

1

Supplementary information for BIAFLOWS:

A collaborative framework to benchmark and

deploy bioimage analysis workflows

Ulysse Rubens° (ULiège), Romain Mormont° (ULiège), Volker Baecker (MRI,

Biocampus Montpellier), Gino Michiels (HEPL/ULiège), Lassi Paavolainen (FIMM,

HiLIFE, UHelsinki), Graeme Ball (University of Dundee), Devrim Ünay (IUE), Benjamin

Pavie (VIB), Anatole Chessel (Ecole Polytechnique), Leandro A. Scholz (Universidade

Federal do Paraná), Martin Maška (Masaryk University), Renaud Hoyoux (Cytomine

SCRL FS), Rémy Vandaele (ULiège), Stefan G. Stanciu (Politehnica Bucarest), Ofra

Golani (Life Sciences Core Facilities, Weizmann Institute of Science, Israel), Natasa

Sladoje (Uppsala University), Perrine Paul-Gilloteaux (Structure Fédérative de

Recherche François Bonamy, Université de Nantes, CNRS, INSERM, Nantes, France),

Raphaël Marée* (ULiège), Sébastien Tosi* (IRB Barcelona).

° These authors contributed equally to this work

* These authors jointly supervised this work (+ corresponding authors)

2

Supplementary Section 1. BIAFLOWS online

instance: current content

This section reports the current content of BIAFLOWS in terms of projects illustrating

specific bioimage analysis problems and workflows to process the image datasets from

these projects. All workflows are referenced in BISE (NEUBIAS online repository of

bioimage analysis resources).

Problem class
BIAFLOWS

Project
Workflow GitHub BISE link

1. Object detection /

counting
SPOT-COUNTING-2D

W_SpotDetection-IJ
http://biii.eu/spot-detection-imagej

 W_SpotDetection-Icy http://biii.eu/spot-detection-icy

 SPOT-COUNTING-3D W_SpotDetection3D-IJ http://biii.eu/node/1458

2. Object

segmentation

NUCLEI-

SEGMENTATION W_NucleiSegmentation-ImageJ

http://biii.eu/nuclei-segmentation-

2d-imagej

W_NucleiSegmentation-CellProfiler

https://biii.eu/nuclei-segmentation-

cellprofiler

W_NucleiSegmentation--Python

http://biii.eu/nuclei-segmentation-

python

W_NucleiSegmentation-ilastik

https://biii.eu/nuclei-segmentation-

ilastik

W_NucleiSegmentation-MaskRCNN https://biii.eu/node/1487
DATA-SCIENCE-

BOWL-2018 W_NucleiSegmentation-MaskRCNN https://biii.eu/node/1487

W_NucleiSegmentation-ilastik

https://biii.eu/nuclei-segmentation-

ilastik

NUCLEI-

SEGMENTATION-3D W_NucleiSegmentation3D-ImageJ

http://biii.eu/nuclei-segmentation-

3d-imagej

3. Pixel classification
GLAND-

SEGMENTATION W_PixCla-UNet-GlaS

https://biii.eu/pixel-classification-

glas-challenge-unet

4. Particle tracking
NUCLEI-TRACKING-

NODIVISION W_NucleiTracking-ImageJ

https://biii.eu/nuclei-tracking-

imagej
5. Tree network

tracing
NEURON-TRACING-3D

W_NeuronTracing_vaa3d https://biii.eu/app-all-path-pruning

6. Filament network

tracing
VESSEL-TRACING-3D

W_FilamentTracing3D-ImageJ http://biii.eu/node/1453

W_LandmarkDetect-ML-MSET-Pred

https://biii.eu/landmark-detection-

mset-models-prediction

W_LandmarkDetect-ML-LC-Pred

https://biii.eu/landmark-detection-

lc-models-prediction

W_LandmarkDetect-ML-DMBL-Pred https://biii.eu/node/1485

7. Landmark

detection
LANDMARKS-DROSO

8. Object tracking
NUCLEI-TRACKING-

DIVISION
Framework available

Table 1. BIA problems and workflows currently available in BIAFLOWS online instance.

The name of the code repository on https://github.com/Neubias-WG5 and a link to the

webpage where each workflow is referenced and described in Bioimage Informatics

Search Index (BISE) is provided.

https://github.com/Neubias-WG5

3

Supplementary Section 2. BIAFLOWS user

guide

BIAFLOWS online instance can be accessed at https://biaflows.neubias.org. It is

possible to browse the content in read only mode from the guest account (username:

guest; password: guest). The platform has been tested for Chrome, Chromium, Safari

and Firefox.

Dashboard

The Dashboard (Fig. S2.1) is BIAFLOWS landing page. It provides an overview of the

content (projects, images) and recent activity. Notably, is helpful to quickly

access a project by typing one or several keywords (e.g. Nuclei).

Figure S2.1 BIAFLOWS Dashboard

Projects

The Projects section (Fig. S2.2) brings an overview of BIAFLOWS projects. Each project

illustrates a common BIA problem and gathers a set of annotated images and

compatible workflows to process them. A BIA problem class, a.k.a. Discipline (e.g.

Object Segmentation), is associated to every project; BIAFLOWS currently supports 8

disciplines (see Supplementary Table 1). Disciplines specify a format for ground truth

annotations (identical to expected workflow output), as well as the benchmark metrics to

be evaluated on the annotated images of a project. Clicking on a project redirects to the

Explore section.

https://biaflows.neubias.org/

4

Figure S2.2 Projects section

Explore

This section displays information about a project, more specifically its associated

discipline, a description of its image analysis task and a reference to the original source

of the annotated images. All images from a project are either 2D or multidimensional (C,

Z, T), they can be viewed by clicking on the Images tab (2D images) or ImageGroups

tab (multidimensional images).

Images / ImageGroups

Figure S2.3 Images tab

The table displayed on this page lists all the images from the current project (Fig. S2.3).

Images can be filtered by name by typing a keyword in the search bar and visualized by

clicking on their thumbnails.

In case ground truth annotations are stored as image masks (this depends on the

discipline of the project), they can be displayed by clicking . If ground truth

annotations are in a different format (e.g. SWC, text file), they can be managed from .

