the trained atlases. The error rate of bipartite 

matching was relatively high, and the majority voting could deliver significant improvements of the 

annotation accuracy (Figure 5B). On average, 78.3 nuclei were annotated and 46.2 nuclei were 

successfully estimated as the top rank, and the error rates of the top rank estimation was 41.4% (Figure 

5B and C). As a control, two methods are introduced; one method only considers the mean and 

covariance of the cell positions of raw data (without using the atlases and voting, see Figure 2D). The 

other method considers the mean and covariance of the cell positions in the atlases (without using 

majority voting). The error rate of the two methods were higher than the proposed method, indicating 

that the majority voting step in the proposed method contribute to the correct estimation. If we 

consider the accuracy for the top 5 voted estimations (shown as rank 5), the error rate decreased to 

7.3%. 

The automatic annotation method was applied to the animals with fluorescent landmarks 

(strain JN3039, see Figure 3C-E). With the help of the optimized expression of landmark fluorescent 

proteins, the number of identified cells in an animal will increase compared to the strains used to make 

the annotation dataset. On average, 202 nuclei were found and 156.3 nuclei were identified from 15 

adult animals. The error rates of the top rank estimation with and without fluorescent landmark were 
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37.7% and 51.5%, respectively, indicating that utilizing the fluorescent landmark also contribute the 

correct estimation (Figure 5D). If we consider the accuracy for the top 5 voted estimations, the error 

rate decreased to 8.1%. These error rates were comparable to the cross-validation results for the 

annotation dataset, suggesting that our annotation framework will work correctly for the whole-brain 

activity imaging.  

The automatic annotation method was also applied to the animals in a microfluidic chip for 

whole-brain activity imaging (Figure 5 – figure supplement 1). The error rates of the top rank 

estimation with and without fluorescent landmark were 52.1% and 72.8%, respectively, and that of the 

top 5 voted estimations was 12.2%. The worms were compressed and distorted to be held in the 

microfluidic chips, and the distortion of the worm may increase the error rates. During whole-brain 

imaging for free-moving animals (Nguyen et al. 2016, 2017; Venkatachalam et al. 2016), the worms 

will be less compressed and less distorted, and our algorithm may works better.  

Additionally, our algorithm is implemented in the GUI roiedit3d (Toyoshima et al. 2016), and it can 

handle feedback information from the human annotations. Once annotations are corrected manually, 

our method can accept corrections and uses them to improve the results. For example, one can identify 

neurons manually by using other information including the neural activity or morphology, and the 

automatic estimation for the other neurons will be improved. The final results can be added to the 

annotation dataset and the annotation algorithm will work more accurately. Thus the feedback system 

incorporates tacit knowledge into the automatic annotation method. Through the interactive process 

our algorithm will make human annotation tasks more efficient. 
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Figure 5: An automatic annotation method and evaluation 

(A) The outline of the automatic annotation method. The schemes of bipartite graph matching and 

majority voting are shown. 

(B) Error rate of each bipartite matching and majority voting are shown in the blue histogram and 
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the black lines, respectively. The rank N indicates that it is considered correct if the correct annotation 

appeared in the top N estimations. 

(C) Error rates of the automatic annotation method for the animals in the promoter dataset. The error 

rates were evaluated by cross-validation. 

(D) Error rates of the automatic annotation method for the strain JN3039 that expresses the fluorescent 

landmarks. 

(E) The automatic annotation method was integrated in the graphical user interface roiedit3d that 

enables feedback between automatic and manual annotation. 

 

 

 

Figure 5 - Figure Supplement 1  

Error rates of the automatic annotation method for the animals in a microfluidic chip for whole-brain 

activity imaging (JN3038 strain, n=12).  

