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Abstract
We present a new image analysis approach that provides fully-automatic extraction of complex root system architectures
from a range of plant species in varied imaging setups. Driven by modern deep-learning approaches, RootNav 2.0 replaces
previously manual and semi-automatic feature extraction with an extremely deep multi-task Convolutional Neural
Network architecture. The network has been designed to explicitly combine local pixel information with global scene
information in order to accurately segment small root features across high-resolution images. In addition, the network
simultaneously locates seeds, and �rst and second order root tips to drive a search algorithm seeking optimal paths
throughout the image, extracting accurate architectures without user interaction. The proposed method is evaluated on
images of wheat (Triticum aestivum L.) from a seedling assay. The results are compared with semi-automatic analysis via
the original RootNav tool, demonstrating comparable accuracy, with a 10-fold increase in speed. We then demonstrate the
ability of the network to adapt to di�erent plant species via transfer learning, o�ering similar accuracy when transferred to
an Arabidopsis thaliana plate assay. We transfer for a �nal time to images of Brassica napus from a hydroponic assay, and
still demonstrate good accuracy despite many fewer training images. The tool outputs root architectures in the widely
accepted RSML standard, for which numerous analysis packages exist (http://rootsystemml.github.io/), as well as
segmentation masks compatible with other automated measurement tools.
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Background

Plant phenotyping plays a key role in plant science research,
underpinning large-scale genetic discovery, and the breeding
of more resilient traits [1]. This innovation makes a funda-
mental contribution to the push for global food security. In
recent years quantitative analysis of root growth has become
increasingly important as a way to explore the in�uence of abi-
otic stresses such as high temperate and drought on a plant’s
ability to take up water and nutrients [2] . Segmentation and
feature extraction of plant roots from images presents a sig-
ni�cant computer vision challenge. Root images contain com-
plicated structures, variations in size, background, occlusion,

clutter and variation in lighting conditions. Fig. 1 shows an
exemplar root image captured on germination paper. Even a
straightforward imaging assay presents numerous challenges
to a classic computer vision pipeline.
In recent years machine learning has driven advances

throughout many computer vision domains [3]. Indeed, much
of the recent progress in plant phenotyping has also been
driven by new and so-called deep learning techniques, a branch
of AI, often centring around Convolutional Neural Networks
(CNNs) [4, 5, 6]. The sharp increase in the availability of per-
formant techniques in image analysis has coincided with an in-
crease in the availability of genomic information in plant biol-
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Key Points

• A fully automatic tool for the analysis of images of root systems. Processing of one image takes between 5 and 15 seconds
with no user interaction.

• Driven by a deep network in an encoder-decoder con�guration, the tool outputs a complete segmentation of the root
system, the location of key points, as well as an RSML description of the root architecture.

• The system can be adapted to other species and images via transfer learning, and is capable of analysing multiple plants
per image.
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Figure 1. An example of the challenge root phenotyping presents for Computer
Vision. a) A sample input image of a Brassica napus seedling grown on germina-
tion paper. This plant phenotype exhibits a single primary root and numerous
lateral roots. b) Cluttered scenes make segmentation challenging. c) Complex
occlusion and intersection makes extracting root topology di�cult. d) Many
small image features, such as root tips, occur in close proximity, making iden-
ti�cation di�cult.

ogy, providing an opportunity for robust and high-throughput
solutions. The scale of the data challenge seen within plant
science means that now, all but the truly fully automatic ap-
proaches will quickly become bottlenecks that hinder progress
[7].
Analysis of Root System Architectures
In this paper, we focus on the analysis of root systems where
improvements promise increases to water and nutrient use
e�ciency [8]. Historically, automated root phenotyping has
proven challenging, due partly to the concealed nature of roots
in the soil, but also to the architectural complexity and vari-
ability of root systems between species, and even individuals.
Progress has been made through a combination of innovative
approaches and tools [9, 10], and new imaging technologies
such as X-ray and MRI (Magnetic Resonance Imaging) [11, 12].
The prevailing methodologies in root image analysis may be

broadly categorised based on the level of automation they pro-
vide. Fully automated tools attempt to quantify the traits of a
root system without human guidance, often through a process
of image segmentation followed by post-processing. These are
what might be termed ‘bottom-up’ approaches, which perform
successive �ltering over images in order to best distinguish be-
tween the foreground root material, and the background. Tools
such as DIRT, GiaRoots, IJ-Rhizo, and EZ-Rhizo [13, 14, 15, 16],
o�er a familiar pipeline in which an image is �rst segmented
into two classes, root system and background, before noise re-
moval (such as image �lters and morphology [17]) and skele-
tonization techniques [18] are used to clean the image. These

tools then quantify the distribution of root mass within an im-
age, providing summary statistics such as root system width,
height and more complex measures such as density. Some
tools, for example EZ-Rhizo, will measure root width at each
location, providing more detailed analysis of the distribution
of roots of di�erent sizes.
A limitation of automated systems such as these is that er-

rors propagate from early processing stages through to mea-
surement. Noisy images or unexpected phenotypes will lead to
errors in thresholding, which are challenging to remove and
may lead to incorrect measurement of the root system. For
this reason, most automated tools have placed heavy focus on
cruder organ-scale measurements such as the total width of
the root system, as these are most robust to small errors in
image segmentation. Due to the challenge of reliably segment-
ing and analysing root systems automatically, many tools place
strict requirements on the type of image they will analyse. Rhi-
zoScan [19], for example, o�ers an automatic pipeline similar
to the above, based on the OpenAlea platform [20], but supports
only root systems grown on Petri plates.
Beyond the problem of low-level image analysis, by fram-

ing the problem as one of identifying root pixels at a low level,
these tools struggle to extract high-level root architectural in-
formation. More detailed phenotypic traits such as the number
of lateral roots are out of reach of many existing tools simply
because disambiguating the category of a root within a sys-
tem may prove impossible in the presence of noise, especially
once growth is at a mature stage where roots begin to overlap.
Semantically untangling such a root system requires a higher-
level understanding of the image than pixel-based processing
methods provide.
Manual root analysis tools such as ImageJ’s polyline func-

tion [21] and DART [22] o�er an entirely di�erent approach.
They place reliance on an expert human annotator to success-
fully identify the structure of the root system by asking the
expert to label each root by hand. The advantage here is that if
su�ciently well trained, an annotator could conceivably recon-
struct an entire root system, using their advanced knowledge
to clear up disambiguation in cluttered areas of the image. The
obvious drawback to this approach is that this is an extremely
time-consuming process. In practice, many experiments will
therefore have to severely limit the number of measurements
captured per image, such as by focusing on primary root length,
to bring the time required into a reasonable range. Some tools,
for instance RootScape [23], have been designed with this in
mind, requiring that a user highlights only 20 key landmarks
on a root system. These landmarks are then used to explore
phenotypic di�erences between genotypes via principal com-
ponent analysis. In those instances where detailed analysis is
required, the burden on annotators is huge, and the cost of mis-
takes may be high. Outside of plant science, obtaining cheap
and e�cient annotation has become a widely researched topic
in and of itself [24, 25]. In plant science, noisy and low-cost
annotation may not be acceptable, depending on the experi-
mental requirements, and ultimately o�ers few bene�ts over
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Figure 2. A simpli�ed example illustrating the major components of a CNN in an encoder-decoder con�guration. The encoder performs a combination of �ltering
operations including convolutional �lters, spatial downsampling, and normalisation. These layers convert the original image into a high-dimensional feature
space, but with very low spatial resolution. The decoding network performs similar layer operations, but replaces downsampling with upsampling to return the
feature representation back into a spatially high-resolution image.

