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ABSTRACT 

 
Diffusion tensor imaging (DTI) has advanced our understanding of how brain microstructure 

evolves over development. However, the proliferation of multi-shell diffusion imaging sequences 
has coincided with notable advances in the modeling of neuronal diffusion patterns, such as Neurite 
Orientation Dispersion and Density Imaging (NODDI) and Laplacian-regularized Mean Apparent 
Propagator MRI (MAPL). The relative utility of these newer diffusion models for understanding 
brain maturation remains sparsely investigated. Additionally, despite evidence that motion artifact 
is a major confound for studies of development, the relative vulnerability of these models to in-
scanner motion has not been described. Accordingly, in a sample of 123 youth (ages 12-30) we 
evaluated DTI, NODDI, and MAPL for associations with age and in-scanner head motion at multiple 
scales, including mean white matter values, voxelwise analyses, and tractography-based structural 
brain networks. Our results reveal that multi-shell diffusion imaging sequences can be leveraged to 
robustly characterize neurodevelopment, even within the framework of DTI. However, these 
metrics of diffusion are variably impacted by motion, highlighting the importance of modeling 
choices for studies of movement-prone populations. Our findings suggest that while traditional DTI 
is sensitive to neurodevelopmental trends, contemporary modeling techniques confer key 
advantages for neurodevelopmental inquiries. 

 
KEYWORDS: Diffusion-weighted imaging; Development; Multi-shell diffusion; Artifact; Confound; 
Structural connectivity; Motion 
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DWI = diffusion-weighted imaging, DTI = diffusion tensor imaging, NODDI = neurite orientation dispersion and density imaging, MAPL = 
Laplacian-regularized MAP-MRI, FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, ICVF 
= intracellular volume fraction, ISOVF = isotropic volume fraction, ODI = orientation dispersion index, RTOP = return-to-origin probability, 
RTAP = return-to-axis probability, RTPP = return-to-plane probability. 

1. INTRODUCTION 

 
 Diffusion-weighted imaging (DWI) has informed our understanding of both local tissue (Basser 
and Pierpaoli 1996; Koh and Padhani 2006; Svolos et al., 2014) and distributed network properties 
of the brain in vivo (Sporns, Tononi, and Kötter 2005; Gollo et al., 2018). DWI has proven to be 
particularly useful for studying neurodevelopment, and has provided critical evidence of the 
protracted maturation of white matter from infancy into adulthood (Lebel et al., 2008; Schmithorst 
and Yuan 2010). Recent studies have leveraged tools from network neuroscience and established 
that structural networks reconfigure in development to promote efficient communication 
(Hagmann et al., 2010; Fan et al., 2011; Grayson et al., 2014; Baum et al., 2017; Uddin et al., 2011; 
Baker et al., 2015; Bassett, Zurn, & Gold, 2018; Huang et al., 2015).   

Most DWI studies have used diffusion tensor imaging (DTI) with a single diffusion weighting to 
characterize observed diffusion patterns as indices of neuronal microstructure (Lebel & Deoni, 
2018; Lebel, Treit, & Beaulieu, 2017). While valuable, these studies may have been limited by 
certain characteristics of diffusion tensor model and single-“shell” imaging. In practice, DTI-derived 
metrics underestimate diffusion restriction in voxels within crossing fibers (Jeurissen et al., 2013; 
Jones and Cercignani 2010; Volz, Cieslak, and Grafton 2018; De Santis et al., 2014) and are 
systematically impacted by in-scanner motion, which is often prominent in children (Yendiki et al., 
2014; Ling et al., 2012; Baum et al., 2018; Roalf et al., 2016). More recently, a new generation of 
models have been developed to leverage multiple b-values (“shells"). When systematically varied 
over a DWI acquisition, the differential tissue responses elicited by different b-values can be used to 
model more detailed features of the cellular environment (Stanisz et al., 1997; Clark, Hedehus, and 
Moseley 2002; Assaf and Basser 2005). These models can be broadly separated into “tissue” and 
“signal” models (Alexander et al., 2017; Ferizi et al., 2017): tissue models attempt to classify signal 
attributable to different classes of biological tissues, while signal models do not attempt to delineate 
tissue classes.  