 

 

 

 

 

Discussion 

In this study, we obtained volumetric fluorescent image of 311 animals using 35 promoters, and 

created an annotation dataset that contains the positions of the identified cells and expression patterns 

of promoters in respective animals. Utilizing the annotation dataset we evaluate the variation of the 

positions of the cells and choose the combination of the promoters optimal for our annotation tasks. 
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We proposed an automatic annotation method and validated its performance on head neurons of adult 

worms for whole-brain imaging. Thus, we successfully integrate the annotation techniques with the 

whole-brain activity imaging.  

The cell positions of real animals and its variation will be the most important information for 

the cell identification. As far as we know, this might be the first report about the large-scale 

information of the positions of the cells in the head region of adult C. elegans, which lead to systematic 

and comprehensive method to annotation of the head neurons. The error rate of the automatic 

annotation might be slightly high for fully automatic annotation. The integration of the automatic 

annotation method to the GUI enables machine-assisted annotation and enhances the process of 

whole-brain image annotation. Increasing the number of animals and promoters will improve the 

accuracy and objectivity of the automatic annotation method.  

Increasing the number of fluorescent channels and landmarks will also improve the accuracy. 

Long-stokes shift fluorescent proteins might be good candidates because they use irregular fluorescent 

channels that will not be used in standard application. In our case, however, these proteins disrupted 

the neighbor fluorescent channels by leaking-out. Employing color deconvolution techniques will 

increase the number of substantial fluorescence channels and may improve the accuracy. 

The images of the animals we recorded will have useful information for annotation 

including size of the nuclei and intensities of the fluorescence. In the manual annotation process we 

utilized these pieces of information for improving accuracy. On the other hand our automatic 

annotation algorithm does not utilizes these pieces of information and it may be one of the causes of 

relatively low accuracy of the algorithm. Recent advances in artificial neural networks especially in 

the field of image analysis will enable to utilize such information for automatic annotation. It is well 

known that artificial neural networks require large amount of training data composed of images and 

the corresponding grand truth. Our annotation dataset contains images with identity information and 

will be ideal for the training data, but the number of data may not be enough. Our method that makes 

annotation more efficient will play an important role for opening up the path to utilization of artificial 

neural networks in the future.  

There are no dataset of cell positions that can be used as a benchmark of cell identification 

methods. For example, a new method that solve the cell identification problem as a nonlinear 

assignment problem was reported recently (Bubnis et al. 2019). The report utilizes synthesized data 

and does not use real data. To evaluate the real performance of new methods, the method should be 

tested on real data. Our annotation dataset will be an ideal benchmark of newly developed cell 

identification methods. Thus our study will facilitate the future studies for automatic annotation 

methods. 

In order to identify the expression patterns of the promoters, the most accurate method is 

testing whether the fluorescence of promoter overlaps with the fluorescence of the neuronal identity 
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markers (Serrano-Saiz et al. 2013). In such cases our standard strain and automatic annotation method 

will help the selection of the markers through objective estimation of cell identities. 

Our framework of creating the annotation dataset and developing automatic annotation 

method can be applied to species other than C. elegans. For covering all neurons, the number of 

available cell-type specific promoters and their variety will be important.  

 

 

Methods 

 

Table 1: Strain list used in this study 

Strain Genotype Used in 

JN3000 Ex[casy-1p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3001 Ex[ceh-10p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3002 Ex[daf-28p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3003 Ex[daf-7p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3004 Ex[dat-1p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3005 Ex[dyf-11p::nls4::YFP,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3006 Ex[eat-4p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3007 Ex[eat-4p::svnls2::TagRFPsyn;lin-44p::GFP]; 

Is[H20p::nls4::mCherry]#3. 

Figure 1-5 

JN3008 Ex[flp-6p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3009 Ex[flp-7p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3010 Ex[flp-12p::nls::Venus,lin-44p::mCherry]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3011 Ex[gcy-22p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3012 Ex[gcy-28p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3013 Ex[gcy-7p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3014 Ex[glr-1p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3015 Ex[glr-2p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3016 Ex[glr-3p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3017 Ex[gpa-2p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 
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JN3018 Ex[gpa-10p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3019 Ex[gpa-13p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3020 Ex[gpc-1p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3021 Ex[lim-4p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3022 Ex[ins-1::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3023 Ex[tdc-1::mTFP,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3024 Ex[ins-1(short)p::nls::YC2.60,lin-44p::GFP]; 
Is[H20p::nls4::mCherry]. 