the automated tools described above.
Alongside the development of manual and automated tools,

a selection of widely-used semi-automatic tools have been re-
leased. These approaches aim to bridge the gap between speed
and accuracy, o�ering a compromise acceptable for many use-
cases. Tools such as RootReader [26] perform a similar auto-
matic function to the tools above, but provide the user with the
ability to manipulate some of the output to correct mistakes.
Most of the tools in this category are not bottom up, and in-
stead model the root system in some way, guided by the user,
in order to better understand the image on which they are run.
Smartroot [10], a plugin for the popular ImageJ tool [21], oper-
ates by tracing along each root in a guided way, at each step
searching for the optimal direction in which to travel based on
the current orientation of the root at that point. Smartroot is
semi-automatic, with initiation of roots and correction of er-
rors often requiring human intervention. Nevertheless, with
some user e�ort Smartroot can potentially be used to recon-
struct full root system architectures. RootNav [9], a precursor
to the work presented here, o�ers a point-to-point path search
between labelled seed locations and root tips. Images are �rst
segmented into background/foreground classes, before a user
is required to label root tip and seed locations. Shortest path
search is used to trace between key organ landmarks, result-
ing in a complete reconstruction of the root system. However,
RootNav does not include a reliable method for detecting seeds
and root tips (the user must perform this step), nor is the seg-
mentation step robust to image noise. This means that sig-
ni�cant user interaction is still required to guide the software,
but as with Smartroot, the output is a full and architecturally
correct root system architecture. Many tools that are able to
output root system architectures have been adapted to provide
output in the popular RSML (Root System Markup Language)
format [10]. RSML is an XML-based standard for the sharing of
root system architectures, including information on geometry,
and relative position within the system. Numerous tools ex-
ist to read and write RSML �les, allowing customised pipelines
between tools, and the ability to decouple the image analysis
from the ultimate measurement of traits, as well as view the
�nal architecture labelling.
Deep Learning for Root Systems
The prevailingmethodology whenworkingwith images in deep
learning is the Convolutional Neural Network (CNN). CNNs im-
prove upon traditional machine learning via their ability to
learn not only solutions to problems, but also the most e�ec-
tive way in which to transform data to make this goal easier.
This representation learning provides CNNs with unparalleled
discriminative power, and has seen them quickly move into a
dominant position within the �eld of computer vision [3]. A
CNN is a layered structure that performs successive image �l-
tering operations that transform an image from a traditional
RGB input, into a new feature representation. This transfor-
mation is learned during training, and provides the �nal lay-
ers of the CNN with the best possible view of that data from

which to base decisions. The deeper into a CNN data �ows,
the more abstracted and powerful the representation becomes.
While the initial layers may compute simple primitives such as
edges and corners, deeper into the network feature maps may
highlight groups of primitives. Deeper still, feature maps may
contain complex arrangements of features representing real-
world objects [5]. These features are learnt by the CNN training
algorithms, and are not hand-coded, meaning that with su�-
cient training data any number of di�erent problems can be
addressed. Within the Biosciences, such networks have been
used to perform a variety of tasks ranging from classi�cation,
assigning discrete labels to images and objects [27] through
to regression problems; that is, of directly predicting values
[28]. For root systems, [5] used a deep classi�cation network
to scan an image for probable root tip locations in 32x32 pixel
tiles. Despite promising results, the drawback of this approach
is that using a small �eld of view, customarily called a receptive
�eld within the machine learning literature, is computationally
less e�cient, and may cause produce additional false positives
where the small �eld of view is not su�cient to distinguish
true roots from image noise. This system also only currently
detects root tips, which means more complex traits involving
other organs cannot be computed.

Image Segmentation and Feature Localisation

The measurement of complex phenotypic traits requires anal-
ysis at a �ner scale than that of whole-root-system traits, but
sensitive to more than only a small selection of plant features
such as just root tips. To address this, the research community
has begun to move towards networks that output a richer array
of information. Recent work has been based around newer CNN
designs in what we term an encoder-decoder con�guration,
aimed at segmentation of images, or the location of key feature
points. Traditional CNNs perform spatial downsampling such
that by the end of the network, features spatially correspond to
the entire image, i.e. they have lost location resolution. This is
ideal for classi�cation tasks, where a decision must be made on
an image scale. This is not appropriate, however, for situations
where a 2D segmentation result is required. Encoder-decoders
therefore upsample again from the feature space, back into a
spatially high-resolution image (Figure 2). This process can be
thought of as combining a CNN with a second, reversed CNN
that learns to produce images once again, these images might
be trained to predict the locations of objects, or to segment pix-
els into background and foreground classes. Encoder-decoders
are being used in plant science to, among other tasks, segment
plant shoots [29, 30], other plant organs [31], and �ll gaps in
rhizotron images of root systems [32]. The work in [5] �rst in-
troduced the concept of heatmap regression to the plant pheno-
typing domain, in which a segmentation output is replaced by
a heatmap showing likely target locations. Our development in
this paper combines both of these approaches, simultaneously
segmenting a root system, and predicting the likely locations
of root tips and seeds.
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Figure 3. An overview of RootNav 2.0. The input enters a CNN that performs both segmentation of the root structure, and localisation of key points. These are
post-processed to extract information for a path �nding algorithm. A* search then extracts likely paths taken by each root, generating an entire architecture for
an arbitrary number of plants in an image. All roots are resampled as smooth splines, before all topology and geometry is output into an RSML �le. Segmentation
masks for �rst and second order roots are also saved.