Finally, all images can be downloaded from their associated drop down menus.

5

Image Viewer

Figure S2.4 Image viewer

Navigation:

Use mouse scroll to zoom in/out, click + drag to move around. For multidimensional

images (ImageGroups), the panel is used to navigate through the slices.

Layers:

To overlay an annotation layer, click .

Annotation layers are generated from the results of a workflow run (a.k.a. job), several

layers can be overlaid and they can be removed / hidden from the button next to their

names.

Show/hide a layer from and remove it from . Layer opacity can be

adjusted with the bottom slider. If you do not know which annotation layer to display,

click . jobs are workflow runs validated by their maintainer as

representative results.

It is also possible to have multiple viewers opened at once and synchronize them (Fig.

S2.5). This can be helpful for instance to open the same image several times and

compare several workflow results (annotation layers). To do so, select an image from

the upper left drop down

menu and click , then use to synchronize the views.

6

Figure S2.5 Image viewer: 4 synchronized views

(top left: original image, others: workflow results overlays)

The current image can be downloaded by clicking on information panel and the

 button.

For 2D images, it is also possible to switch to previous/next image (

) in the project from this panel.

Finally, clicking on an annotation in the viewer will display some information.

Image adjustments:

Contrast and gamma correction can be adjusted from . The image can also be video

inverted from this panel.

7

Jobs

This tab lists all software available in the current project (Fig. S2.6, left section), i.e.

available workflows to process the images according to task associated to the project.

All workflows are versioned and deprecated versions are struck through.

Figure S2.6 Jobs tab

A workflow can be launched by clicking on its name, and then (if the account

used brings execution rights). This opens a workflow parameter dialog box. Default

parameters (Fig. S2.7) are set so as to bring meaningful results for the images of the

project.

Figure S2.7 Parameter dialog box for workflow execution

Upon launch, a job if flagged as running in the job list (Fig. S2.8) and a progress bar

displays information on the current execution step. This progress bar can be recalled at

any time by clicking next to a running workflow.

8

Figure S2.8 Job status (up and middle) and job details (bottom)

Upon completion, the job status should either turn to success or failed .

If a job is successful, workflow results (annotation layers for the image explorer) and

benchmark metrics (benchmark tab) should be available for this run.

A complete report (log file) of the job is also accessible from Job attached file .

Benchmarking

The Benchmarking tab (Fig. S2.9) is used to browse benchmark results (metrics) from

past workflow runs (jobs). To generate a benchmark report click .

By default, a report is generated for all starred jobs and all images from the project. Both

selections can be refined from the Images and Jobs drop down menus and the choice

selector:

9

Figure S2.9 Benchmarking tab (aggregated view)

Metrics results and workflow parameters can be displayed from the right panel

. The metrics can be explored as aggregated (all images, Fig. S2.9) or on a per image

basis (Fig. S2.10) by switching between tabs .

The detailed results by image view is useful to, e.g., detect jobs with poor metrics and

inspect the associated annotation layer to understand where the workflow has failed. To

quickly access an image, its thumbnail should be clicked from the list.

Figure S2.10 Benchmarking tab (image view)

10

Software

The software section gives an overview of all BIA workflows currently available in the

system (Fig S2.11). In principle, the most relevant software is the last executable version

but all past versions are also displayed as reference. Workflows can be filtered by name

from the search bar.

Figure S2.11 Software (BIA workflows) tab

Selecting a workflow brings some useful information (Fig. S2.12); in particular:

- Its input parameters and default values (expandable list)

- The projects using this workflow (with links to projects)

- GitHub and DockerHub links respectively for the workflow source code and

Docker image builds

- The command line invoked by BIAFLOWS to launch the workflow image (Show

info for developers)

Figure S2.12 Software information

11

Supplementary Section 3. Installing and

populating BIAFLOWS locally

Installing a local instance of BIAFLOWS

To apply a workflow on local images or to benchmark custom workflows on images

stored in the online instance, it can be convenient to install a local instance of

BIAFLOWS and populate it. This procedure is described below. Local instances of

BIAFLOWS can be installed on UNIX-based operating systems. The installation

procedure which follows is for Linux Ubuntu. Some specific details related to deployment

on Mac OS can be found here: Install Cytomine on Mac OS.

1/ Install requirement

Cytomine runs in Docker containers, so that the only requirement is to install Docker.

Check official Docker documentation to install Docker for Ubuntu. In particular, choose

Install using the repository, set up the repository and install Docker CE.

2/ Retrieve BIAFLOWS installation files

mkdir Biaflows/

cd Biaflows/

git clone https://github.com/Neubias-WG5/Cytomine-bootstrap.git

cd Cytomine-bootstrap

3/ Configure the local instance

Edit configuration.sh file and if needed, update URLs (CORE_URL, IMS_URL,

UPLOAD_URL). Be sure to use URLs that are not already used by other applications

(avoid localhost) to prevent conflicts. Add the XXX_URL variable values into the

/etc/hosts of the host machine. In the /etc/hosts, add the following lines and don't

forget to adapt them with values chosen for XXX_URL variables.

127.0.0.1 localhost-core

127.0.0.1 localhost-ims

127.0.0.1 localhost-upload

127.0.0.1 rabbitmq

If needed, update data paths (IMS_STORAGE_PATH, …). All data paths must be valid

and mappable in the Docker engine. Don't forget to create all these directories (mkdir) if

they don't exist.

Configure BIAFLOWS_WORKFLOWS_METRICS to true or false depending if you want to perform

benchmarking (annotated images required) or only plan to process images.

4/ Initialize the deployment

Generate the installation script with the command:

https://doc.cytomine.be/display/PubOp/Install+Cytomine+on+Mac+OS
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/

12

sudo bash init.sh

5/ Deploy the local instance

Run the generated deployment script with the command

sudo bash start.sh

6/ Check the running instance

When start up is finished, check the application is running in your browser on the URL

specified in your CORE_URL variable (by default: localhost-core).

An admin account is created by default (username: admin ; password: admin). The

password should be updated once connected in the Account page at the top right.

7/ Install sample projects (images and ground-truth data)

After BIAFLOWS successfully installed locally, this local instance is still empty of data.