Figure 1-5 

JN3025 Ex[mbr-1p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3026 Ex[nep-2sp::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3027 Ex[npr-9p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3028 Ex[odr-2p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#2. Figure 1-5 

JN3029 Ex[sdf-9p::SDF9::GFP,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3030 Ex[sdf-9p::nls::GFP,lin-44p::GFP]; Is[H20p::nls4::mCherry]#1. Figure 1-5 

JN3031 Ex[ser-1p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3032 Ex[ser-2(prom2)p::mTFP,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3033 Ex[sra-6p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3034 Ex[tax-4p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#4. Figure 1-5 

JN3035 Ex[ttx-3p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]#2. Figure 1-5 

JN3036 Ex[vem-1p::nls::YC2.60,lin-44p::GFP]; Is[H20p::nls4::mCherry]. Figure 1-5 

JN3038 Is[glr-1p::svnls2::TagBFPsyn,ser-2(prom2)p::svnls2::TagBFPsyn]; 

Is[eat-4p::svnls2::TagRFP675syn,lin-44p::GFP]; 
Is[H20p::nls4::mCherry]; Is[H20p::nls::YC2.60]. 

Figure 5 

JN3039 Is[glr-1p::svnls2::TagBFPsyn,ser-2(prom2)p::svnls2::TagBFPsyn]; 
Is[eat-4p::svnls2::TagRFP675syn,lin-44p::GFP]; 

Is[H20p::nls4::mCherry]. 

Figure 3, 5 

 

 

 

 

Strains and cultures 

C. elegans strains used in this study are listed in Table 1. Animals were raised on nematode growth 
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medium at 20°C. E. coli strain OP50 was used as a food source.  

 

Microscopy  

A set of static 3D multi-channel images of C. elegans strains ranging from JN3000 to JN3036 were 

obtained as follows. Day 1 adult animals were stained by the fluorescent dye DiR (D12731, Thermo 

Fisher Scientific) with the standard method (Shaham 2006). The stained animals were mounted on a 

2% agar pad and paralyzed by sodium azide. The fluorescence of the fluorescence proteins and the dye 

was observed sequentially using laser scanning confocal microscopy (Leica SP5 with 63× water 

immersion lens and 2× zoom). The sizes of the images along the x1 and x2 axes were 512 and 256 

voxels, respectively, and the size along the x3 axis varied depending on the diameter of the animal. 

The sizes of a voxel along the x1, x2, and x3 axes were 0.240, 0.240, and 0.252 μm, respectively.  

 A set of 3D multi-channel images of strain JN3039 was obtained as described above without 

using the fluorescent dye DiR. 

A set of 3D multi-channel images of strain JN3038 was obtained as follows. Day 1 adult 

animals were conditioned on NGM plate with OP50 (Kunitomo et al. 2013). The conditioned animals 

were introduced and held in a microfluidic device called olfactory chip (Chronis, Zimmer, and 

Bargmann 2007). The depth and width of the fluid channel in the chip were modified in order to reduce 

the distortion of the worms. The animals and their head neurons moved to some extent in the device 

because the animals were not paralyzed. The fluorescence of the tagBFP, tagRFP675, and mCherry 

channels was observed simultaneously using customized spinning disk confocal microscopy. The 

sizes of the image along the x1 and x2, and x3 axes were 512, 256, and 50 voxels, respectively. The 

sizes of a voxel along the x1, x2, and x3 axes were 0.28, 0.28, and about 0.77 μm, respectively.  

 

 

Image analysis for the annotation dataset 

All the nuclei in the images were detected by our image analysis pipeline roiedit3D (Toyoshima et al. 