Automated Root Phenotyping

We present here a new tool for the automatic analysis of root
systems which is designed to work across a wide variety of
plants and imaging conditions. Our pipeline is driven by a deep
encoder-decoder network, similar to that presented in [5] but
adapted to handle higher-resolution images. The network is
trained to simultaneously segment root material, classify root
type, and locate key features from which root geometry can be
derived. To our knowledge this is the �rst use of deep learning
to perform multi-task segmentation and localisation in plant
phenotyping. The output of the network is re�ned using an A*
shortest path algorithm to determine the most likely path of
each root, connecting located second order roots to appropriate
�rst order roots, and �rst order roots back to the seed location.
Full root geometry is extracted per plant, and is robust to mul-
tiple plants and highly varied architectures. The tool outputs
the standard RSML format [33], widely supported by the com-
munity, from which RSA traits may be derived. The tool also
outputs the underlying segmentation masks for �rst and sec-
ond order roots, from which global traits may be derived. An
overview of the tool can be seen in Figure 3. The system �rst
performs pixel-wise segmentation of the image, and heatmap
regression to locate key features, it next extracts the root topol-
ogy via a series of guided shortest path searches, before �nally
extracting the entire root architecture into a portable RSML for-
mat.
We �rst demonstrate the performance of the tool on a large

wheat dataset grown on germination paper. We perform a
quantitative comparison with traits measured using the orig-
inal semi-automatic RootNav tool [9], hereby referred to as
RootNav 1.0, in which an expert performed detailed manual in-
tervention to ensure accuracy. We next demonstrate the abil-
ity of RootNav 2.0 to adapt to new image types with a much
smaller training set. We retrained the network on 200 images
of Arabidopsis grown on agar plates, in which up to �ve plants
appear per image. We again compare quantitatively against
human labelled images generated using RootNav 1.0. Finally,
we transfer learn once more using an even smaller, rapeseed
dataset, comprising only 91 training images. Beyond accu-
racy measures, we have assessed our system’s performance in
terms of inference time and resource e�ciency, to provide a
comparative analysis of user burden for root architecture anal-
ysis. The trained networks, tool and all training datasets will
all be made publicly available.

Data Description

Primary Dataset

Our primary dataset is composed of images of Wheat (Triticum
aestivum L.) seedlings totalling 3,630 images of 1900x2000
pixel resolution. Images include those released in [5], plus
additional images captured using the same methodology. Im-
ages were captured as per [34]; seeds were sieved to uni-
form size, sterilized, and pre-germinated before transfer to
growth pouches in a controlled environment chamber (12-hour
photoperiod: 20°C day, 15°C night, with a light intensity of
400 µmol m–2 s–1 PAR). After 9 days (with plants at the two-
leaf stage), individual pouches were transferred to a copy stand
for imaging using a Nikon D5100 DSLR camera controlled us-
ing NKRemote software (Breeze Systems Ltd, Camberley, UK).
Ground truth annotations for all plants were obtained using
the original RootNav 1.0 software [9], and stored in RSML for-
mat [33]. Each annotation was provided by an expert user, and
as we intended to use RootNav 1.0 as a quantitative baseline for
accuracy emphasis was placed on accuracy over speed during
this process.
Ground truth images for network training and validation

were generated from these RSML �les by rendering appropri-
ate segmentation masks and heatmaps. The dataset was split
into training and validation sets totalling 2,864 and 716 im-
ages respectively. An additional 50 images were held back as
a �nal testing set. More details on this methodology may be
found in the Methods section. Example images can be found in
Figure 4a.

Transfer Learning Datasets

Our second dataset is composed of images of Arabidopsis (A.
thaliana) grown on agar plates as detailed in [35]. Images of
individual plates were acquired using near-infra red imaging
utilising the system described in [36]. In this system, multi-
ple seeds are sown on each plate and thus, unlike the primary
dataset, each image typically contained up to �ve plants (Fig-
ure 4b). This dataset is considerably smaller, totalling 277 im-
ages, and is used as a demonstration of transfer learning with
our approach despite limited annotated data. The dataset was
split into training and validation sets of 200 and 27 images
respectively, and as with the primary dataset, 50 holdout test
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images were used for �nal quantitative evaluation.
Our �nal dataset is composed of images of rapeseed (Brassica

napus) seedlings, grown in the same system as used in the pri-
mary dataset above. This dataset is small, containing only 120
images of individual plants. Our hypothesis is that despite the
reduced size, transfer learning from a network trained on both
the wheat (similar image background) and Arabidopsis (similar
root system organisation) datasets will lead to su�cient accu-
racy. The dataset was split into training and validation sets of
91 and 14 images respectively. We used 15 holdout test images
for the �nal quantitative evaluation. Example images for the
two transfer learning datasets can be found in Figure 4b,c.

Figure 4. Example images from each of the three datasets used during this
work. (a) Wheat (Triticum aestivum L.). (b) Arabidopsis (Arabidopsis thaliana).
(c) Rapeseed (Brassica napus). Scale bars are 50mm long.

Analyses

This section will present a comprehensive performance anal-
ysis of RootNav 2.0, including a quantitative evaluation of
both the underlying segmentation approach, and the root ar-
chitecture extraction. We evaluate segmentation accuracy via
three common metrics, average pixel classi�cation accuracy
(both global and class averages) and mean Intersection over
Union (mIoU). We compare segmentation performance of our
approach against the well-known benchmark architectures
VGG [37], FCN [38], SegNet [39], UNet [40], and DeepLab [41].
We then evaluate the automatic reconstruction of root systems
using a comparison of common root phenotypic traits such as
the dimensions of the root system, and root counts. For ground
truth, we use semi-automatic measurements obtained through
expert annotation using RootNav 1.0. Finally, we perform the
same experiments to outline the accuracy on the two additional
datasets, that contain fewer training images, to demonstrate
the e�cacy of transfer learning to new species and imaging
modalities.

Root Image Segmentation

RootNav 2.0 is driven by a deep network that segments images
of root systems into classes: background, �rst order roots, and
second order roots. Crucial to the accuracy of any subsequent
path �nding approach is a reliable segmentation. Segment-
ing whole-root images is important in order to provide su�-
cient context when distinguishing �rst or second order roots.
Splitting images into e�cient tiles reduces memory consump-
tion, but makes distinguishing root type problematic. With
this in mind, we designed the network to be e�cient by re-
ducing the number of trainable parameters, intermediate fea-
ture sizes, and thus overall memory requirements. This allows
larger 1024x1024 resolution input. Table 1 shows a comparison
of the memory requirements and parameter sizes of commonly
used segmentation networks, and our own architecture.

CNN Model Trainable Parameters GPU Memory Req.
Input (3x256x256) (byte)

VGG-16 [37] 138,357,544 1,253,048,320
FCN [38] 134,815,994 1,766,850,560
SegNet [39] 29,572,256 1,603,272,704
UNet [40] 13,395,329 1,276,116,992
Stacked

Hourglass [42]
6,720,132 6,309,281,792

LinkNet [43] 11,546,148 533,725,184
PSPNet [44] 65,589,332 1,934,622,720
DeepLab-V3

[41]
59,344,309 596,639,744

RootNav 2.0 1,595,782 892,338,176
Table 1. Quantitative Comparison: A quantitative analysis of train-able parameters and memory requirements of di�erent benchmarkarchitectures used during experiments. The input size was set at aconstant 3x256x256px size for this comparison.