Most of projects available on BIAFLOWS maintained by NEUBIAS can be imported to

this local instance.

Get the public and private keys of the admin account (at the end of the Account page).

Then, run

cd Cytomine-bootstrap

sudo bash ./inject_demo_data.sh ADMIN_PUBLIC_KEY ADMIN_PRIVATE_KEY

where ADMIN_PUBLIC_KEY and ADMIN_PRIVATE_KEY have been substituted by their

value.

The script starts to download projects and import them in your local BIAFLOWS.

The list of imported projects can be tweaked by editing the file

 Cytomine-bootstrap/configs/project_migrator/projects.txt

The whole data injection procedure can take several minutes, depending on your

internet connection and the number of projects being imported.

13

Creating a new project in a local instance of BIAFLOWS

Click Projects tab from upper banner

Click New Project

Fill project information:

a) Choose a meaningful project name

b) Click “Create empty ontology with project name”

c) Choose the Discipline corresponding to the project BIA task (see Supplementary

Section 5)

d) Click Next.

Configure the project, notably:

e) Tick “Hide managers layers”

f) Tick “Hide contributors layers”

14

g) Scroll down and select “Restricted editing mode”

h) Set the Discipline according to the BIA task

Disciplines specify the format of ground truth annotations (and workflow outputs) as well

as the associated benchmark metrics (see Supplementary Section 5 for details).

i) Click Next.

Configure project members. If you work alone, you can leave contributors and project

managers to default user.

j) Click Next and disable retrieval information

k) Create the project by clicking Save

A description of the project can be added from Explore Tab by pressing .

Note: Projects can be fully configured to display or hide panels / tabs / tools in the user

interface. This is achieved from the Configuration tab.

15

Uploading images to an existing project of a local instance of BIAFLOWS

Very important:

2D images must be uploaded as 8-bit TIFF and multi-dimensional images (Z, C, T) must be

uploaded as single file 8-bit OME-TIFF. Images should not have the text string _lbl in their

name.

1) Click Storage tab from upper banner

2) Tick “Link automatically uploaded file with selected project” and select the project

you want to link the images to, for example:

Note: If you don't see a project in the list, be sure that you are member of the project!

3) Click

4) Select the files from the file browser

5) Click and wait until completion.

Note: images can also be associated to a project once in storage without ticking link to

project from the Images (2D images) / ImageGroups (multidimensional images) tabs. This

can be useful to associate the same image to several projects. To do so use

and .

16

Uploading ground truth annotations to an existing project of a local instance of

BIAFLOWS

If you plan to perform benchmarking, ground truth annotations should also be uploaded

and associated to the images of the project. The format of these annotations depends

on the project discipline (see Supplementary Methods section 5).

Image annotations (e.g. binary masks) should be uploaded as 16-bit TIFF for 2D images

and single file 16-bit OME-TIFF for multidimensional images. These masks can for

instance be created with ImageJ. Annotation images should be uploaded as described in

previous section, and with same name as their corresponding image + _lbl suffix (e.g.

MyImage.ome.tif and MyImage_lbl.ome.tif).

Other types of annotations (e.g. SWC, text file) should be added to the images as attached

files, which can be achieved from the icon in the image list from Images / ImageGroups

tabs.

Note: Only the last uploaded file will be taken into account during metrics computation.

17

Adding existing workflows from trusted sources to a local instance of BIAFLOWS

It is possible to integrate existing BIAFLOWS ready workflows to any BIAFLOWS

instance. This operation requires configuring an external trusted source composed of (1)

a source code registry (typically a Github user space) and (2) an execution environment

registry (typically a DockerHub user space). If you have a user space where workflow

repositories are mixed with other repositories, you can specify a prefix to distinguish

workflows repositories from other ones.

For instance, all bioimage analysis workflows developed by NEUBIAS are prefixed by

W_ and available here: https://github.com/Neubias-WG5.

The trusted source has to be configured as follows:

To add a new trusted source, connect as an administrator and grant administration

privileges by clicking Open admin session at the top-right:

Then go to the Admin page:

In the tab, click on and fill the form. Send the form and click on

 to add workflows from this trusted source to the local BIAFLOWS

instance. Trusted sources are periodically checked to automatically add new workflows

(new versions of existing workflows or completely new workflows).

https://github.com/neubias-wg5

18

Supplementary Section 4. Adding new image

analysis workflows to a local instance of

BIAFLOWS

Sample workflows running in FIJI, ICY, CellProfiler, ilastik, Vaa3D, or Python can be

found in this GitHub repository: https://github.com/neubias-wg5.

Users willing to get help on packaging a workflow to this format to add it to a BIAFLOWS

instance are redirected to https://forum.image.sc. Interested users can contact

biaflows@neubias.org to include a packaged workflow to the online instance of

BIAFLOWS.

Requirements
All image analysis workflows in BIAFLOWS must:

- Run headless from command line

- Take an input image folder: 8-bit TIFF images (2D) or single file 8-bit OME-TIFF

images (C,Z,T)

- Expose functional parameters and parse them from the command line call

- Export results in an output folder (parsed from command line call). The format of

the results is problem class (discipline) dependent and described in

Supplementary Methods section 5.

The workflow and its software execution environment should be described in an

authorized GitHub repository. The repository should be made of 4 files:

 A Docker recipe (Dockerfile) configuring the software execution environment

(required OS/libraries,...). All necessary software dependencies must be

specified in DockerFile (plugins, libraries to install, etc.); some examples can be

found here: https://github.com/Neubias-WG5

 A JSON descriptor (descriptor.json) specifying the workflow functional

parameters. This file also holds URL and credentials to communicate with a

specific BIAFLOWS instance. A reference for this descriptor can be found here:

https://doc.cytomine.be/display/ALGODOC/Software+JSON+descriptor+referenc

e

 The workflow executable or, more commonly, a script running on a BIA platform

callable from command line. So far these scripts were tested: ImageJ macros,

ICY protocols, CellProfiler pipelines, ilastik pipelines, Vaa3D plugins, Python 2.X

or 3.X code.