Although several tissue models were foundational for multi-compartment modeling of diffusion 
images (Assaf and Basser 2005; Alexander et al., 2010), Neurite Orientation Dispersion and Density 
Imaging has become the most widely used (NODDI; Zhang et al., 2012). NODDI provides estimates 
of the directional distribution of neurites (axons and dendrites), as well as compartmental volume 
fractions. These include  the proportion of volume estimated to be intracellular, extracellular and 
isotropic in each voxel based on the estimated contributions of these compartments to the diffusion 
signal. Recent work suggests that NODDI may be more attuned to biological features of brain 
development than DTI (Chang et al., 2015; Genc et al., 2017; Nazeri et al., 2015; Mah, Geeraert, and 
Lebel 2017; Eaton-Rosen et al., 2015; Deligianni et al., 2016; Ota et al., 2017). However, it remains 
unclear as to how useful NODDI-based measures are for studies of brain networks, or how they are 
impacted by in-scanner motion. 

In contrast to tissue-based models like NODDI, “signal” based methods use the Fourier 
relationship between q-space signal and the ensemble average propagator (EAP) to characterize the 
intra-voxel diffusion process. Two recently-introduced techniques which model the EAP are Mean 
Apparent Propagator MRI (MAP-MRI; Özarslan et al., 2013) and Laplacian-regularized MAP-MRI 
(MAPL; Fick et al., 2016). These models allow estimation of the likelihood of water molecules 
undergoing zero net displacement in in up to three dimensions in any voxel (Özarslan et al., 2013). 
In contrast to the accumulating number of studies which have used NODDI to study brain 
development, MAPL has not been previously used in studies of brain maturation .  Furthermore, like 
NODDI, it remains unknown how motion may impact EAP-based measures. 
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Here we sought to describe the relationship between three diffusion models and both brain 

development and in-scanner motion. We evaluated how diffusion metrics from DTI, NODDI, and 
MAPL are associated with both age and in-scanner motion in a sample of 123 youth who completed 
multi-shell diffusion imaging. Importantly, we included DTI metrics derived from solely the b=800 
shell (to more closely match a traditional DTI scan), as well as the full multi-shell scheme. Statistical 
associations were examined across multiple scales of analysis, including mean white matter values, 
voxelwise analyses, and tractography-based networks. As described below, we present new 
evidence that multi-shell diffusion acquisitions can be leveraged to provide advantages for studies 
of the developing brain.   

 
 

2. METHODS 

 

2.1 Participant characteristics 

After quality assurance exclusions (section 2.3), we studied 123 participants between the ages 
of 12 and 30 years old(M = 21.08, SD = 3.54, 70 females). Potential participants were also excluded 
for metallic implants, claustrophobia, pregnancy, acute intoxication, as well as significant medical 
and/or developmental conditions that would have impeded participation. All subjects were 
compensated for their time, and all protocols were approved by the University of Pennsylvania’s 
Institutional Review Board. 

 
2.2 Image acquisition  

All participants were imaged on a 3-Tesla Siemens MAGNETOM Prisma with a T1-weighted 
structural and diffusion-weighted scan. Our structural scan was a 3 min 28 s MPRAGE sequence 
with 0.9 x 0.9 x 1.0 mm3 resolution (TR = 1810 ms, TE = 3.45 ms, inversion time = 1100 ms, flip 
angle = 9 degrees, acceleration factor = 2). Our DWI sequence was a single-shot, multiband, multi-
shell acquisition protocol (TR = 3027 ms, TE = 82.80 ms, flip angle = 78 degrees, voxel size = 1.5 
mm3 isotropic, FOV = 210 mm, acquisition time = 6 minutes 12 seconds, acceleration factor = 4, 
phase-encoding direction = anterior to posterior) with 3 diffusion-weighted shells at b=300 s/mm2 
(15 volumes), b=800 s/mm2 (30 volumes), and b = 2000 s/mm2 (64 volumes). The sequence 
included 9 b=0 s/mm2 scans interspersed throughout. We also acquired a b=0 s/mm2 reference 
scan with the opposite phase-encoding direction (posterior to anterior) to correct for phase-
encoding direction-induced distortions. 