We trained each network on the wheat dataset as described
in the Methods. To provide a fair comparison of each network,
we allocated 2x Nvidia GPUs with >11Gb onboard memory each
for training each network, then trained using consistent hy-
perparameters such as learning rates, and equal batch sizes.
Image resolution was maximised for each network depending
on their resource requirements. Accuracy was measured using
three standard metrics: Global average accuracy, class average
accuracy, and mean Intersection over Union (mIoU). Global av-
erage accuracymeasures the performance of segmentation over
all pixels in the validation set. High values indicate the major-
ity of pixels have been classi�ed correctly. As most pixels are
background in root images, high values indicate few false pos-
itives, but don’t necessarily demonstrate good root segmen-
tation. Class average accuracy measures the performance of
each class separately, before computing a �nal average. High
values here represent good performance across all classes. Fi-
nally, mIoU represents the percentage of overlap between each
class and the ground truth. Higher values indicate predictions
closer to that of the ground truth labelling.
Example image output from each network can be found in

Figure 5 with quantitative results for all tested networks across
the validation set shown in Table 2. The larger networks con-
tain more features, which while in some cases may improve
performance of a deep network, here hinders the ability of
each network to resolve �ner detail, as they cannot operate
at 1 megapixel image resolution. The strong performance of
RootNav 2.0 in this experiment may be attributed to its e�-
cient use of features throughout the network, lower memory
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a b c ed f g

Figure 5. Example image output from each trained network architecture. a) An example hydroponic wheat image. b) VGG [37]. c) FCN [38]. d) SegNet [39]. e)
UNet [40]. f) DeepLab-V3 [41]. g) RootNav 2.0

requirements and thus larger 1 megapixel input sizes.

CNN Arch. Global avg. Class avg. mIoU

VGG [37] 37.32 38.5 31.11
FCN [38] 43.78 48.56 39.47
SegNet [39] 68.68 70.23 47.05
UNet [40] 70.47 69.65 51.88

DeepLab-V3 [41] 87.7 85.90 54.0
RootNav.2.0 99.6 95.1 66.1

Table 2. A quantitative comparison of the segmentation perfor-mance on root images of RootNav 2.0 against other commonly usedCNN architectures. Performance is measured using global averageaccuracy, class average accuracy and mean intersection over union.The classes evaluated are background (no root), �rst order, and sec-ond order roots.

Extraction of Root System Architecture

After segmentation and feature localization, segmentation
masks are converted into a weighted graph structure amenable
to traversal with a shortest path algorithm. RootNav 2.0 ex-
tracts a full root architecture by performing a series of heuris-
tic searches across the image. First, shortest paths are found
between all �rst order root tips and the most appropriate seed
location (de�ned as the seed �rst reached during a heuristic
search). This generates a series of �rst order roots, to which
second order root paths are found from all second order root
tips. The output of this process is a complete root architec-
ture description, stored in RSML format, from which pheno-
typic traits may be derived. We compare the output of RootNav
2.0 against ground truth measurements captured using Root-
Nav 1.0 in collaboration with an expert user. Quantitative traits
were measured directly using the RSML output by both tools;
results may be found in Figure 6.
We chose a range of root traits that are both representative

of the measurements commonly used in the root phenotyping
literature, but also ones that exercise various aspects of our
particular approach. For example, we include traits that mea-
sure the accuracy of feature detection (e.g. total root count)
and those that also measure the accuracy of the shortest path
approach (e.g. total root length). In Figure 6 it can be seen
that there is strong agreement between the results of RootNav
2.0 and the ground truth measurements. Measurements based
on the extremities of the root system (maximum depth, maxi-
mum width, and convex hull area), produced values very close
to those in the ground truth, with r2 values above 0.99. Traits
that summarise the entire root system, such as centroid depth,
provided r2 values in the range 0.64-0.72.
The prediction of �rst and second order root counts achieved

r2 values of 0.641 and 0.724 respectively. For �rst order roots,
we observed that the majority of incorrect predictions were
either one count higher, or one count lower than the ground
truth, and that these confusions often occurred near the seed

position, where a seminal root may visually appear similar to
a second order root that emerges near the seed, or vice versa.
Other failures were produced by roots leaving the �eld of view
of the camera, but that had been annotated by the expert, or
where two root tips grew in very close proximity (within a few
pixels). Second order roots were typically much shorter, and of-
ten in close proximity. Some missed root tips would be caused
by non-maximal suppression, when the R-Tree data structure
is used to remove possible duplicates. We also found that the
contrast on second order roots was lower, as they were usu-
ally thinner, which might account for some missed tips in this
class. Errors in the detection of root tips will also propagate er-
rors into the total root length measurements, since these roots
will not be detected. For second order roots, we found thatmost
of the error in root length may be attributed to missed roots,
rather than errors in path �nding. For primary roots, path �nd-
ing was usually robust, except in cases where two roots grow
side-by-side. RootNav 1.0 handled these errors by allowing a
user to intervene and correct any mistakes, in RootNav 2.0 we
wish the process to remain fully automatic, and so we do not
explicitly correct for this. However, the occurence of this type
of growth is in the minority, in our experience. Centroid depth
is measured as the mean position of all roots, and so is in�u-
enced by the detection and path �nding of every root.
An understanding of where and how RootNav 2.0 may pro-

duce errors provides insight into these results. An accurate
measurement of maximum depth depends on only two vari-
ables, the location of the seed, and the location of the �rst
order root tip, that is lowest (in terms of y-position) in the
image. The graph of maximum depth in Figure 6 re�ects the
fact that these two features are successfully found in every
case. Similarly, maximum width depends only on the left- and
right-most roots, and convex hull only on the outermost roots
throughout the architecture. Amissed second order root within
a root system will not a�ect these traits, so these results are
robust even where some roots have been missed. This tells us
that for the majority of images, the locations of the seeds, low-
est tips, and outermost roots are detected successfully, and that
these traits that measure the extremities of the root system are
robust.

Transfer Learning to New Species and Images

To demonstrate the adaptability of our approach to di�erent
species and imaging modalities, we retrained the network �rst
on an Arabidopsis dataset, comprising approximately 277 im-
ages of Arabidopsis thaliana grown on agar plates. We then
trained once more from the wheat dataset to the rapeseed
dataset, comprising 120 images of Brassica napus on germina-
tion paper. In both cases we extracted RSML root descriptions,
and quanti�ed these in the same way as the wheat dataset. We
also trained both networks from randomly initialised weights,
rather than transfer learning, and found that the datasets were
too small to train e�ectively (Supplementary Figures 6 and 7).
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Figure 6. Numerical results showing a range of root system traits measured in RootNav 2.0 against ground truth measurements on the wheat test set. For each
trait we also �t a linear regression model and report the R2 value.