 A Python wrapper script (wrapper.py), the Docker entry point sequencing all

operations. The steps executed by typical BIAFLOWS wrappers are described in

figure S4.1.

https://github.com/neubias-wg5
https://forum.image.sc/
mailto:biaflows@neubias.org
https://github.com/Neubias-WG5
https://doc.cytomine.be/display/ALGODOC/Software+JSON+descriptor+reference
https://doc.cytomine.be/display/ALGODOC/Software+JSON+descriptor+reference

19

Important: Workflow repositories must have a name starting by a fixed prefix which is

chosen by the trusted source owner (e.g. W_ for the online instance of BIAFLOWS).

Figure S4.1. Typical sequence of BIAFLOWS wrapper script

In this document we will illustrate how to create these four files by following this existing

sample workflow: https://github.com/Neubias-WG5/W_NucleiSegmentation3D-ImageJ

Installing software required for development

As a workflow will run into a Docker container and interact with a BIAFLOWS instance, it

is required to install Docker, Python 3, and Cytomine Python client in your local

machine:

Docker

Linux https://goo.gl/Q9A5n9

Windows: https://goo.gl/gHi3Kr

https://github.com/Neubias-WG5/W_NucleiSegmentation3D-ImageJ
https://goo.gl/Q9A5n9
https://goo.gl/gHi3Kr

20

Python 3 + Cytomine python

See https://doc.cytomine.be/display/ALGODOC/Data+access+using+Python+client

Step 1. Uploading a workflow descriptor to BIAFLOWS

Workflows have first to be described through a JSON descriptor, e.g.:

https://github.com/Neubias-WG5/W_NucleiSegmentation3D-

ImageJ/blob/master/descriptor.json

Currently, some sections have to be customized manually, especially the software

parameters (and default values). We are planning a tool to create and publish a

descriptor from the UI.

To make a workflow available in a BIAFLOWS instance, its descriptor currently needs to

be published from the Python client. This can be performed by customizing the following

code and running it inside the folder containing the JSON descriptor:

from cytomine import Cytomine

from cytomine.utilities.descriptor_reader import read_descriptor

with Cytomine(host, public_key, private_key) as c:

 read_descriptor("descriptor.json")

host is the url of your BIAFLOWS server, e.g. https://biaflows.neubias.org

public_key and private_key can be found from user Account page (section API

KEYS)

Step 2. Linking a workflow to a BIAFLOWS project

- In BIAFLOWS, Projects, select the project to which you want to add the workflow

- Go to Projects > Configuration > Software and select the software to add to the

project from the list (e.g., Nuclei_Segmentation_3D_ImageJ)

https://doc.cytomine.be/display/ALGODOC/Data+access+using+Python+client
https://github.com/Neubias-WG5/W_NucleiSegmentation3D-ImageJ/blob/master/descriptor.json
https://github.com/Neubias-WG5/W_NucleiSegmentation3D-ImageJ/blob/master/descriptor.json
https://biaflows.neubias.org/

21

- Go to Projects > Configuration and make sure that Jobs tab is activated (green)

Step 3. Creating the Dockerfile

Docker files specify the execution environment. They typically start by creating (FROM)

a layer from an existing Docker image with basic operating system. Then they execute

commands (RUN) to install specific software and libraries, and copy (ADD) files (e.g. the

Python wrapper script and workflow script) into the execution environment the workflow

will be called from. Finally, the ENTRYPOINT is set to the wrapper script.

A sample DockerFile can be found here:

https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ/blob/master/Dockerfile

If you do not know how to configure your Dockerfile it is recommended to adapt the

Dockerfile from an existing BIAFLOWS workflow using the same target software you are

planning to use. Workflows available in BIAFLOWS online instance are all stored here:

https://github.com/Neubias-WG5/

Step 4. Creating the wrapper script

The same hold for wrapper scripts, if possible, it is recommended to adapt a wrapper

script from 1) the same problem class (discipline), 2) image dimensionality (e.g. 3D

image) and 3) matching the software you are planning to use. In this case, only the

workflow call (command line) should have to be adapted.

A sample wrapper script is available here:

https://github.com/Neubias-WG5/W_NucleiSegmentation-

ImageJ/blob/master/wrapper.py

Step 5. Building the workflow image, running it in a container and debugging

A workflow can be directly pushed to GitHub and linked to BIAFLOWS, but it is

preferable to test it locally beforehand. For this, it is required to build and run the Docker

image locally.

Building the container (you need around 5GB disk space for this operation)

From a directory where you gathered the 4 files required to describe the workflow:

cd ~/Documents/Code/NEUBIAS/W_Nuclei_Segmentation_3D_ImageJ$

https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ/blob/master/Dockerfile
https://github.com/Neubias-WG5/
https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ/blob/master/wrapper.py
https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ/blob/master/wrapper.py

22

sudo docker build -t seg3d .

Note: seg3d is the name of the Docker image to build.

Running the container

After building the image, the workflow can be run locally using:

sudo docker run -it seg3d --host host --public_key public_key --

private_key private_key --software_id software_id --project_id

project_id --ij_min_threshold 15 --ij_radius 4

The list of command-line parameters should exactly match the parameters defined in the

descriptor file. Biaflows instance URL and credentials should be filled as well as

software_id / project_id. These can be retrieved as followed from Jobs tab by clicking on

the name of the published workflow from available software section.

The URL of this page contains 2 IDs: The first one is the project ID (e.g. 5955), the

second is the software ID (e.g. 6453053)

Integrating new workflows to BIAFLOWS can lead to their runtime failure. In such

situation, the execution of the workflow is reported as failed in the web interface, some

log file is downloadable, and no associated benchmark metric is associated to this run.