 
2.3 Pre-processing and quality assurance 

Distortions induced by phase encoding were corrected using topup from the FMRIB Software 
Library (FSL; Jenkinson et al., 2012). Eddy-current distortions and in-scanner movement were 
corrected using eddy from FSL version 5.0.11 with both single slice and multiband outlier 
replacement (Jenkinson et al., 2012; Andersson et al., 2016; Andersson et al., 2017); this processing 
step also rotated the initial b-vectors from our sequence to align with estimated subject head 
motions. Following prior work, we quantified in-scanner motion using the root mean squared 
displacement over the course of the scan (mean relative RMS; Baum et al., 2018; Roalf et al., 2016). 
Mean relative RMS displacement was calculated between uncorrected interspersed b=0 images 
using publicly available scripts (https://www.med.upenn.edu/cmroi/qascripts.html). Following 
manual inspection of all T1 images, one subject was removed for poor T1 image quality. 
Additionally, one subject was removed for poor DWI quality (motion + 6.92 SD above the mean). 
Motion, distortion, and eddy-corrected images served as the common input to all diffusion 
modeling techniques. 
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2.4 Overview of diffusion metrics  

Our evaluations include 14 diffusion metrics from three DWI modeling techniques. From DTI, 
we calculated fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial 
diffusivity (RD; Basser, Mattiello, and Le Bihan 1994). In accordance with previous applications of 
DTI to multi-shell data, we fit the DTI model using only the shell we expected gaussian diffusion 
responses (b = 800). Importantly, we also fit a DTI model to the entire multi-shell dataset using an 
iteratively reweighted linear least squares estimator tensor fit, (Veraart et al., 2013) which yielded 
an equivalent 4 diffusion metrics of interest.  From NODDI, we calculated orientation dispersion 
indices (ODI), as well as intracellular (ICVF), and isotropic volume fraction (ISOVF) (Zhang et al., 
2012). From MAPL, we evaluated return-to-origin (RTOP), return-to-axis (RTAP), and return-to-
plane (RTPP) probabilities (Özarslan et al., 2013, Fick et al., 2016). 

 
2.4.1 DTI metrics 

DTI assesses the directionality and magnitude of water diffusion by assuming a Gaussian 
diffusion process in each voxel. DTI utilizes a 6 degrees of freedom symmetric tensor model fit to 
the observed signal. Subsequently, the primary direction of diffusion in a voxel is calculated by 
finding the largest eigenvalue of the tensor. After tensors are fit to a voxel, FA, MD, AD, and RD can 
be calculated from the corresponding eigenvalues. While MD is the averaged sum of these 
eigenvalues (representing the average magnitude of water diffusion), AD is derived from only the 
largest eigenvalue (representing the primary direction of diffusion). RD is the average of the 
remaining two eigenvalues, both representing eigenvectors orthogonal to the primary one. Finally, 
FA evaluates the magnitude of the eigenvalue associated with the primary direction of diffusion 
relative to the remaining eigenvalues. FA represents the fraction of anisotropy in a voxel aligned 
with a primary direction of diffusion. As diffusion shows increasing directional preference, FA 
increases (Soares, Marques, Alves, & Sousa, 2013; Basser, Mattiello, and Le Bihan 1994). 

All DTI metrics were calculated in MRtrix3 using an iteratively reweighted linear tensor 
fitting procedure (Tournier et al., 2012; Veraart et al., 2013). As mentioned, we included FA, MD, 
AD, and RD derived from a DTI fit to all of the shells, as well as the same DTI metrics derived from 
the b = 800 shell only. This processing choice was made to account for the possibility that the utility 
of including more diffusion directions was outweighed by the non-Gaussian contribution of high b-
value acquisitions. 

 
2.4.2 NODDI metrics 

NODDI estimates the directional distribution of neurites (axons and dendrites) in a voxel, and 
then matches diffusion patterns to that distribution. Like DTI, this model is informed by hindrance 
of diffusion unaligned with neuronal fibers, and unhindered diffusion along their prominent axes. 
Unlike DTI, the introduction of a 3D neurite distribution allows for modeling diffusion restriction in 
fiber populations with dispersed orientations.  