Arabidopsis thaliana
The Arabidopsis dataset contains marked di�erences from the
wheat data. The dataset contains many fewer images, which
makes transfer learning essential to avoid over�tting. This
species has a taproot structure that contains a single primary
root, from which lateral roots emerge, rather than multiple
�rst order roots in the form of a primary and multiple seminal
roots. This dataset is also imaged on under infra-red illumina-
tion and so contains no colour information, and a very di�erent
background arrangement consisting of a plastic plate contain-
ing semi-transparent growth media instead of blue germina-
tion paper. Finally, each plate typically contains �ve plants,
rather than a single plant. We found that the network and
heuristic searches adapted well to this new domain. Quanti-
tative results are shown in Figure 7, with full results found in
Supplementary Figure 1, and example image output in Supple-
mentary Figure 4.
Despite the smaller number of images available for train-

ing, the results show a good performance after transfer learn-
ing to the new data. Not every plant was successfully detected;
a missing or additional primary root tip or seed location would
mean that the number of plants was under or overestimated. In
60% of images examined, the tool correctly identi�ed the same
number of plants as were marked in the ground truth. In 6% of
the images, a single plant was missed, usually due to the plant
being extremely underdeveloped, but having been annotated
by the user anyway. We found only a single instance in one
image that contained a well established plant which had not
been identi�ed by our network. Over-counting of plants was
more common, with 20% of images identifying an additional
plant, and 14% identifying more beyond this. In the majority
of cases we found that these errors were caused by unusual an-
gles in the leaves and germinated seeds at the top of the plant,
producing false positives. This is something that would likely
be corrected with additional training data; remember, we are
using a very small amount of training data for this image class,
versus the wheat images. Where duplicate plants were found,
they were often extremely close to, or even above, an existing
plant location. These duplicates could be removed easily via

post-processing; this is something we do not address in this
paper.
Of the plants that were successfully identi�ed, the traits

captured by the tool o�er a good agreement with the ground
truth. As with the wheat dataset, measures of the extremities
of the root system such as maximum depth performed with the
highest accuracy, but we also found that total 1st order root
length was very close to the ground truth in the majority of
cases. Errors here usually indicated a second primary root in-
correctly detected alongside an existing one, a feature we do
not yet remove in post-processing as with duplicate plants,
though this would be possible. The detection of second order
roots was also highly correlated with the ground truthmeasure-
ments, and the total length of all second order roots (measured
per plant) correlated with the ground truth with an r2 of 0.91.
Brassica napus
This dataset uses the imaging format of blue germination pa-
per with single plants (like the wheat dataset), but contains
the same species root structure as Arabidopsis (a single tap root
from which all other roots derive). This dataset contains the
fewest images, with only 90 images used for training. We use
this small dataset as a demonstration of the e�cacy of transfer
learning, but we also note that training over a slightly larger
dataset in practice would be worthwhile for improving robust-
ness. Results may be found in Figure 8, and in full in Supple-
mentary Figure 2.
It can be seen that the correlation between RootNav 2.0 and

ground truth ranges from r2 of 0.539 (�rst order root length) to
0.941 (convex hull area). As this is such a small dataset, the test
set contains only 15 images, meaning that there is inevitably
more noise in the results than the previous experiments. Nev-
ertheless, the results are promising, particularly given the tiny
size of this dataset compared with typical standards for deep
learning. As with both previous datasets, convex hull and other
extremity-based measures provided the most reliable results.
Accuracy of the total length and root count metrics had a lower
r2 than the other datasets, caused we believe by the smaller
training set meaning that the approach is a slightly less robust
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Figure 7. Numerical results showing a sample of root system traits measured
in RootNav 2.0 against ground truth measurements on the Arabidopsis test set.
Each image contains up to 5 plants, and results are presented per-plant. For
each trait we also �t a linear regression model and report the R2 value.
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Figure 8. Numerical results showing a sample of root system traits measured
in RootNav 2.0 against ground truth measurements on the Brassica napus test
set. For each trait we also �t a linear regression model and report the R2 value.

to noise. We found that in a few images the longest lateral tips
were incorrectly classi�ed as �rst order, causing erroneously-
high measures of �rst order root length. We believe this oc-
curred where these laterals are mistaken for wheat seminal
roots, on which the network was originally trained. This oc-
curred on the minority of test images, and is a problem we
are con�dent would be resolved with a more training data. It
would be possible to use prior domain knowledge, for example
the knowledge that rapeseed has a single tap root, in order to
clean the output during post-processing; as with the Arabidop-
sis dataset, we do not perform any post-processing of this kind
in this work.
After segmentation, the structure of these root systems

were quite amenable to traversal using a shortest path ap-
proach. In many cases the longest roots grow close together,
which causes errors where a search may travel along the same
path as another root. We found this did not substantially in-
crease the error in total root length, as many of these roots
grew in close proximity, and were of similar length. Neverthe-
less, dealing with root overlap in an e�cient and automatic
way is a topic worth exploring in future work.

Performance Analyses

We measured the time taken for both tools to complete the full
pipeline, from image to RSML output. We timed RootNav 1.0
by annotating random images from each test set from scratch;
the total time taken to annotate 10 images of wheat and Ara-
bidopsis, and 5 rapeseed images were recorded, and averages
computed. The annotation was performed by an expert user
who has many years of familiarity with the tool. For RootNav
2.0, we processed each test set and then calculated the average
inference time per image. Results may be found in table 3.
In both systems a more complex root architecture typically

leads to a longer analysis time. In RootNav 1.0 this is due to
the human input required, with RootNav 2.0 the path �nding
takes longer if there are more lateral roots, or roots are longer.

Dataset Average Processing Time (s)
RootNav 1.0 RootNav 2.0

Wheat 68.8 8.2
Arabidposis 109.8 7.5
Brassica 132.4 14.0

Table 3. A performance comparison of RootNav 1.0 against RootNav2.0. The time to process a random sample of images from each testset was measured, and an average time per image calculated.

Regardless, for each data set RootNav 2.0 o�ers a substantial
speed advantage over the original tool. It should also be noted
that the time presented here for RootNav 1.0 requires that the
user engage with the software continuously. Since RootNav
2.0 is fully automatic, the human time cost is essentially zero,
as images could be batch processed overnight. This test was
also run on a single CPU and GPU, where additional compu-
tational resource would linearly scale the speed of the system.
If performance was a serious consideration, a dedicated paral-
lel hardware setup could streamline RootNav 2.0 performance
considerably.

