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Abstract
Adaptive memory requires the organism to form associations that bridge
between events separated in time. Many studies show interactions between
hippocampus (HPC) and prefrontal cortex (PFC) during formation of such
associations. We analyze neural recording from monkey HPC and PFC dur-
ing a memory task that requires the monkey to associate stimuli separated
by about a second in time. After the first stimulus was presented, large num-
bers of units in both HPC and PFC fired in sequence. Many units fired only
when a particular a stimulus was presented at a particular time in the past.
These results indicate that both HPC and PFC maintain a temporal record
of events that could be used to form associations across time. This temporal
record of the past is a key component of the temporal coding hypothesis,
a hypothesis in psychology that memory not only encodes what happened,
but when it happened.

Introduction

Many studies (Jones & Wilson, 2005; Hyman, Zilli, Paley, & Hasselmo, 2005, 2010;
Kim, 2011) show that interactions between hippocampus (HPC) and prefrontal cortex
(PFC) are essential to forming associations between unrelated stimuli. While early con-
ceptions of associative memory treated association as a scalar atomic value (Watson, 1913;
Clark, Lansford, & Dallenbach, 1960; Hawkins & Kandel, 1984), other models of memory
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Empirical data was previously published on in Brincat and Miller (2015). Software used for analyses is
available from the corresponding author upon reasonable request.
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WHAT AND WHEN IN HPC AND PFC 2

incorporated a temporal record of the past as a key component in learning associations—
learning not only the association between the stimuli but also the order and timing (James,
1890; Arcediano & Miller, 2002).

Stimulus selective time cells could serve as the neural mechanism by which a temporal
record is maintained and updated. Time cells are neurons that fire sequentially, each for
a circumscribed period of time, during the delay interval of a memory task (Pastalkova,
Itskov, Amarasingham, & Buzsaki, 2008; MacDonald, Lepage, Eden, & Eichenbaum, 2010),
provide a neural representation that includes information about time. Time cells have been
observed extensively in mice and rats (Howard et al., 2014; Salz et al., 2016) and they
have also been observed in primate PFC (Tiganj, Cromer, Roy, Miller, & Howard, 2018;
Jin, Fujii, & Graybiel, 2009). Recent studies have shown temporal coding in primate HPC
(Naya & Suzuki, 2011; Naya, Chen, Yang, & Suzuki, 2017) suggesting that time cells may
be found in this region as well. Although these results are suggestive, it has not been
definitively shown if time cells exist in monkey HPC and if these time cells are similar in
their proprieties to monkey PFC time cells.

We analyze neural recording from monkey HPC and PFC during a memory task
that requires the monkey to associate stimuli separated by about a second. After the first
stimulus was presented, a large number of units in both HPC and PFC fired in sequence.
Many units fired only when a particular a stimulus was presented at a particular time in
the past. These results indicate that both HPC and PFC maintain a temporal record of
the past. This temporal record of the past is consistent with the idea that time is intrinsic
to forming associations Arcediano and Miller (2002).

Methods

This paper reports new analyses of data previously published in Brincat and Miller
(2015).

Task

Two macaque monkeys were trained to perform a visual paired associate task. The
monkeys were trained on the task for several weeks prior to recording. For each recording
session, six visual stimuli were chosen at random, with four serving as cue objects (labeled
as A, B, C and D for the purposes of this paper) and two as associate objects (labeled X and
Y). Each trial started with fixation on a white dot for 500 ms, followed by cue presentation
for 500 ms, followed by a delay for 750 ms, followed by either a match or non-match
stimulus for 500 ms, followed by reward for a correct response to match stimulus, no reward
for incorrect responses, and an additional delay of 500 ms followed by match stimulus for
correct responses to non-match stimulus (Figure 1). Trials without a valid response (i.e. the
monkey did not maintain fixation) were discarded from the data set. Each session consisted
of 36 training trials where the stimuli were passively presented followed by 96 identity match
to sample trials in which the same stimulus was presented for cue and match in order to
familiarize the monkey with the stimuli, followed by the actual test trials (typically around
1000 trials for each session). The analyses in this paper only use the data from the test
trials, not the training trials or identity match to sample trials.
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a