There is hence no risk that this would be left unnoticed by the user. In that situation, the

problem should be solved as collaboration between the workflow developer and

BIAFLOWS administrators. We will reflect this in the text. If the software run was not

successful, you can run the Docker from an interactive session:

sudo docker run --entrypoint bash -it seg3d

If needed, it is also possible to launch with X capabilities, e.g. to debug imageJ macro

more easily:

xhost + sudo docker run --entrypoint bash -v

/home/yourusername/tmp/test:/data -e DISPLAY=$DISPLAY -v /tmp/.X11-

unix:/tmp/.X11-unix -it seg3d

If you want to access local images without having to download them each time from

BIAFLOWS, you can attach a local folder to a folder inside the Docker container (-v

option), for instance using:

sudo docker run --entrypoint bash -v /home/yourusername/tmp/test:/data

-it seg3d

Some other useful Docker commands:

23

Check if an image is running: ps -a

Kill a running container: sudo docker rm 65e88b2015df

Kill all running containers: sudo docker rm $(sudo docker ps -a -q)

Download a specific container sudo docker pull neubiaswg5/fiji-base:latest

Note: to download a newly updated workflow image, is necessary to remove older

versions manually first.

Step 6. Publishing a workflow with version control

Once your workflow is running properly, you can officially publish it with version control.

To allow automatic import to BIAFLOWS, the set of files previously described should be

stored in a GitHub repository (linked to DockerHub) from an account trusted by the

BIAFLOWS instance. Adding / checking trusted repositories is performed from Admin /

Software tab from an admin account (see Supplementary Methods section 3):

Step 6. Linking a GitHub repository to DockerHub

Now we assume you created a GitHub organization (e.g. neubias-wg5) and a repository

(e.g. W_NucleiSegmentation3D-ImageJ) containing the workflows files. It is now

required to link DockerHub to GitHub. This operation has to be done only once for a

given GitHub account:

1. Create an account on DockerHub : https://hub.docker.com/ and login.

2. Create an automatic build by linking Docker account to GitHub organization

account.

3. In DockerHub website, click on Create>Create Automated Build.

https://hub.docker.com/

24

1. In Linked Accounts, click on Link Github

2. Click Select

3. Make sure Organization access (e.g. Neubias-WG5) is selected (green

check mark) and click on Authorize docker

4. Enter your GitHub password to enable access

25

Step 7. Associating a new workflow repository to DockerHub

Once your Github organization account and DockerHub are linked, it is now possible to

create and automated build procedure for each workflow. This procedure will build a

workflow image that will later be downloaded automatically by a BIAFLOWS instance.

To do so, from DockerHub:

1. Click on Create>Create Repository+

2. In build settings click on GitHub icon

3. Select organization (e.g. neubiaswg5) and workflow Github repository (e.g.

W_NucleiSegmentation3D-ImageJ) at the bottom of the page

4. Enter a short description (less than 100 characters) and click Create

5. Click on Click here to customize the build settings and configure as in figure

below

6. Click on Save

Step 8. Creating a versioned release on GitHub

Following this procedure, a Docker image of your workflow will only be built once a

GitHub release is triggered and tagged from GitHub.

To create versioned releases of your workflow, go to GitHub and draft a new release

(see https://goo.gl/bFz66N). This will add a new tag to the last commit. As we configured

automatic build in previous step (with a new Docker Hub tag) for every new Github tag, a

new Docker image will now be automatically built and published with the same tag as

provided on Github.

The BIAFLOWS instance that trusts this Github/Docker Hub repository will automatically

retrieve and add this new version. The workflow will then be executable from the

BIAFLOWS instance.

https://goo.gl/bFz66N

26

Supplementary Section 5. BIAFLOWS ground

truth annotations (and workflow output)

expected formats and reported metrics

To perform benchmarking, ground truth annotations associated to the images of a

BIAFLOWS project should be encoded in a format that is specific to its discipline (BIA

problem class). Most annotations are stored as mask images as TIFF / OME-TIFF

images. The BIA workflows of a project are also expected to output results in the same

format. Currently 8 disciplines are supported and their respective annotation formats and

associated benchmark metrics are described below.

Note: each discipline has a long name (explicit) and short name, for instance Object

Segmentation (ObjSeg). The same hold for metrics, for instance DICE (DC).

See supplementary section 7 for metrics description.

Discipline: Object Segmentation (ObjSeg)

Task: Delineate objects or isolated regions

Object Encoding: 2D/3D binary masks with foreground > 0, background = 0

Reported metrics: DICE (DC), AVERAGE_HAUSDORFF_DISTANCE (AHD), computed

by VISCERAL [1] executable (archived here).

Discipline: Spot / object counting (SptCnt)

Task: Estimate the number of objects

Object Encoding: 2D/3D binary masks, exactly 1 spot/object per non null pixel

Reported metrics: RELATIVE_ERROR_COUNT (REC), computed by custom Python

code.

Discipline: Spot / object detection (ObjDet)

Task: Detect objects in an image (e.g. nucleus)

Object Encoding: 2D/3D binary masks, exactly 1 object per non null pixel.

http://www.visceral.eu/resources/evaluatesegmentation-software/
https://github.com/Neubias-WG5/neubiaswg5-utilities
https://github.com/Neubias-WG5/neubiaswg5-utilities
https://github.com/Neubias-WG5/neubiaswg5-utilities

27

Reported metrics: CONFUSION_MATRIX (TP, FN, FP), F1_SCORE (F1), PRECISION

(PR), RECALL (RE), Distance RMSE (RMSE), computed by Particle Tracking Challenge

metric Java code (particle matching only) (archived here in

bin/DetectionPerformance.jar).

Discipline: Pixel/Voxel Classification (PixCla)

Task: Estimate pixels class

Object Encoding: 2D/3D class masks, gray level encodes pixel/voxel class, background

= 0

Reported metrics: F1_SCORE (F1), ACCURACY (ACC), PRECISION (PR), RECALL

(RE), computed by custom Python code.

Discipline: Filament Tree Tracing (TreTrc)

Task: Estimate the medial axis of a single filament tree

Object Encoding: SWC file

Reported metrics: DIADEM metric (DM) computed by DIADEM challenge code (archived

here).

Discipline: Filament Networks Tracing (LooTrc)

Task: Estimate the medial axis of one or several network(s) of filaments

Object Encoding: 2D/3D skeleton binary masks with skeleton pixels > 0, background = 0

Reported metrics:

UNMATCHED_VOXEL_RATE (UVR), computed by custom Python code.

NetMets metrics: Geometric False Negative rate (FNR), Geometric False Positive rate

(FPR) computed by NetMets Python code.