Discussion

In this paper we have introduced RootNav 2.0, a state-of-the-
art, fully automated root phenotyping tool. It is powered by
a deep convolutional neural network in an encoder-decoder
con�guration, designed to perform segmentation e�ciently
in high-resolution images. The network segments root from
background, and can distinguish �rst and second order roots.
This deep learned root segmentation provides a strong founda-
tion upon which users may derive common architectural traits,
such as those based on RSA skeletonisation. We have adapted
the network, however, to simultaneously predict the location of
key root architectural features: the seed location, and �rst and
second order root tips. This knowledge then drives a heuristic
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search that reconstructs the entire root system. This topology
is represented as spline curves, and output in RSML format.
A quantitative analysis of RootNav 2.0 shows it o�ers com-

parable accuracy against the original RootNav on large train-
ing sets. Over a range of standard trait measurements the
new tool produced highly correlated results against the ground
truth, with r2 values ranging from 0.64 to 1. Performance on
traits representing the bounds of the root system were among
the highest r2 values. On smaller datasets, we have demon-
strated that transfer learning produces accurate results despite
many fewer training examples. This adaptability is a key ad-
vantage for those within the research community looking to
use RootNav 2.0; those that use di�erent growth conditions,
image capture approaches, or require the analysis of di�erent
species may adapt one of our existing trained models with a
minimum of e�ort using transfer learning.
RootNav 2.0 is substantially more convenient to use than

previous semi-automated tools, with no human interaction re-
quired at any point during the pipeline. The entire process
requires approximately 15 seconds processing time per image.
The output may be analysed using the RootNav viewer tool, or
any compatible RSML analysis pipeline. Training the original
network took a few days on suitable hardware, with transfer
learning to a new dataset typically taking about half a day. All
code, trained networks, and detailed documentation on use and
retraining will be made available at the links below.
We believe that RootNav 2.0 will prove to be a key mile-

stone in root phenotyping, further encouraging the uptake of
machine learning in addressing these important challenges. In
future work, we will continue to adapt this approach to new
and varied datasets, maximising the potential for use in the re-
search community. We will also explore the use of more robust
heuristic searches, combined with appropriate segmentation
output from the network, to address the challenge of crossing
and intersecting root systems. We will also develop approaches
to ease the sharing of network models, and indeed the retrain-
ing process required to adapt them to speci�c scenarios.

Potential implications

We believe that RootNav 2.0 o�ers a substantial increase in
accuracy over bottom-up approaches to root image analysis.
It also o�ers an increase in throughput over existing semi-
automatic tools. Importantly, results with the Arabidopisis
dataset suggest the approach will be applicable to images ob-
tained with other phenotyping systems such as rhizotrons.
With continued community support, RootNav 2.0 has the po-
tential to be the �rst true species - and platform - agnos-
tic analysis tool in the plant sciences. This will provide re-
searchers with the ability to analyse root systems at larger
scales than ever before, at a time when large scale genomic
studies have made this more important than ever.

Availability of source code and requirements

Project name: RootNav 2.0
Project home page:
https://github.com/robail-yasrab/RootNav-2.0
Operating system(s): Platform independent
Programming language: Python, C#
Other requirements: Python 2.7, PyTorch 1.0.1,
License: GNU GPL
Any restrictions to use by non-academics: None

Availability of data and materials

Datasets will be made available at
https://plantimages.nottingham.ac.uk upon publication.

Methods

Training, validation and test image preparation

For each image we obtained ground truth annotations using
the original RootNav 1.0 software. This software is semi-
automatic, and allows users to manually intervene to correct
errors in either segmentation or RSA extraction. We are using
this data as a ground truth, rather than to evaluate the accuracy
of RootNav 1.0, and as such annotators were instructed to spend
su�cient time on each image to correct all mistakes they could
identify. This semi-automatic process often requires a large
amount of human interaction, and is time consuming, but the
approach has provided very reliable ground truth annotations.
All ground truth was stored in RSML format.
RSML data for each image was converted into a series of

segmentation masks and feature heatmaps for use in training.
Segmentation masks were created separately for both �rst and
second order roots by rendering them as polylines over a blank
image. RootNav 1.0 does not measure diameter information
for root systems, but the seedlines are su�ciently young that
root diameter is quite consistent across species and images. We
rendered each root with a width of 8 pixels. For heatmap out-
put, the seed location, �rst and second order root tip locations
were rendered as in [5], as separate images of blurred Gaus-
sian points of standard deviation 1.0 pixels. The result of these
processes is that for each input image there are �ve associated
output images, two segmentation masks for �rst and second
order roots, and three heatmaps for seed position, �rst and
second order root tips Fig. 9.
At this point, we have constructed three suitable training

sets of images based on manual annotations. The next task is
to construct a suitable encoder-decoder architecture capable of
segmenting these images and locating root features.

CNN Design

Input and Output Resolution
We used the PyTorch [45] framework to develop the network,
training and validation code that drives our segmentation ap-
proach. The network is based around an encoder-decoder ar-
chitecture (Fig. 2), but has been adapted to handle the higher-
resolution images seen in the datasets. Encoder-decoder CNNs
are memory intensive, particularly at points towards the start
and end of the network where the spatial resolution is high.
Each layer calculates many features, which each exist as an
image stored in memory. Over many layers, the computational
cost becomes prohibitive. Previous work, such as [5] used small
input and output sizes of 256x256 pixels. Other commonly
used networks such as VGG-FCN [38] and U-Net [40] use sim-
ilar input sizes. Root images pose a challenge in this situation
as roots may be only a few pixels in diameter, but exist as part
of a large, connected architecture covering many megapixels.
Shrinking the image into a convenient size will make process-
ing simpler, but also badly degrade the quality of these small
features. In scenarios such as this, where shrinking the input
this far may represent a signi�cant loss in quality, it is com-
mon to tile the input into small cropped sections, and run the
network repeatedly. This is the approach taken by [5], in which
wheat images are tiled, processed, and then reconstructed. The
drawback of tiling images is that each tile is then considered
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Figure 9. Sample training image and ground truth, zoomed sections and colour added for clarity. a) An example wheat image. b) Segmentation mask for �rst
order roots. c) Segmentation mask for second order roots. d-f) Heatmaps for seed, �rst, and second order tip locations.

in isolation, removing vital context on its position in the wider
image. In the root datasets, for example, �rst and second order
roots often appear identical when not viewed as part of a larger
architecture.
In this work, we limit the size of input images to 1024x1024

pixels. For the wheat and rapeseed datasets, this requires
downsampling of the input and output images, but only by a
moderate amount, in which �ne root detail is preserved. For
the Arabidopsis plate images, no downsampling is required as
they are already of a suitable size. Upon completion of the deep
learning, images are returned to native resolution to ensure
that the output measurement scale is preserved.

Layer Architecture Dimension Feature Maps

Input (RGB) 1024x1024 3
Conv (7x7) 512x512 64
Residual Block 512x512 128
Max Pooling 256x256 128
Residual Block 256x256 128
Max Pooling 128x128 128
Residual Block 128x128 256
Hourglass (Block=1) 128x128 256
Transposed Convolution 256x256 256
ResNet Block 4 256x256 256
Transposed Convolution 512x512 256
ResNet Block 5 512x512 128
Conv (1x1) 512x512 128

Network split
Conv (1x1) Conv (1x1) 512x512 64
Softmax Conv (1x1) 512x512 6

Table 4. The proposed CNN’s Layers. Batch normalisation layersand ReLU activation functions are used between layers and withinresidual blocks. The hourglass used is equivalent to a single stackof the type used in [5].