NODDI attempts to parse the diffusion signal into discrete contributions of cellular 
compartments. The total signal is set to equal the sum of the contributions from each compartment, 
such that � � �1 � ������������ � �1 � �������� � ��������, where A is the full diffusion signal, ��� , 
���, and ���� are the signal attributable to the intracellular, extracellular, and isotropic 
compartments, and ����, ��� , and ��� represent the fraction of tissue volume attributable to the 
corresponding compartments. In order to assign diffusion signal to one of these compartments, the 
method assumes neurites can be modeled as zero-radius cylinders, or sticks. NODDI then fits an 
estimated distribution of these sticks to a spherical distribution, which captures the estimated 
spread of neurite orientations. ODI measures this spread, which ranges from 0 (non-dispersed) to 1 
(highly dispersed). Aic is calculated with respect to this posited orientation dispersion in any given 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2019. ; https://doi.org/10.1101/611590doi: bioRxiv preprint 

https://doi.org/10.1101/611590
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

voxel.  Intracellular signal is estimated by comparing the spherical distribution of neurite 
orientations with the distribution of unimpeded diffusion, yielding ��� , or the ICVF metric. Isotropic 
diffusion signal is attributed to a cerebrospinal fluid compartment, which yields the ISOVF metric 
(Zhang et al., 2012). Recent advances have markedly accelerated fitting the NODDI model; here we 
calculated NODDI using AMICO, which has been shown to accelerate fitting the NODDI model by 
several orders of magnitude without substantially impacting accuracy (Daducci et al., 2015). 
 

2.4.3 MAPL metrics 

 Unlike tissue-based models such as NODDI, signal-based techniques seek to model the EAP 
directly and do not assume the separability of specific tissue compartments.  Notably, the EAP is not 
limited to representing ellipsoids, and can therefore in theory capture arbitrary fiber 
configurations. MAP-MRI expresses MR signal utilizing Hermite functions as a basis set, which 
allows for rapid convergence of function solutions (Özarslan et al., 2013, Walter 1977). Building on 
MAP-MRI, Fick et al., (2016) recently introduced Laplacian-regularized MAP-MRI (MAPL). MAPL 
imposes additional smoothness on MAP-MRI’s coefficient estimation using the norm of the 
Laplacian of the reconstructed signal. This approach effectively penalizes model fits with 
physiologically improbable high local variances, which are more likely to be artifactual than 
reflective of signals of interest (Descoteaux et al., 2007). The authors also demonstrated that this 
method reduces error over MAP-MRI in voxels with crossing fibers (Fick et al., 2016). 
 MAP-MRI and MAPL allow for quantification of the likelihood that diffusing molecules undergo 
zero net displacement in one, two, or three dimensions. More specifically, RTOP estimates the 
probability of molecules undergoing no net displacement in any direction. Similarly, RTAP 
estimates the probability that molecules undergo no net displacement from their primary axis of 
diffusion, while allowing for displacement along that axis.  Finally, RTPP estimates the probability 
that molecules are not displaced from their original plane perpendicular to the primary direction of 
diffusion, while allowing for movement of molecules within that plane (Özarslan et al., 2013). We fit 
the MAPL model with a radial order of 8, without anisotropic scaling, using generalized cross-
validation for determining optimal regularization weighting. We conducted model fitting and 
generated RTOP, RTAP, and RTPP with dipy, an open-source diffusion imaging toolbox in Python 
(Fick et al., 2016; Garyfallidis et al., 2014).  

 
2.6 Structural Image Processing 

 T1 images were processed using the ANTs Cortical Thickness Pipeline (Tustison et al., 2014). 
Images were bias field corrected using N4ITK (Tustison et al., 2010), and brains were extracted 
from T1 images using study-specific tissue priors (Avants, Tustison, Wu, et al., 2011). We utilized a 
custom young-adult template constructed via the buildtemplateparallel procedure in ANTs (Avants, 
Tustison, Song, et al., 2011). A custom template was used due to evidence demonstrating the utility 
of custom templates in reducing registration biases (Tustison et al., 2014). The T1 to template affine 
and diffeomorphic transformations were calculated with the top-performing symmetric 
diffeomorphic normalization (SyN) tool in ANTs (Klein et al., 2009). The transforms between T1 
and the initial b=0 DWI images were calculated using boundary-based registration with 6 degrees 
of freedom (Greve and Fischl 2009). All transforms were concatenated so that only one 
interpolation was performed. 