2016) and corrected manually. The cells stained by the chemical dye were identified as reported 

(Shaham 2006). The cells marked by cell-specific promoters were identified based on the reported 

expression patterns and positions of the nuclei. The nuclei of the pharyngeal cells were also identified 

based on the positions of the nuclei.   

 

Correction of posture of worms 

First, all the positions of nuclei in a worm determined by roiedit3D were analyzed by PCA and the 1st 

principal component axis (PC1 axis) were defined as the anterior-posterior axis. The positions of the 

nuclei were fitted with a quadratic function along the PC1 axis (see Figure 1 - Figure supplement 1). 

The determined quadratic function minimizes the sum of the squared distances from the fitted line to 
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the positions of nuclei along PC2-PC3 axis. The positions were corrected so that the quadratic line 

was straightened and at the same time the rolled posture of the animal was corrected. The positions of 

the nuclei were projected onto the plane with PC2-PC3 axes and the sparsest direction from the center 

was defined as dorsal direction. The positions were rotated along the PC1 axis so that PC1 

(antero-posterior axis ) is aligned to x axis the dorsal direction is aligned to positive direction of y 

axisq. Then we estimated the anterior direction based on the density of the lateral cells. The densest 

position was set as the origin of the anterior-posterior axis. The origins of the dorsal-ventral and 

left-right axes were the same as the origin of the PC2 and PC3 axes. The worms can be aligned by 

these procedures. The positions of the animals in the annotation dataset were corrected precisely based 

on the positions of the dye-stained cells. 

 

Variation of relative positions 

Variation of relative position of a cell pair was calculated as the determinant of the covariance of 

relative cell positions. Let 𝑋𝑖 and 𝑌𝑖 be the position of the cell X and Y in the i-th animal, 

respectively, and the cells were identified in 𝑛 animals. 

𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} 

and 

 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑛} 

are n-by-3 matrices of the positions of the cells X and Y, respectively. Then the variation of relative 

positions of cell X and cell Y is  

𝑉(𝑋, 𝑌) = det(cov(𝑋 − 𝑌)). 

For visualization, 𝑉(𝑋, 𝑌) was divided by median value of all 𝑉. The pairs with 𝑛 ≤ 3 were 

ignored because the determinant of covariance cannot be calculated. 

 Less varying cell pairs were found based on permutation of animals (permutation test). A 

permutation of the vector 𝑋 permutes the order of elements of the vector 𝑋, for example, 

perm(𝑋) = {𝑋𝑗 , … , 𝑋1, … , 𝑋𝑘}. 

The pair of cell X and Y was regarded as less varying if  

𝑉(𝑋, 𝑌) ≤ 𝑉∀ (perm(𝑋), 𝑌). 

For the pairs of 4 ≤ 𝑛 ≤ 10 , all the permutations ( equal to or less than 10! ~ 3.6 × 106 

combinations) were calculated. For the pairs of 𝑛 > 10, 1 × 107 permutations were randomly 

selected and calculated.  

 

The algorithm for searching optimal combination of cell-specific 

promoters and the definition of the sparseness 

The most important factor for selecting promoters in order to improve annotation accuracy is to 

achieve a checkerboard-like coloring pattern for the ease of separating neighboring cells. A simple 
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metric to account for this factor is to sum the number of neighboring cell pairs that exhibit a different 

color based on cell-specific promoters, where each pair is inversely weighted by the distance between 

the two neurons. Such a metric can be considered as a modification to an Ising model in physics. We 

choose a Gaussian probability model for the weighting function with an empirically chosen value of 

the standard deviation to be 9.6 μm. The metric 𝑀 can be written as 

𝑀 =
1

2
∑ ∑ 𝐼(𝐿𝑋, 𝐿𝑌)𝑤(𝑋, 𝑌)

𝑌∈𝑆𝑋∈𝑆

 

𝐼(𝐿𝑋, 𝐿𝑌) = {
1    if 𝐿𝑋 ≠ 𝐿𝑌

0    if 𝐿𝑋 = 𝐿𝑌
 

𝑤(𝑋, 𝑌) = N(𝑋|𝑌, 9.6), 

where 𝑆 is a set of all cells in an animal. 𝑋 and 𝑌 are positions of cell X and cell Y, respectively. 