b

Figure 1 . The experimental design required the monkey to use associative mem-
ory. The correct response depended on both learning an association and retaining a stimulus
identity in working memory. a: Monkeys were trained in a paired associate task. For each
recording session the monkey learned two pairs of cue stimuli (A/B and C/D) and a corre-
sponding associate stimulus for each pair (X and Y). b: Sequence of events in a trial. The
identity of the cue stimulus determines the identity of the match stimulus. The analyses in
this paper focus on the 1250 ms from initial cue presentation to end of the delay period.

For the purposes of identifying time cells we analyze the 1250 ms from cue presentation
until match or non-match stimuli presentation. We restrict our analyses to the cells that
were identified as properly isolated, as classified by Brincat and Miller (2015).

Recording

The recording techniques are described in detail in Brincat and Miller (2015). To
summarize, multiple microelectrodes were lowered daily into prefrontal cortex and hip-
pocampus. Specifically, recording sites included all subregions of the hippocampus (CA1,
CA2, CA3, dentate gyrus, subiculum) and dorsolateral and ventrolateral PFC (including
parts of areas 46, 45, and 8). The microelectrodes were referenced to ground.

For each session, up to 16 electrodes were inserted into the PFC and up to 4 elec-
trodes were inserted into the HPC. The spikes were recorded using epoxy-coated tungsten
electrodes (FHC) amplified by a high-input-impedance headstage filtered to extract spiking
activity, and threshold-triggered to separate neuronal spikes from background noise. The
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spiking signal was not prescreened for task responsiveness or selectivity in order to avoid
introducing bias. The electrodes were targeted with custom Matlab software.

Data Selection. For each testing trial we analyzed the 1250 ms starting from pre-
sentation of the cue stimulus and terminating at the presentation of the associate stimulus.
This interval includes the 500 ms presentation of the cue stimulus and a 750 ms blank delay
interval. Only data from the testing trials were used, none of the training trials or identify
match trials were used in this analysis. As a preprocessing step to both the maximum
likelihood analysis and the linear discriminant analysis, spike trains were downsampled to
1 ms temporal resolution such that if a spike was observed in a particular 1 ms time bin,
the corresponding data point were set to 1, otherwise it was set to 0.

Single Unit Analysis

The goal of the analysis used in this paper is to classify and characterize neurons with
temporal firing fields. We classified these neurons as time cells. This analysis is designed to
be robust to single trial variability and minimize the number of arbitrary parameters used,
while still providing insight into individual cells.

Maximum Likelihood Analysis. These methods build on analysis methods used
to classify time cells in rodent hippocampus and mPFC (Salz et al., 2016; Tiganj, Kim,
Jung, & Howard, 2017) and stimulus selective time cells in monkey lPFC (Tiganj et al.,
2018).

As in (Tiganj et al., 2018), this analysis optimized parameters of a Gaussian model
of firing rate to best fit each potential time cell. We used maximum likelihood parameter
estimation using a combination of gradient descent optimization and particle swarm. Nested
models can be compared with a likelihood ratio test. The likelihood ratio test (Wu, 1999)
incorporates the difference in the number of parameters of the nested models as the degrees
of freedom in a χ2 test. We first trained a constant firing rate model as a control, then
a time cell model (Gaussian time field plus constant rate), then additional models with
parameters for stimulus selectivity and pair selectivity.

Fitting the Models. The spike trains of each cell were fitted with different models
that allowed the firing rate to vary with different variables, such as time and stimulus
identity. The parameter space of these models was systematically explored in order to
compute the maximum likelihood fit. To find the best-fitting model the parameter space
was iteratively searched using a combination of particle swarming and the QuasiNewton
method. Particle swarming was performed first (with the swarm size equal to 50) and
its output was used to initialize the Quasi-Newton method which was performed second
(the number of maximum function evaluations was set to 10000). The computations were
implemented in Matlab 2016a. To avoid solutions that converged to a local minimum, the
fitting procedure was repeated until the algorithm did not result with better likelihood for
at least ten consecutive runs.