 
2.7 Network construction 

Accumulating evidence suggests that structural brain networks undergo substantial maturation 
during youth (Hagmann et al., 2010; Fan et al., 2011; Grayson et al., 2014; Baum et al., 2017; Uddin 
et al., 2011; Baker et al., 2015). Accordingly, in addition to analysis of summary measures and scalar 
maps, we evaluated each measure in the context of structural networks. Subject brains were 
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divided into network nodes using the Schaefer 200 cortical parcellation (Schaefer et al., 2014). The 
parcellation was warped to the custom template, and then projected back to each subject’s T1 and 
native diffusion space using the inverse of each transform. Whole-brain connectomes were 
constructed by representing each of the 200 regions as a network node, and by representing 
deterministic tractography streamlines as network edges. Tractography was conducted in Camino 
(Cook et al., 2006) using the Euler tracking algorithm in native diffusion space (Basser et al., 2000). 
The intersection between gray and 1mm-dilated white matter was used as both seed regions and 
termination points for tractography. We used voxels defined as CSF by the segmented T1 image as 
termination boundaries for streamlines. Voxels defined as white matter by the segmented T1 image 
were used as an inclusion mask for streamlines, ensuring that streamlines had to pass through 
white matter. Additionally, we imposed a curvature restriction on all streamlines. Fibers 
determined to curve more than 60 degrees over a 5 millimeter interval were discarded in order to 
mitigate the impact of noise on tractography (Bastiani et al., 2012). Lastly, the mean value of each 
diffusion metric was calculated along each edge in this network; these values were used as edge 
weights between nodes connected via tractography streamlines.  However, ODI and ISOVF both 
represent deviation from diffusion-informed structural uniformity, maps consisting of 1 minus ODI 
and 1 minus ISOVF were utilized for weighted structural networks. Similarly, as higher MD and RD 
are both indicative of less uniform local microstructure, maps consisting of their inverse (1/RD and 
1/MD) were utilized to evaluate their utility for weighting structural networks.  

 
 

 
 

 

2.8 Statistical analyses  
 Within subjects, Spearman’s ρ between each diffusion metric for all white matter voxels was 
calculated. This involved masking diffusion images, vectorizing scalar values for each voxel within 
that mask, and correlating the vectors for each image. Subsequent analyses utilized consistent 
models across three levels of features (see schematic in Figure 1). First, we compared mean values 

Figure 1: Analytic workflow. The DTI, NODDI, and MAPL models  were fit to the same motion, distortion, and eddy-current 
corrected images, with the exception of the single-shell DTI fit, which only utilized our corrected b = 800 acquisitions. The resulting 

scalar maps were evaluated for associations with both age and data quality at multiple levels of analysis, including mean white 

matter values, mass-univariate voxelwise analyses, and analyses of network edges reconstructed by deterministic tractography 
(and then weighted by each measure).  
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within a white matter mask. Second, we conducted mass-univariate voxelwise analyses within 
white matter. Third, we evaluated tractography-based structural networks. At each level, in order to 
rigorously model linear and nonlinear associations with age, we used generalized additive models   
(GAMs; Wood, 2001, 2004) with penalized splines in R (Version 3.5.1) using the mgcv package (R 
Development Core Team, 2010; Wood, 2011). To avoid over-fitting, nonlinearity was penalized 
using restricted maximum likelihood (REML). Age was modeled as a penalized spline; sex and in-
scanner motion were included as linear effects.  To estimate in-scanner motion relations, we 
regressed out the effects of age and sex estimated from these models and evaluated the correlation 
between model residuals and head motion. This allowed us to quantify the effect size of the 
relationships between diffusion metrics and head motion of while controlling for other common 
sources of variance.  Type I error was accounted for using the False Discovery Rate (FDR; Q	0.05). 

 
2.9 Code availability 

 All analysis code used is available at:  https://github.com/PennBBL/multishell_diffusion 
  
 
3. RESULTS 

 

 

 
 

 

3.1 Measures of diffusion show differential patterns of covariance 

As an initial step, we investigated the relationships between all diffusion metrics of interest with 
Spearman’s correlations within white matter, and averaged those correlations across participants. 

Single-shell DTI �t

Mult i-shell DTI �t

Multi-shell DTI �t
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D
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Figure 2: Measures of diffusion are differentially related. A. Average Spearman’s correlations between diffusion metrics in white 
matter. The top triangle depicts correlations derived from multi-shell DTI fitting, and the bottom triangle reflects correlations 

derived from single-shell fits. B. Average correlations between single and multi-shell DTI metrics. FA = fractional anisotropy, MD = 
mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, ICVF = intracellular volume fraction, ODI = orientation dispersion 

index, ISOVF = isotropic volume fraction, RTOP = return-to-origin probability, RTAP = return-to-axis probability, RTPP = return-to-

plane probability. 
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This included correlations obtained when using a multi-shell DTI fit (Figure 2A, top triangle), and 
single-shell DTI fits (Figure 2A, bottom triangle). Some metrics of diffusion restriction were highly 
correlated with each other (i.e., FA, ICVF, and RTOP), and negatively correlated with metrics of 
diffusion dispersion (i.e., MD, ODI). Other metrics, like RTPP, demonstrated less systemic 
covariation with other metrics of interest, indicating that they may capture unique microstructural 
information. Multi- and single-shell DTI metrics also demonstrated high correlations to each other  
(Figure 2B),  with MD being the least similar (r = 0.73). Next, we sought to understand the 
differential utility of these measures of diffusion for studies of brain development.  