Metrics parameters:

UVR: GATING_DIST (default = 5, maximum distance between skeleton voxels in

reference and prediction skeletons to be considered as matched).

NetMets: skeleton pixel_sampling (default = 3), sigma (= GATING_DIST), subdiv (set to

4).

http://bioimageanalysis.org/track/
https://github.com/Neubias-WG5/neubiaswg5-utilities
https://github.com/Neubias-WG5/neubiaswg5-utilities
http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html
http://diademchallenge.org/metric.html
https://github.com/Neubias-WG5/neubiaswg5-utilities
https://github.com/Neubias-WG5/neubiaswg5-utilities
https://github.com/Neubias-WG5/neubiaswg5-utilities
https://github.com/Neubias-WG5/neubiaswg5-utilities

28

Discipline: Landmark Detection (LndDet)

Task: Estimate the position of specific feature points

Object Encoding: 2D/3D class masks, exactly 1 landmark per non null pixel, gray level

encodes landmark class (1 to N, N is the number of landmarks).

Reported metrics: Number of reference / predicted landmarks (NREF, NPRED), Mean

distance from predicted landmarks to closest reference landmarks with same class

(MRE). All metrics computed by custom Python code.

Discipline: Particle Tracking (PrtTrk)

Task: Estimate the tracks of object centroid (no division)

Object Encoding: 2D/3D label masks, exactly 1 particle per non null pixel, gray level

encodes particle track ID.

Reported metrics: Pairing distance (PD), Normalized pairing score alpha (NPSA), Full

normalized pairing score beta (FNPSB), Number of reference tracks (NRT), Number of

candidate tracks (NCT), Jaccard Similarity Tracks (JST), Number of paired tracks (NPT),

Number of missed tracks (NMT), Number of spurious tracks (NST), Number of reference

detections (NRD), Number of candidate detections (NCD), Jaccard similarity detections

(JSD), Number of paired detections (NPD), number of missed detections (NMD),

Number of spurious detections (NSD). All computed from Particle Tracking Challenge

metric Java code (archived here in bin/TrackingPerformance.jar).

Metrics parameters: GATING_DIST (default = 5, maximum distance between particle

detections in reference / prediction tracks to be considered as matched).

Discipline: Object Tracking (ObjTrk)

Task: Estimate object tracks and contours (with possible divisions)

Encoding: 2D/3D TIFF label masks, gray level encodes object ID + division text file (see

Cell Tracking Challenge format)

Reported metrics: Segmentation measure (SEG), Tracking measure (TRA). All

computed from Cell Tracking Challenge metric command-line executables (archived

here in bin/SEGMeasure and bin/TRAMeasure).

https://github.com/Neubias-WG5/neubiaswg5-utilities
http://bioimageanalysis.org/track/
https://github.com/Neubias-WG5/neubiaswg5-utilities
http://celltrackingchallenge.net/datasets/
http://celltrackingchallenge.net/evaluation-methodology/
https://github.com/Neubias-WG5/neubiaswg5-utilities
https://github.com/Neubias-WG5/neubiaswg5-utilities

29

Supplementary Section 6. BIAFLOWS

Additional features

Executing a BIAFLOWS workflow without BIAFLOWS server

It is possible to run a workflow image independently of any BIAFLOWS server. This can

for instance be useful to process a local folder of images. For this, first install Docker on

the target workstation, then:

 Get the docker image of the workflow from Dockerhub:

 docker pull {remote_image}

Or alternatively build its Docker image from source (GitHub repository)

 Inside repository folder: docker build -t {local_image} .

 Prepare an empty folder {DATA_PATH} with a subfolder /data itself with

subfolders:

 {DATA_PATH}/data/in: add input images to this folder. Images should

be 8-bit TIFF (2D) or 8-bit single file OME-TIFF (C,Z,T). String _lbl is

forbidden in image name.

 {DATA_PATH}/data/out: workflow results are exported to this folder

 {DATA_PATH}/data/gt: leave empty

 Run the workflow with these specific flags:

docker run -v {DATA_PATH}/data:/data -it {image_name}

{WORKFLOW_PARAMETERS} --infolder /data/in --gtfolder /data/gt --

outfolder /data/out --nodownload --noexport --nometrics

The workflow parameters that were used for a specific run (job) can be found from

in BIAFLOWS (Jobs tab). Concretely parameters are all non Cytomine variables. For the

example below {WORKFLOW_PARAMETERS} should be --Radius 5 --Threshold -0.5.

Notes on the flags:

https://docs.docker.com/

30

--nodownload: inputs images (and files) are not downloaded from a BIAFLOWS server,

instead they are read locally

--noexport: results are not uploaded to any BIAFLOWS instance

--nometrics: metrics are not computed, nor uploaded to any BIAFLOWS instance.

Importing existing datasets from a BIAFLOWS instance

Content migration from an existing instance (e.g. BIAFLOWS online instance) to a local

instance is possible. To migrate data, we developed tools that rely on the BIAFLOWS

RESTful programming interface to export project data (including images and object

annotations) from the source instance to the destination instance. Corresponding code

and documentation is available here and can be adapted for specific purposes:

https://github.com/Neubias-WG5/Cytomine-project-migrator

Manual Import of annotations

In order to be able to compute metrics for benchmarking (optional), ground-truth

annotations should also be provided for all uploaded images and encoded with format

specified in Supplementary Methods section 5.

Workflow results use the same formats as ground truth annotations, but to be visualized

in BIAFLOWS they are internally converted to a spot / contour format. If needed, it is

possible to manually convert annotations from a provided Python library (e.g. from

image masks or CSV files). Supported formats include 2D, 3D/2D+t and 3D+t objects.

The implementation is a part of the neubiaswg5-utilities library

(https://github.com/Neubias-WG5/neubiaswg5-utilities). These annotations can then be

uploaded to BIAFLOWS and displayed using overlays in the web image viewer as any

annotation automatically created from the output of a workflow.

RESTful API documentation

All the interactions with BIAFLOWS are performed through a RESTful API. It allows

linking the server side and a BIAFLOWS client, such as the web user interface or a Java

/ Python client (used in workflows to communicate with the core server). All available

services provided by the API are summarized in a user-friendly way on a website

automatically installed with BIAFLOWS installation procedure. On this interface, the

documentation can be browsed and API responses directly tested in a playground area.