The likelihood of the fit was defined as a product of these probabilities across all 1250
time bins within each trial and across all trials. We expressed the likelihood in terms of
the negative log-likelihood (nLL), therefore instead of a product, a sum of the terms was
computed:

arg min
Θ

nLL = −
∑
trial

∑
t

[ft log(p(t; Θ)) + (1 − ft) log(1 − p(t; Θ))] , (1)
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where ft is the spike train, Θ is the parameters of the model.
Constant Firing Rate Model. We first fitted a constant firing rate model to

serve as a control. The likelihood was set to the constant term a0.

p (t; Θ) = a0 (2)

Time Cell Model. To estimate temporal variability in firing, we augmented the
constant firing rate model (eq. 2 with a term describing a Gaussian time field:

p (t; Θ) = a0 + a1T (t;σt, µt) (3)

where the Gaussian-shaped time field T (t;σt, µt) was defined as:

T (t;σt, µt) = e
−(t−µt)2

2σ2
t (4)

The model described by Equations 3 has an additional three parameters compared to the
constant firing rate model. In addition to the background firing rate a0, this model includes
parameters for the amplitude of the time field a1, and the mean µt and standard deviation
σt of the Gaussian time field.

The mean of the time term µt was allowed to vary between -75 ms and 1325 ms and
the standard deviation σt varied between .01 and 5 s. In order to ensure that p (t; Θ) can be
considered as a probability we had to ensure that its values are bounded between 0 and 1.
Therefore, the coefficients were bounded such that a0 + a1 ≤ 1.

Stimulus Specific Time Cell Model. The next model included additional pa-
rameters to allow the time-varying componennt to depend on the identity of the stimulus
that began the trial. Stimulus specificity was tested with a model that allowed four parame-
ters, rather than one as above, to modulate the Gaussian-shaped time field. The probability
of a spike at time point t was given as:

p (t; Θ) = a0 +
4∑

i=1
aiciT (t;σt, µt), (5)

where a0 to a4, µt, and σt are the parameters to be estimated. The factor ci was equal
to 1 for trials when a stimulus from i-th cue stimulus was presented and 0 otherwise. For
instance, c1 = 1 for trials which started with stimulus A and c1 = 0 for trials where the
sample stimulus was cue stimuli B, C or D).

Log Likelihood Test. In order to quantify whether the contribution of the terms
that contained time was significant, the maximum log-likelihood were compared. Note that
the constant term model is equivalent to the time cell model with the time term set to
zero (a1 = 0). Since the models with and without time are nested, the likelihood-ratio test
could be used to assess the probability that adding the time term significantly improved the
fit. The test is based on the ratio of the likelihoods of two different models and expresses
how many times the data are more likely under one model than the other and it takes
into account the difference in the number of parameters. We refer to cells that were better
fit by Eq. 3 than by a constant term (just a0) as time cells, subject to several additional
constraints. To ensure that a unit will not be classified as a time cell only due to its activity
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in a single trial and to correct for other possible trial averaging errors, the analysis was done
separately on even and odd trials. For a unit to be classified as a time cell it was required
that the likelihood-ratio test was significant (p < 0.01) for both even and odd trials. In
order to eliminate units with ramping or decaying firing rate during a delay interval, µt was
required to be within the delay interval and at least one σt away from either the beginning or
the end of the interval. Also, to eliminate units with overly flat firing rate from classification
as a time cell, σt was required to be at most equal to the length of the delay interval.