 
 

 
 

 

 

Age Associations of Mean White Matter ValuesA)

 p = 3.9x10-6 

 p = 0.070 

 p = 0.005 

 p = 4.59x10-7  p = 3.44x10-8 

 p = 1.72x10-6 

B)

Figure 3: Diffusion models leveraging multi-shell data show variable associations with age in white matter. A. Z-

scores of p-values derived from generalized additive models (GAMs) for each diffusion metric. GAMs were construed 

with the mean value of each metric as a function of age, with head motion and sex included as linear covariates. The 
dashed line indicates a nominal, uncorrected significance level (p = 0.05, z = 1.96). B. Relationships between mean 

white matter values and age, after controlling for sex and data quality. ms = multi-shell, ss = single-shell. 
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3.2 Associations with age vary dramatically by diffusion measure  

We evaluated the association of each diffusion metric with age.  Both mean white matter values 
and high-resolution mass-univariate analyses at each voxel were conducted.  While controlling for 
sex and in-scanner motion, the mean white matter values of every diffusion metric were related to 
age in our sample at a nominal (uncorrected) threshold of p = 0.05, with the exception of FA 
calculated from all shells (Figure 3A, Table 1). As expected, associations with age were most 
prominent at the younger end of the age range sampled and diminished in adulthood (Figure 3B).  

Voxelwise analyses within white matter revealed variable patterns. While some metrics 
demonstrated little only sparse associations with age after correcting for multiple comparisons 
(FDR Q<0.05),  RTAP, RTPP, RTOP, ICVF, and MD derived from all of the shells were significantly 
related to age in several thousand voxels each (Figure 4). Sex was not significantly related mean 
white matter values for any metric evaluated, and less than 80 voxels were significantly related to 
sex in voxelwise analyses. 
 
 

Metric Mean Value FAge pAge rrelRMS prelRMS 

msFA .4685 2.846 0.0702 -0.241 0.0073 

msMD 6.835x10-4 11.68 3.98x10-6 0.128 0.1589 

msAD 1.073x10-3 14.89 4.80x10-7 -0.048 0.5927 

msRD 4.886x10-4 7.558 1.25x10-4 0.191 0.0339 

ssFA .4396 4.254 0.0146 -.141 0.1189 

ssMD 8.219x10-4 5.024 0.0031 0.201 0.0255 

ssAD 1.247x10-3 8.238 0.0048 0.168 0.0626 

ssRD 6.095x10-4 4.911 0.0083 0.200 0.0274 

ICVF 0.5598 16.53 3.44x10-8 0.098 0.2805 

ODI 0.2342 5.72 0.0050 0.343 0.0001 

ISOVF 0.0809 3.884 0.0134 0.396 5.68x10-6 

RTOP 454,755 13.21 4.59x10-7 0.045 0.6196 

RTAP 6,493.464 10.65 8.96x10-6 -0.078 0.3886 

RTPP 51.6496 12.66 1.72x10-6 0.0812 0.3717 

 
 

 

3.3  Estimates of network development vary according to diffusion metric 

Given that tools from network science are increasingly used to study the developing brain, we 
next evaluated associations with age within networks where edges were weighted by diffusion 
metrics.  These analyses yielded similar results as the voxelwise analyses described above, with 
network edges weighted by ICVF, MD, RTOP, RTAP, and RTPP displaying the most associations with 
age (Figure 5).  