Network Architecture
Our complete network operates on input images of 1024x1024,
and outputs segmentation masks and regression maps of
512x512. A diagrammatic overview of the network may be
found in Figure. 10, with a description of the layers in Table. 4.
The core of the network is an hourglass architecture similar
to those used in [42, 5], but here we use a restricted number
of features throughout, and do not use stacked structure (re-
peated encoder-decoders after one another). These alterations
to the network allow it to successfully process the 1 megapixel
input size without reaching the limit of available memory. We
also perform additional downsampling and upsampling at ei-
ther end of the network. Initial strided convolutional layers
with large �lter sizes of 7x7 are used to extract features and
downsample the image size, before interleaved residual blocks
and max pooling operations are used to further reduce the spa-
tial size of the input to 128x128 pixels. The hourglass architec-
ture performs the primary encoder-decoder role, with down-
sampling performed using max pooling, and upsampling per-
formed using bilinear interpolation. The output of the hour-
glass is a set of 128x128 pixel feature maps, after which learned
deconvolutional �lters and residual blocks are used to return to
a 512x512 pixel spatial resolution. Finally, two paths are used to
separately predict segmentation masks and feature heatmaps.
Each branch comprises 1x1 convolutional layers for prediction,
with the segmentation output also passed through a sigmoid
output, as required by the binary cross entropy loss function.

Loss Functions

The output of our network is divided into two paths with di�er-
ent objectives. The �rst outputs segmentation masks contain-
ing locations for �rst and second order roots. Each of these
is a 2D binary output, and is trained using a cross entropy
loss. It is common in root images that the number of back-
ground pixels heavily outweigh the foreground. Calculating a
loss over an unbalanced dataset such as this is likely to cause
a bias towards background pixels, causing error and underseg-
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Figure 10. The network used is an extended encoder-decoder architecture. The input is �ltered and downsampled into an e�cient size, before an hourglass
network [42] performs the remaining encoding and some decoding. Finally, a series of learned deconvolutional layers upsample back to 50% of the original
input size. The network is split into two fully-convolutional branches at the output, which are responsible for learning the segmentation and heatmap regression
outputs separately.

mentation of the foreground. We apply a class balancing ap-
proach to the standard cross entropy loss, based on median
frequency balancing [46]. Weights are assigned to each class
inversely proportional to the median frequency in which that
class appears throughout the entire training set. This reduces
the weight for classes that appear more often, in this case back-
ground, and increases the weight of foreground classes such as
�rst order roots. The accuracy of classes with higher weights
are prioritised during training. The proposed loss L1 is givenin Eq. 1.

L1 = αc
N

N∑
n=1

W∑
x=1

H∑
y=1
[
gnxy log (ĝnxy) + (1 – gnxy) log (1 – ĝnxy)], (1)

where for N features, ĝnxy is the predicted class output at loca-tion (x, y), and gnxy is the ground truth prediction at that loca-tion. Theweight of each class is scaled by it’s frequency relative
to the median frequency of all classes by αc, given by:

αc = median_freqfreq(c) , (2)

where freq(c) is the frequency of occurrences of pixels of class
c divided by the number of pixels in any image containing that
class, and median_freq is the median of these frequencies over
all classes.

The second path is responsible for predicting key feature
locations on the root system. Speci�cally, the seed location,
�rst order root tips, and second order root tips. The output
is three 2D outputs, trained using a mean squared error loss,
predicting likely locations for root features, represented by 2D
Gaussians centred at each feature location. The proposed loss
L2 is depicted in Eq. 3.

L2 = αc
N

N∑
n=1

W∑
x=1

H∑
y=1
∥∥∥pnxy – p̂nxy∥∥∥2, (3)

where for each of N features, p̂nxy is the predicted feature likeli-hood at pixel (x, y), and pnxy is the expected ground truth at thesame location.

The �nal loss L = L1 + L2 trains the network end-to-end,balancing the objectives of both paths. We found that addi-
tional scaling factors applied to the loss of either path was not
necessary for accurate training.

Training

Beginning with the wheat dataset, the network was trained
end-to-end from scratch using the rmsprop opimizer. The
initial learning rate was set to 1e–4 and reduced by a factor
of 10 after 50,000 iterations. The network was trained using
a batch size of 6 for 500k iterations, although we found per-
formance plateaued after approximately 400-450k iterations.
During training, we selected the best performing model from
the validation set.
We applied random augmentation to the training set in or-

der to reduce potential over�tting. We added random horizon-
tal �ipping with a 50% probability during training, as well as
random rotation of in the range [-30°,30°]. We experimented
with random cropping as in [5] but found that cropping of-
ten caused the removal of parts of the root system, sacri�cing
context crucial, for example, in distinguishing �rst and second
order roots. For this reason we did not use random cropping
during these experiments.
Transfer Learning
Transfer learning is the process of training on new data by be-
ginning with an existing trained network’s parameters, rather
than randomly initialised weights. We began by training the
wheat network to completion. This is a large dataset, with
more than su�cient images to train a network reliably from
scratch. As noted in the above section, successful training sim-
ply means acceptable performance on the validation images.
We began with the existing wheat network and retrained on the
Arabidopsis thaliana dataset. This is a smaller dataset, but the
use of pre-trained weights allows a network to make use of any
useful image �lters learned during the initial training. We ex-
perimented with training from scratch on the smaller dataset,
but found that we were unable to train a network that per-
formed reliably on the validation set (Supplementary Figures 6
and 7). The same process of training and validation was used
to complete training on the new dataset, except that we limited
training duration to 120k iterations.
Finally, we repeated transfer learning from the wheat

dataset to the Brassica napus data, which has the fewest im-
ages of the datasets we use. We explored training from scratch,
as well as using pre-trained weights from either the wheat
or arabidopsis datasets, and found the wheat network o�ered
the most reliable starting point, a fact we attribute to the sim-
ilar background and foreground colours, and scales for both
datasets. As above, we trained for 120k iterations and selected
the model with highest validation performance.
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Post Processing