𝐿𝑋 is label of cell X and 𝐿𝑋 = (1,0) means that landmark protein of color 1 is expressed in the cell 

X but that of color 2 is not expressed. Because the experimental setup has a limited amount of 

channels, we are able to perform an exhaustive search for all possible combination of the available 

promoters, and compare the final values of the metric as a reference for choosing the combination of 

cell-specific promoters used in our experiment. We evaluated all the combinations for 3 promoters and 

2 colors (20825 combinations). The scores of the single promoter for single color were used as the 

index of sparseness. 

 

Generating atlases 

To obtain an atlas with fully annotated cells, we need to combine positional information of 

cells from multiple partially annotated images while maintaining the relative position between the 

cells as much as possible. We achieve this goal by maximizing the consistency (or smoothness) of a 

displacement flow when combining different images, for which the displacement flow is defined as 

follows. 

Suppose that in two images, denoted by 𝐼0 and 𝐼1, there coexist 𝐶 annotated cells. The 

displacement of cell 𝑖 is denoted by 𝒅𝑖  =  𝒙𝑖
1 − 𝒙𝑖

0 where 𝒙𝑖
0 and 𝒙𝑖

1 denote the positions of the 

cell in 𝐼0 and 𝐼1, respectively. Then, we define a displacement flow field 𝒅0→1(𝒙) from 𝐼0 to 𝐼1 on 

the entire space 𝒙 ∈ ℝ3: 

𝒅𝟎→𝟏(𝒙) =
∑ 𝑵(𝒙|𝒙𝒊

𝟎, 𝚺)𝒅𝒊
𝑪
𝒊=𝟏

∑ 𝑵(𝒙|𝒙𝒊
𝟎, 𝚺)𝑪

𝒊=𝟏

.    (1) 

Here, 𝑁(𝒙|𝝁, 𝛴) denotes the density function of the normal distribution with mean 𝝁 and 

covariance Σ (Please note that 𝛴 is 3 × 3 covariance matrix and determine effective range of the 

displacement of a cell). This represents a flow field function interpolated by the given displacements 

of the 𝐶 cells in the two images. When taking the weighted average in the calculation of 𝒅0→1(𝒙), 

larger weights are assigned to the displacements of more neighboring cells with respect to 𝒙 in 𝐼0.  
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To generate an atlas, we conducted the following steps (see Figure 4A): 

 

1. Set a randomly ordered sequence {𝐼1, … , 𝐼311} of the 311 partially annotated animals. 

We discard the sequence if the 𝐼1 has less than 60 annotated cells. 

2. For 𝑡 ∈ {2 … ,311}, cells in 𝐼𝑡 were sequentially aligned to those in 𝐼1 as follows:  

A) The positions of all annotated cells in 𝐼1 were unchanged.  

B) All annotated cells that coexisted in both 𝐼1 and 𝐼𝑡 were used to calculate the 

displacement field 𝒅𝑡→1(𝒙) with a pre-determined 𝛴 (Eq 1). 

C) All cells annotated in 𝐼𝑡 but not in 𝐼1 with their positions denoted by 𝒙𝑡 were 

shifted and aligned to 𝐼1 according to 𝒙1 ← 𝒙𝑡 + 𝒅𝑡→1(𝒙𝑡). Add them to the 

annotated cells in 𝐼1.  

D) Terminate the iteration if all annotated cells have been aligned in the synthesized 

reference image.  

In this scheme, a spatial pattern of produced cells was largely affected by the interpolated flow fields. 

In general, the performance will be poor if the number of observed source displacements was small. 

To reduce such instability, we skipped 𝐼𝑡 and used it later when the 𝐼𝑡 shared less than half cells 

annotated in common with 𝐼1. Repeating this procedure, we generated 3,000 reference samples.  