The model that includes stimulus specificity eq. 5 and the model with a single time
field eq. 3 are nested. Therefore, we use the likelihood-ratio test to assess the probability
that adding the stimulus specificity significantly improves the fit. When the outcome of
the likelihood ratio test was significant (p < 0.01), a time cell was classified as stimulus
specific.

Linear Discriminant Analysis

Overview. To quantify decoding accuracy at a population level we used linear
discriminant analysis (LDA). We divided the 1.25 second interval composed of presentation
and delay period into 50 ms long non-overlapping time bins. For each region we used the
entire population of neurons. The units were recorded during multiple recording sessions
with different number of trials. To ensure an equal number of trials across all units we
restricted the number of trials to the lowest number of trials recorded from a single unit
(606 trials). For each time bin we trained an LDA classifier on 80% of randomly chosen trials
and used the remaining 20% of the trials for testing. The LDA classifier was implemented
using Matlab 2016a function classify. To ensure stability of LDA the dimensionality of the
training and testing data was reduced to full rank at before each run of the classifier.

Population Stimulus Specificity. To assess stimulus specificity at the population
level, the classifier was trained to assign each trial to one of the four stimuli (classifying a
trial as A, B, C, or D). The testing classification was done on all time bins (to evaluate
performance of the classifier as a function of temporal distance between training and testing
time bin). We repeated the training and testing for 10 iterations (taking random subsamples
of the 606 trials) in order to obtain robust results (quantified through standard error of the
mean).

Results

To anticipate the results, the maximum likelihood analysis identified many units as
time cells and stimulus specific time cells in both HPC and PFC. HPC and PFC time cells
were qualitatively similar for several properties, suggesting that HPC and PFCE they share
a common temporal code. Both populations of time cells were temporally compressed.
Evidence of stimulus selectivity, temporal compression, and encoding the past, not the
future, also existed at the population coding level, as confirmed with linear discriminant
analysis.

Conjunctive coding of time and stimulus identity

A likelihood ratio test was used to compare models for the firing rate of each unit.
Units which were significantly better described by the time cell model than by the constant
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firing rate model are referred to as time cells. Units that were significantly better described
by the stimulus specific time cell model than by the time cell model are referred to as
stimulus specific time cells. Examples of units identified as stimulus specific time cells are
shown in Figure 2 for HPC and Figure 3 for PFC. These units have a variety of firing field
peak times, firing field widths, and overall firing rate and respond to all combinations of
stimuli. Overall a substantial number of units were identified by the maximum likelihood
method: 273 units for PFC and 135 units for HPC met our criteria as time cells, 194 units
for PFC and 100 units for HPC met our criteria as stimulus specific time cells. Thus, both
HPC and PFC support conjunctive representations of time and stimulus identity. Although
the proportion of time cells in HPC (.29) vs PFC (.43) is reliably different (the proportions
differ at p < .001), this difference is not necessarily meaningful, but could be a confound of
the overall difference in firing rates between the two areas. Qualitatively, the rasters of the
time cells are similar across the two regions.

Temporal Compression

The Figure 4 heatplots show several key patterns in the HPC and PFC time cells.
The width of the central ridge in the heatplots increases from the left of the plot to the right
of the plot, suggesting that time cells that fire earlier in the trial tend to have narrower time
fields than the time cells that fire later. The central ridges in the heatplots do not follow a
straight line, as would have been the case if it followed a uniform distribution. Rather, the
curve flattens as the interval proceeds. Qualitatively, HPC and PFC were similar in that
they both show the overall characteristics of a compressed representation of time.

A compressed representation refers to a neural representation that does not have the
same resolution across the entire range it is representing. A compressed representation of
time does not have constant resolution across the range of time it represents. Time cells
with a constant resolution would have uniform firing field widths with uniformly spread
peak times across the elapse of time during the trial. If the neural representation of time
in this data set was not constant, there are two ways the identified time cell population
could show temporal compression. First, the width of time fields would increase as the trial
elapses. Second, the number of time cells with time fields earlier in the delay would be larger
than the number later in the delay. Both of these properties were qualitatively observed in
the heatplot, as discussed above, and were confirmed with quantiative measures, discussed
below.