BIAFLOWS RESTful API documentation can be found here:

https://biaflows.neubias.org/restApiDoc/?doc_url=https://biaflows.neubias.org/restApiDoc/api#

https://github.com/Neubias-WG5/Cytomine-project-migrator
https://github.com/Neubias-WG5/neubiaswg5-utilities
https://biaflows.neubias.org/restApiDoc/?doc_url=https://biaflows.neubias.org/restApiDoc/api

31

Supplementary Section 7. BIAFLOWS

Benchmarking Metrics

Object Segmentation (ObjSeg)

DICE (DICE)

DICE coefficient is computed as twice the overlap area (hence similarity) between the

ground truth objects (X) and the objects estimated by the workflow (Y) normalized to the

sum of the overall areas of both ground truth and estimated objects, that is:

DICE coefficient ranges from 0 (no overlap) to 1 (perfect overlap).

AVERAGE HAUSDORFF DISTANCE (AHD)

Given a point on the contour of an object and the contour of another object, the

minimum distance is the distance from that point to any other point on the other contour.

The Hausdorff distance between the contours of a ground truth object (X) and an object

estimated by the workflow (Y) is defined as the maximum of the minimum distances

computed for any point of any of the two contours (respect the other contour). The

Average Hausdorff distance is the average of the Hausdorff distance computed for all

the objects. The average Hausdorff distance (AHD) is a positive unbounded number in

pixel units. AHD is equal to 0 only for perfect object contour estimation. Whereas DICE

coefficient takes into account objects as a whole, a large AHD may only reflect that an

object as a large deviation to the ground truth object for a single point (big “bump” or

“dip”).

Spot / object counting (ObjCnt)

32

RELATIVE_ERROR_COUNT (REC)

The relative error count is computed as the absolute difference between the number of

ground truth and the number of estimated objects, normalized to the count of the ground

truth objects. REC is a positive unbounded number only equal to 0 for perfect count. A

larger REC means a worse object count.

Spot / object detection (ObjCnt)

CONFUSION_MATRIX (TP, FN, FP)

F1_SCORE (F1)

PRECISION (PR)

RECALL (RE)

Distance RMSE (RMSE)

Given a set of ground truth detections and a set of detections produced by an evaluated

algorithm, these two sets are first associated by solving a distance-constrained

assignment problem using the Hungarian algorithm. This procedure pairs reference

detections with candidate detections, not being farther than a given maximum distance,

by minimizing their overall distance. Unpaired reference detections correspond to false

negatives (FN), whereas unpaired candidate detections correspond to false positives

(FP). Finally, paired detections are considered true positives (TP). As true negatives

(TN) are not applicable here, their number is fixed at 0. See Pixel/Voxel classification

(binary classification) for the definition of CONFUSION_MATRIX, F1_SCORE,

PRECISION and RECALL.

Distance RMSE, the root mean square error, indicates the overall localization accuracy

of optimally paired detections (i.e., TP detections), being a nonnegative number with the

upper bound given by the maximum distance specified.

33

Pixel/Voxel Classification (PixCla)

F1_SCORE (F1)

ACCURACY (ACC)

PRECISION (PR)

RECALL (RE)

Given a classification problem with C distinct classes, a confusion matrix is a square

matrix of dimensions C x C where the element aij (i ∈ [0, C[, j ∈ [0, C[) is the number of

samples/pixels of class j that are predicted to be class i. The matrix diagonal contains

correctly predicted samples.

In binary classification (C = 2), the elements of the confusion matrix have a particular

meaning:

● a00: true negative (TN)

● a01: false negative (FN)

● a10: false positive (FP)

● a11: true positive (TP)

The accuracy (ACC) is the proportion of correctly predicted samples (the matrix trace

divided by the total number of samples). The accuracy ranges from 0 (all samples

misclassified) to 1 (all samples correctly classified). A classifier that would pick a class at

random typically yields accuracy around 1/C. In binary classification, we have:

ACC = (TP + TN) / (TP + TN + FP + FN)

And precision (PR):

PR = TP / (TP + FP)

Intuitively, the precision is the ability of the classifier not to label as positive a sample

that is negative. It ranges from 0 (all positive samples misclassified) to 1 (no false

positive). In multiclass classification (C > 2), we use the weighted averaged precision:

precision is computed for each class separately and then the resulting precisions are

averaged weighted by support (number of positive samples for each class). This

weighting strategy accounts for class imbalance. In binary classification the recall (RE)

is:

RE = TP / (TP + FN)

Intuitively, the recall is the ability of the classifier to find all positive samples. It ranges

from 0 (all positive samples misclassified) to 1 (no false negative). In multiclass

classification, we use the same approach as for PR (i.e. weighted average recall).

Recall and precision must be analyzed jointly and it makes no sense to benchmark one

or the other independently. For instance, for a balanced binary classification problem, it

is easy to get a perfect recall of 1 with a constant classifier that would always predict the

34

positive class but this classifier would yield a precision of 0.5 (which is the score a

random classifier would get). When tuning a classifier, there is usually a trade-off

between precision and recall. In binary classification, the f1-score (F1) is:

F1 = 2 * (PR * RE) / (PR + RE)

Intuitively, it is the weighted average of precision and recall. It ranges from 0 (precision

and/or recall are 0) to 1 (all samples correctly classified). In multiclass classification, we

use the same approach as for PR and RE (average weighted f1-score).

Filament Tree Tracing (TreTrc)

DIADEM metric

Full description: http://diademchallenge.org/metric.html

Citation: Gillette, T. A., Brown, K. M., & Ascoli, G. A. (2011). The DIADEM metric:

comparing multiple reconstructions of the same neuron. Neuroinformatics, 9(2-3): 233-

245.