The generated reference samples serve as a set of virtual atlases that imitate observed 

topological variations of cellular positions across different worm samples. To obtain more realistic 

atlases, we optimized 𝛴 = diag(𝜎1, 𝜎2, 𝜎3)  in Eq 1, which is the parameter to control the 

smoothness of displacements in the sequential alignments. We defined an objective function to 

reflect the similarity of the topological variations between our raw data set and the generated atlas. 

By optimizing such objective function and taking the optimal values of the parameters as a reference, 

we selected an empirical value of 𝛴 = diag(9.6 μm, 9.6 μm, 9.6 μm). Details of the objective 

function and optimization is in Supplementary Note 1. 

 

 

Bipartite graph matching 

Detected cells in a target animal and an atlas were matched using the Hungarian algorithm to solve the 

bipartite graph matching problem. The matching was achieved by comparing one or more selected 

features between cells. Here, features refer to some quantitative properties for the cells that can be 

used to distinguish the identity of a cell from another. The most fundamental feature is the positions of 

cells. Other typical features include cell volume, fluorescence intensities, and so on. We use 

expression of landmark proteins (i.e. binarized fluorescent intensities) and feedback from human 

annotation. With such features, the dissimilarity of cells was represented by a matrix 𝐴, where the 
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{𝑖, 𝑗} entry is the distance of the feature values between the 𝑖th cell in the target and the 𝑗th cell in the 

atlas. When there are 𝑁𝑓 features chosen, we can assemble them into a single matrix 𝐴BGM through a 

weighted sum: 

𝐴BGM = ∑ 𝑤𝑛𝐴𝑛

𝑁𝑓

𝑛=1

, 

where 𝑤𝑛 is the weight for each feature. We use 𝑤𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1, 𝑤𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 = 20. For feedback from 

human annotation, the assignments incompatible with the human annotation have infinity dissimilarity. 

With a given assignment, we can calculate the sum of the dissimilarity values in 𝐴BGM  that 

correspond to the selected matching. A modified Hungarian algorithm (Jonker and Volgenant 1987) 

was used to minimize the total distance with respect to all possible assignments under the constraint of 

one-to-one matching. 

 

Majority voting 

Multiple name assignments of a cell in the subjective animal were obtained by repeating the bipartite 

graph matching using 500 different atlases. Each assignment was considered as one vote, and the 

estimated names for a target cell was ranked by vote counts. The estimation for a cell was independent 

of each other and multiple cells may have the same estimated names. If non-overlapping result is 

required, one can assemble cost matrix based on vote counts and apply the Hungarian algorithm. 

 

Calculation of error rate of automatic annotation 

All the detected cells in a target animal other than hypodermal cells were used as a target. The names 

of the cells were estimated by our automatic annotation method based on their positions. Expression 

of landmark promoters were also used for Figure 5D and figure 5 Supplementary figure 1. The 

estimated results are compared to the human annotation (grand truth). Our automatic annotation 

method returns multiple ranked candidates for a target cell. The rank N error rate indicates that it is 

considered correct if the correct annotation appeared in the top N estimations. Un-annotated cells were 

ignored in calculating error rate. The animals that have less annotated cells were removed to avoid 

the effect of deviation of the annotated cells. 
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Supplementary Materials 

 Supplementary Note 1: Optimization of parameters for atlas generation 

 Supplementary Table 1: Evaluation result of promoter combinations (Excel file) 

 Supplementary Dataset 1: Annotation dataset (contains positions and expression patterns) and 

corresponding static 3D images 

 Supplementary Dataset 2: Positions of nuclei and expression patterns of landmark fluorescence 

in the whole-brain imaging strains as the test data for automatic annotation and corresponding 

static 3D images 

 Supplementary Dataset 3: All codes for the GUI RoiEdit3D and analysis pipeline to make figures 

 

All tables and datasets will be available from Figshare (10.6084/m9.figshare.8341088) upon 

publication of this paper. Current unpublished link: https://figshare.com/s/1e39bebd7568b41a39f5 
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