Dense CRF
Each segmentation mask was passed to a Dense Conditional
Random Field (CRF) to improve smoothness and maximise
agreement between similar neighbouring pixels. We found this
approach has a subtle but helpful e�ect on the separation be-
tween roots growing in close proximity, and the smoothness
of the boundaries of segmented roots. We used the dense CRF
proposed in [47], in which each pair of random variables (pix-
els) are connected by an edge [48], weighted using a Gaussian
pairwise potential. The e�ect was a smoothing of con�icting
regions of pixels where the image was cluttered; but where seg-
mentation was already successful, the approach had no notable
negative impact on the results.
Feature Localisation and Non-maximal Suppression
The heatmap regression output contains the probable locations
of the seed, as well as �rst and second-order root tips. These
are represented as 2D Gaussian distributions, the centre of
which lies on likely feature locations. We obtain a discrete lo-
cation for each feature via a non-maximal suppression (NMS)
approach [49], which suppresses all predicted pixels except
those that are greater than their surrounding neighbours. For
a Gaussian-based distribution, this has the e�ect of locating
the centre of the distribution. Our implementation of NMS
uses pixel-wise search, immediately discounting any pixel out-
put below a pre-de�ned threshold (in our case, 0.7), for speed.
Each pixel is then compared with its neighbor pixels in a 3x3
window, where the central pixel “c” is non-maximal, if an-
other pixel of greater or equal intensity is discovered in its
neighbourhood, the algorithm skips to the next pixel in the
scan line [50].
For the majority of root tips in isolation, NMS will success-

fully return a single location for each true root tip. This re-
lies on the heatmap regression layers of the network return-
ing well-formed Gaussian dsitributions in all instances, which
while likely, may not occur in the presence of image clutter,
confusing root hairs, or multiple tips in close proximity. To
avoid two positions being returned for a single underlying root
feature, we identify and suppress neighbouring features. We
use an R-Tree data structure to e�ciently query for neighbours
within close proximity. When NMS returns a new position on
the image, the R-Tree is searched for nearby features that have
already been added, and prevents locations from being added
twice. In our experiments, we considered a new position a du-
plicate if it falls within 8 pixels radius of an existing feature,
which is derived from the scale of the roots in our datasets.

Root Architecture Reconstruction

After successful pixel-wise segmentation of the complete root
system architecture and extraction of the tips and seed loca-
tions, we are now able to reconstruct the whole root skele-
ton. This procedure is similar to the original RootNav 1.0 tool
[9], except it is now driven by more accurate class-aware seg-
mentation, rather than error-prone root likelihood estimations.
RootNav 2.0 can place more reliance on the accuracy of the seg-
mentation, and make use of each segmentation map separately
to ensure that roots are not traversed over the wrong material,
e.g. that �rst order roots prioritise image locations of that class.
We establish an 8-way connected graph structure throughout
the image, where the weights travelling to neighbouring pixels
are calculated as a function of their class, the path we are try-
ing to �nd, and the distance between them. Each segmentation
mask is converted into a distancemap of values [0, 1] indicating
the distance from any background pixel. We then convert this

distance into a weighting that prioritises paths along root cen-
tres; the maximum weight we assign to any root pixel is 0.05,
for pixels near the root edge. The weight decreases towards
the centre of the root, to a minimum of 0.01. Since the graph
includes diagonal connections, these are weighted by an addi-
tional cost of√2 to account for the longer distance. Finally, any
pixel that does not belong to the speci�c class being traversed,
e.g. �rst order root only, is assigned a weight of 10.0, rep-
resenting a much stonger penalty for traversing these pixels.
Unlike RootNav 1.0, we use separate graphs and searches for
�rst and second order roots. A value of 10.0 was chosen simply
as a very large increase in weight when compared to the min-
imum cost for any segmented root material. Di�erent weight
values are e�ective, as long as they are large enough relative to
root material to avoid the shortest path taking shortcuts across
background pixels where this is unnecessary. In practice, these
weights are only traversed if there is a gap in the segmentation
for true root material.
A* search [51] is a path �nding algorithm that in our imple-

mentation seeks to �nd a path of minimal cost between loca-
tions on a root system. It is an extension of Dijkstra’s shortest
path algorithm [52], and along with distance travelled also con-
siders a heuristic measure of the remaining distance to the goal.
Pixels are explored based on the lowest cost �rst, in order to
minimise the function

f(p) = g(p) + h(p), (4)
where g(p) is the sum of all weights to p, and h(p) is the remain-
ing distance, which we calculate as the Manhattan distance, or
L1-norm.
In the case of RSA traversal, minimal cost paths between

key features such �rst order root tips and seeds represent re-
constructed roots. A* searches are initialised from all �rst or-
der root tips, travelling along segmented roots until they reach
any seed point. Upon reaching a seed location, the entire path
is recorded as a �rst order root. Once all �rst order roots have
been traversed, a new series of searches are begun from second
order root tip locations, ending at any encountered �rst order
root. In RootNav 2.0, we assume that the closest �rst order
root material connected to a second order root tip is the emer-
gence point of that root. The output of each search is a list of
pixel co-ordinates representing the individual roots within the
RSA.
Spline �tting
The use of a distance map that prioritises the centre lines of
roots generally acts to smooth the paths found throughout the
root system. This may not be the case where there is noise
in the segmentation output, or roots cross, and the distance
map is less reliable. We smooth each root path using a spline
curve representation. Control points are sampled at equal spac-
ing along each path, before the path is re-sampled using cubic
splines. Each spline includes a tension parameter that we set
at a constant of 0.5 for our experiments. Both the spline and
a polyline representation are output into the �nal RSML �le to
ensure maximum compatibility with other tools.
RSML and Output
The RSA reconstruction approach in RootNav 2.0 does not per-
form phenotypic measurements itself, rather it extracts a root
topology along with segmented images from which traits may
be derived. The entire root system for each plant in an image
is exported using the Root System Mark-up Language (RSML)
format [33], providing a standard and interoperable format.
RSML is an XML document speci�cally designed to store 2D
and 3D root architectures. It also stores meta-data, plant prop-
erties, and is compatible with numerous analysis tools. Some
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<rsml>

 <metadata>...</metadata>

 <scene>

   <plant id="1" label="wheat_rsa">

     <root id="0" label="primary">

       <geometry>

         <polyline>

           <point x="794.22" y="30.09"/>

           <point x="794.20" y="34.39"/>

           ...

`

a b

c d

e

Figure 11. Example output from RootNav 2.0. (a) Input image. (b) Colour-coded
segmentation mask. (C,d) Binary segmentation masks for �rst and second
order roots. (e) A sample of the RSML �le representing the entire architecture.

existing plant phenotyping tools o�er RSML import support,
meaning that they may also load root systems created automat-
ically using RootNav 2.0. Our approach also outputs �rst and
second order root segmentation images, representing an alter-
native source of quantitative data. Many tools such as Ez-Rhizo
operate on such images, but the segmentation masks gener-
ated here contain very little image noise, making them more
amenable to further automated analysis. An example output
may be seen in Figure 11. For this work we performed quanti�-
cation entirely using the RSML output. Phenotypic measure-
ments were calculated from each RSML �le using the existing
RootNav Viewer tool, which has been extended and updated for
this publication.
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