Time cell receptive field width increases with peak time. The first qualita-
tive impression of the heatplot can be confirmed by analyses of the across-unit relationship
between the peak time (µt) and the standard deviation (σt) of the estimated Gaussian
shaped time fields (Figure 4). The correlation between the peak time and the width was
significant in both HPC (.21 ± .01, r2 = .45, p < .001) and PFC (.24 ± .01, r2 = .39,
p < .001). Time cells firing earlier have narrower time fields in both HPC and PFC. These
findings are consistent with a key quantitative prediction of a compressed timeline.

Distribution of time cell receptive fields show temporal compression. The
cumulative density functions of time cell centers in HPC and PFC are shown in Figures
4d and f respectively. We compared the empirical distribution of the peak times of the time
cells to a uniform distribution using a Komolgorov-Smirnov test. The KS test rejected the
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d

Figure 2 . Examples of HPC cells that were conjunctively selective for stimulus
identity and time. Each of the four columns correspond to trials with a different cue
stimulus and a-d are different hippocampal cells. Within each raster each row is a trial,
and time is shown from cue stimulus onset to associate stimulus onset. Within each graph,
the green line is the smoothed firing rate, the blue line is a fitted constant firing rate, and the
red line is the fitted stimulus specific time cell model. Potential time cells were characterized
by increased firing rate at a particular time. The time cells in a and b responded earlier in
the delay interval, the time cells in c and d responded later in the delay interval. The unit
in a is selective for stimuli A and B. The unit in b is selective for stimuli A, B, and C. The
unit in c is selective for stimuli A and C. The unit in d is selective for stimulus B.
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Figure 3 . Examples of PFC cells that conjunctively coded for stimulus identity
and time. As in Figure 2, each of the four columns correspond to trials with a different
cue stimulus and a-d are different cells. Within each graph, the green line is the smoothed
firing rate, the blue line is a fitted constant firing rate, and the red line is the fitted stimulus
specific time cell model. Potential time cells were characterized by increased firing rate at
a particular time. The time cells in a and b responded earlier in the delay interval, the
time cell in c towards the middle of the interval and the time cell in d responded later in
the delay interval. The unit in a is selective for stimuli C. The unit in b is selective for
stimulus D. The unit in c is selective for stimulus A. The unit in d is selective for stimuli
A, B, and C.
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hypothesis that the distribution of the peak times is uniform for both HPC (n = 133, ks-
stat=0.25, p < .001 ) and PFC (n = 260, ks-stat=.11, p < .01). These results demonstrate
that more time cells code for points earlier in the interval than later in the interval in both
HPC and PFC. This implies decreasing temporal accuracy as the delay proceeds.

Population Analysis

Linear discriminant analysis (LDA) was used to investigate the temporal dynamics of
the stimulus identity coding on the population level. LDA was performed to decode stimulus
identity of the cue stimulus at each 50 ms time bin of the sample and delay intervals (see
methods). LDA was able to decode stimulus identity above chance (at p<.01 significance, as
measured by a one proportion z-test on each bin separately) for HPC and PFC. Additionally,
the decoding accuracy along the diagonal during the 1250-ms period was higher (at p<.01
significance, as measured by a two proportion z-test on each bin separately) than the entire
rest of the 1250-ms period for both HPC and PFC (shown with the contour lines in Figure
5). If stimulus identity were represented via persistent firing cells that did not change their
firing rate during the delay, the decoder would have similar accuracy over the entire period
of time following onset of the cue. This indicates that temporal representation is conjunctive
with stimulus identity. The decoding accuracy is also higher towards the beginning of the
1250 ms period (at p<.01, as measured by a two proportion z-test on each bin separately),
showing temporal compression (again, shown with the contour lines in Figure 5). These
results are consistent with the results of the single unit analyses.