Summary: The DIADEM metric compares topologically two registered digital

morphological reconstructions of one similar neuron. The metric is a multi-step process

that scores the connection between each node in the gold standard (e.g., manual)

reconstruction based on whether or not the test (e.g. automated) reconstruction captures

that connection. Each connection is weighted by the size of the subtree to which a

connection leads in terms of terminal degree. An option exists to consider excess of

nodes not present in the gold standard and therefore lower the score. This produces a

score between 0 and 1 that reflects topological similarity, with a score of 1 reflecting a

perfect score.

Filament Networks Tracing (LooTrc)

NetMets metric

Geometric False Negative rate (GFNR)

Geometric False Positive rate (GFPR)

Citations: Mayerich, D., Bjornsson C.,Taylor J., Roysam B. (2012). NetMets: software for

quantifying and visualizing errors in biological network segmentation. BMC

Bioinformatics, 13(Suppl 8): S7.

http://diademchallenge.org/metric.html

35

Summary: Similarly to the DIADEM metric, NetMets relies on mapping of branch points

and end points between the ground truth and test case. Given two fiber networks N1 and

N2, it estimates the ratio of the length of fiber in N1 that has no correspondence in N2 to

the total fiber length in N1. This estimate is computed by placing an implicit Gaussian

envelope around N2 and integrating along the set of curves representing fibers in N1. In

order to quantify both missed fibers and false positives, a bi-directional measurement,

comparing N1 to N2 as well as comparing N2 to N1. In general terms, the more distant

nodes in N2 are from the nearest nodes in N1, the value of M decreases. Thus, this value

reflects that if nodes in a tree are distant from the other tree, there is a geometry error in

that region where those nodes are. In addition, due to the bidirectional nature of this

calculation, it is possible to obtain both the false negative rate 𝐺𝐹𝑁𝑅 and false positive

rate 𝐺𝐹𝑃𝑅 of a test tree compared to the ground truth.

Equation:

𝑴(𝑵𝟏, 𝑵𝟐) =
𝟏

𝒏
∑ (𝟏 − 𝒆

−
𝒅(𝒙,𝑵𝟐)

𝟐

𝟐𝝈𝟐)

𝒏

𝒙∈𝑵𝟏

N1,N2 : fibers network

n : number of grid points in N1

d(x,N2) : distance between x (belonging to N1) and the closest point in N2,

used to weight the distance field based on the geometry of N2.

σ : sensitivity parameter use to increase/decrease the weighted distance

field.

𝐺𝐹𝑁𝑅 = 𝑴(𝑵𝑮𝑻, 𝑵𝑻) : Fraction of Ground True not present in Test (False

Negative Rate), between 0 and 1, lower values are better

𝐺𝐹𝑃𝑅 = 𝑴(𝑵𝑻, 𝑵𝑮𝑻) : Fraction of Test not present in Ground True (False

Positive Rate) , between 0 and 1, lower values are better.

Landmark Detection (LndDet)

Number of ground truth landmarks (NREF)

Number of predicted landmarks (NPRED)

Mean distance (MRE):

Mean distance from predicted landmarks to ground truth landmarks (in pixels).

36

Particle Tracking (PrtTrk)

14 metrics from PTC challenge, see supplementary note 3 for complete description in:

https://media.nature.com/original/nature-assets/nmeth/journal/v11/n3/extref/nmeth.2808-

S1.pdf.

5 main metrics are derived from these 14 metrics:

1. α(X, Y) = 1−d(X, Y)/d(X, Ø). Ø denotes a set of dummy tracks; hence, d(X, Ø) is the

maximum possible total distance (error) from the ground truth. The measure ranges from

0 (worst) to 1 (best), indicating the overall degree of matching of ground truth and

estimated tracks without taking into account spurious (non-paired estimated) tracks.

2. β(X, Y) = (d(X, Ø)−d(X, Y))/(d(X, Ø) + d(Y, Ø)). Y denotes the set of spurious tracks,

and d(Y, Ø) is the corresponding penalty term. The measure ranges from 0 (worst) to α

(best) and is essentially α with a penalization of non-paired estimated tracks.

3. JSC = TP/(TP + FN + FP). This is the Jaccard similarity coefficient for track points. It

ranges from 0 (worst) to 1 (best) and characterizes overall particle detection

performance. TP (true positives) denotes the number of matching points in the optimally

paired tracks; FN (false negatives), the number of dummy points in the optimally paired

tracks; and FP (false positives), the number of non-matching points including those of

the spurious tracks.

4. JSCθ = TPθ/(TPθ + FNθ + FPθ). This is the Jaccard similarity coefficient for entire

tracks instead of single track points. Similarly to JSC, it ranges from 0 (worst) to 1 (best).

TPθ denotes the number of estimated tracks paired with ground-truth tracks; FNθ, the

number of dummy tracks paired with ground-truth tracks; and FPθ, the number of

spurious tracks.

5. RMSE, the r.m.s. error, indicates the overall localization accuracy of matching points

in the optimally paired tracks (the TP as in JSC), being a nonnegative number with the

upper bound given by the maximum distance specified.

https://media.nature.com/original/nature-assets/nmeth/journal/v11/n3/extref/nmeth.2808-S1.pdf
https://media.nature.com/original/nature-assets/nmeth/journal/v11/n3/extref/nmeth.2808-S1.pdf

37

Object Tracking (ObjTrk)

The metrics are taken from the Cell Tracking Challenge (http://celltrackingchallenge.net/)

and are described in detail in https://doi.org/10.1038/nmeth.4473. The segmentation

accuracy measure (SEG) evaluates the average amount of overlap, being expressed by

the Jaccard similarity index, between the reference segmentation ground truth and the

segmentation masks computed by an evaluated algorithm. The tracking accuracy

measure (TRA) is a normalized weighted distance between the tracking solution

submitted by the participant and the reference tracking ground truth, with weights

chosen to reflect the effort it takes a human curator to carry out the edits manually (see

https://doi.org/10.1371/journal.pone.0144959 for details).

Both SEG and TRA take values in the interval [0, 1], with higher values corresponding to

better performance.

References

1. http://www.visceral.eu/resources/evaluatesegmentation-software/

http://celltrackingchallenge.net/
https://doi.org/10.1038/nmeth.4473
https://doi.org/10.1371/journal.pone.0144959
http://www.visceral.eu/resources/evaluatesegmentation-software/