 

3.4 Diffusion measures are differentially impacted by data quality   

As a final step, we sought to characterize the impact of motion on all diffusion metrics.  
Evaluation of mean white matter values revealed that several mean diffusion measures were 
significantly related to head motion after controlling for age and sex, including FA, RD, ODI, and 
ISOVF (Table 1, Figure 6). At the voxel level, there were few associations with motion that 
survived correction for multiple comparisons. After FDR correction, less than 25 voxels were 

Table 1: Mean values in white matter, statistical associations with age, and 

motion for each diffusion metric. Associations with head motion were evaluated 

after controlling for age and sex on diffusion metrics. 
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significantly  associated with motion for all metrics except ISOVF, which had 239 voxels 
significantly associated with head motion. Similarly, analyses of networks weighted by each of these 
values revealed that less than 27 edges were associated with head motion for all three measures, 
except for ISOVF, which had 77 edges significantly associated with head motion.  

 
 

 
 
 
 

Figure 4: Regional patterns of neurodevelopment are differentially associated with diffusion 
metrics. A. Number of voxels that displayed significant associations with age following mass-

univariate analyses while controlling for sex and head motion. Evaluations were corrected for 
multiple comparisons via FDR-correction (Q < 0.05),  B. Locations of age-associated voxels in 

the standard space template and white matter mask used for analysis; the mask itself 

consisted of 48,504 voxels.  
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4. DISCUSSION 
 
 Our findings suggest that diffusion models leveraging multi-shell data have important 
advantages for studying the developing brain. These advantages include increased sensitivity to 
developmental effects and reduced impact of in-scanner motion, which were seen multiple scales, 

Figure 5: Scalar-weighted structural networks show differential associations with age. A. 
Number of edges that displayed significant associations with age following FDR-correction (Q < 

0.05), while controlling for sex and head motion. B. Associations between age and selected 
structural networks; thickness of edges is scaled to their z-transformed p-values, with lower p-

values depicted by thicker edges, multiple comparisons were accounted for using FDR (Q < 0.05). 
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including mean white matter values, voxelwise analyses, and network edges. The context, 
implications, and limitations of these results are discussed below.   
 

4.1 Metrics derived from multi-shell data demonstrate superior sensitivity to brain development  
In our dataset, diffusion models that leveraged the full multi-shell acquisition had strong 
associations with age.  Associations with age were seen in measures derived from NODDI (ICVF), 
MAPL (RTOP, RTAP, RTPP), and multi-shell (AD, MD, and RD).  This is particularly interesting for 
diffusion metrics that were not highly correlated with others, like RTPP, as they may convey unique 
information regarding neurodevelopmental microstructure changes.  In contrast, ODI and ISOVF 
did not demonstrate substantial associations with age. However, this does not imply 
underperformance of the NODDI model; there is no strong a priori reason to believe that the 
dispersion of neurite orientations or isotropic water diffusion would dramatically change in white 
matter over this age range of neurodevelopment. 
 
 

 
 
 
In contrast to NODDI, MAPL, and DTI fit to all shells, single-shell DTI metrics tended to 

demonstrate fewer age associations in all analyses. Although these metrics were calculated from 
less diffusion directions than their multi-shell counterparts, DTI-based neurodevelopmental 

r = 0.128
p = 0.159

r = -0.241
p = 0.007

r = 0.098
p = 0.281

r = 0.343
p < 0.001

r = 0.045
p = 0.620

r = 0.081
p = 0.372

Figure 6: Measures of diffusion are differentially impacted by in-scanner 

motion.  Selected measures displayed; see Table 1 for full results.  All 

analyses control for age and sex. 
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inquiries have effectively characterized microstructure with far fewer sampling directions (Lebel et 
al., 2008), indicating that differences between DTI fitting methods may not be driven by the number 
of directions sampled. However, it is important to consider that the diffusion tensor model does not 
explicitly account for the non-gaussianity of water diffusion that is common at higher b-values.  

Despite this shortcoming, most DTI-derived metrics fit using all shells demonstrated substantial 
associations with age, in particular MD. This indicates that complete fulfillment of the theoretical 
assumptions underlying the diffusion tensor model may not be necessary for probing broad, albeit 
potentially unspecific, developmental effects. Finally, the utility of fitting the diffusion tensor model 
to multi-shell data may have been enhanced in our study due to our acquisition protocol not 
utilizing b-values over 2000 s/mm2, which yields data that is most at odds with the assumptions of 
the diffusion tensor model. 

These results move beyond previous findings in several respects. First, to our knowledge, this is 
the first study to demonstrate that MAPL-derived metrics are highly sensitive to brain development 
in youth. Second, our results demonstrate that multi-shell measures of local microstructure and 
structural brain network connectivity such as ICVF and RTPP are more strongly associated with age 
than traditional FA-weighted networks. This result builds upon prior studies, which have shown 
that ICVF from NODDI is more strongly associated with age than traditional measures such as FA 
(Chang et al., 2015; Genc et al., 2017; Ota et al., 2017). Third and perhaps most importantly, these 
results emphasize the utility of multi-shell modeling techniques for studying brain development. 
These advantages of multi-shell models likely stem from their ability to successfully capture 
differential tissue responses across b-values, and the evolution of complex white matter 
architecture during development (Jeurissen et al., 2013; Volz, Cieslak, and Grafton 2018).  
 
4.2 MAPL metrics are less impacted by head motion than NODDI and DTI 

As children are more likely to move during scanning adults, motion artifact remains major 
concern for studies of brain development (Theys, Wouters, & Ghesquière, 2014; Satterthwaite et al., 
2013; Fair et al., 2012).  For diffusion imaging and other sequences, the primary determinant of 
scan quality for diffusion imaging is in-scanner head motion (Yendiki et al., 2014; Ling et al., 2012). 
Importantly, higher in-scanner motion was associated with reduced mean white matter FA, and 
increased MD, RD, AD, ODI, and ISOVF while accounting for age. This finding aligns with prior 
reports of in-scanner motion systematically impacting DTI metrics (Yendiki et al., 2014; Ling et al., 
2012, Roalf et al., 2016; Baum et al., 2018).  

  However, to our knowledge there has been no prior work documenting  the impact of in-
scanner head motion on ODI and ISOVF, or any measure derived from MAPL. ODI and ISOVF were 
both significantly positively correlated with in-scanner head motion. Investigators should consider 
and account for this confound when utilizing the NODDI model.  Notably, measures derived from 
MAPL were minimally impacted by motion. This may be due to the Laplacian signal regularization 
in MAPL, which was designed to mitigate the negative impact of noise in DWI acquisitions. 
Especially when considered in combination with the robust associations between MAPL-derived 
measures (RTOP, RTAP, and RTPP) and age, such noise-resistance may strengthen the rationale for 
using MAPL in studies of brain development. 

 
4.3 Limitations and future work 

Several limitations should be noted. First, our results were only derived from one scanning 
protocol and scanner. Replication of these results in other multi-shell protocols would strengthen 
evidence for the relative advantages of multi-shell models. Second, our study only evaluated 
adolescents and young adults. Studies of younger children would provide complimentary data, as 
white matter may undergo even more dramatic microstructural changes at earlier ages, and FA-
measured effects would likely be more apparent (Lebel et al., 2008). Indeed, similar inquiries in 
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older populations have unveiled different trends in microstructural changes over aging, indicating 
that these trends in diffusion metrics may be substantially different in different age ranges 
(Kodiweera et al., 2016). Third, it should be noted that compared to prior studies (Roalf et al., 2016, 
Yendiki et al., 2014, Baum et al., 2018), we detected a relative paucity of relationships between 
diffusion metrics and motion. This may be due to both advances in diffusion image processing 
techniques (such as the outlier replacement implemented in FSL’s eddy) and reduced statistical 
power. While the sample size of the present study is not small, it is a fraction of the size of other 
recent reports that evaluated the impact of motion on single-shell acquisitions (Baum et al., 2018, 
Roalf et al., 2016). Fourth, we used deterministic DTI-based tractography to define the streamlines, 
which results in a sparse structural network biased towards major white matter tracts. While these 
network analyses demonstrated enhanced associations with several diffusion metrics, networks 
constructed using multi-fiber tractography techniques might provide additional advantages (Maier-
Hein et al., 2017; Reddy & Rathi, 2016; Farooq et al., 2016; Christiaens et al., 2015; Boniha et al., 
2015). 

 
4.4. Conclusion 

In summary, we provide novel evidence that diffusion metrics are differentially associated with 
age and motion in youth.  Measures that are more tightly linked brain maturation and less related to 
data quality are likely to be particularly useful for developmental or clinical samples. Through free 
open-access software, these advanced diffusion methods are relatively easy for investigators to 
implement (Alimi et al., 2018; Daducci et al., 2015; Fick, Deriche, and Wassermann 2018; 
Garyfallidis et al., 2014). In the context of these results, we anticipate that multi-shell diffusion 
models will be increasingly adopted by the developmental and clinical neuroscience community. 
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