Discussion

Time cells are neurons that fire for a circumscribed period of time after a defined
event. A population of time cells collectively spans the interval with activity. Time cells
might serve an important role in maintaining a temporal record of the past. Previous re-
search has identified time cells in rodents (e.g., Pastalkova et al., 2008; MacDonald, Lepage,
Eden, & Eichenbaum, 2011). In this study, we found primate HPC and PFC both had a
substantial number of time cells with several key properties. The time cells in both of these
areas were stimulus specific, allowing decoding of the stimulus presented at the beginning
of the delay interval. The time cells in both HPC and PFC showed the collective proprieties
of a compressed representation (Figure 4). Population analyses yielded similar conclusions
(Figure 5). Collectively, these results show that HPC and PFC encode a compressed tem-
poral record of what happened when. This record decreased in temporal resolution as the
stimulus receded into the past.

A common temporal code for associative memory

The analyses presented here have showed that HPC and PFC share a common tem-
poral code with both stimulus selectivity and temporal compression. The spiking activity
contained information of not only when stimuli happened, but what stimuli happened. This
record of what happened when is a key component of the temporal coding hypothesis, the
idea that associative memory includes not only pairs of associated stimuli but also their
temporal relationships (Arcediano & Miller, 2002). This record of what happened when
also showed temporal compression. This temporal compression was characterized by two
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a HPC b PFC

c d e f

Figure 4 . Time cells in HPC (left) and PFC (right) tiled the interval in a com-
pressed timeline. a-b: Activity of 133 HPC units and 260 PFC units classified as time
cells. Each row corresponds to a single unit and displays the firing rate (normalized to 1)
averaged across all trials. Red corresponds to high firing rate; blue corresponds to low firing
rate. The time cells are sorted with respect to the peak time estimated for their time field.
There are two features related to temporal accuracy that can be seen from examination of
these figures. First, time fields later in the delay were more broad than time fields earlier
in the delay (see also c and e). This can be seen as the widening of the central ridge as
the peak moves to the right. In addition the peak times of the time cells were not evenly
distributed across the delay, with later time periods represented by fewer cells than early
time periods (see also d and f). This can be seen in the curvature of the central ridge; a
uniform distribution of time fields would manifest as a straight line. c: Width of the time
fields as a function of the peak time in HPC. Each dot represents the best-fitting parameters
for a single unit classified as a time cell. The blue line is a fitted linear model. The linear
regression is significant p < .001. d: Peak times of the time fields in HPC are non-uniformly
distributed along the delay interval. The blue line is the cumulative distribution function
of the time cell peak times. The red line is a uniform distribution. The distributions differ
at p < .001 as estimated from a Kolmogorov-Smirnov test. e: Same as c but for time cells
in PFC. The linear regression is significant at p < .01. f: Same as d but for time cells in
PFC. Kolmogorov-Smirnov test is significant at p < .001.
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HPC PFC

Figure 5 . Ensembles in HPC and PFC can decode what happened when. displays
the accuracy of a linear discriminant analysis (LDA) cross-temporal classifier applied on
50 ms time bins. Each bin provides classification accuracy for the classifier trained on a
time bin denoted on x-axis and tested on a time bin denoted on y-axis. 80% of trials were
used for training with 20% of trials held out for testing. Note that the colorscale is different
between panels. Overall accuracy was higher for PFC than HPC, but there are also a higher
number of cells avaiable in PFC. Each contour represents an additional level of significance
compared to the previous contour (at p<.01). Together, these contours quantitatively
illustrate that the stimulus identity is encoded, that this encoding is temporally dependent,
and that this encoding is a compressed representation.

key proprieties. First, time fields later in the sequence were more broad (i.e., less precise).
Second, there were more neurons with time fields early in the delay and fewer neurons
representing times further in the past.

The stimulus selectivity found in the time cells identified here is consistent with
broader hypotheses about mixed selectivity. The term mixed selectivity is used to describe
responses across a population of neurons to diverse, non-linear combinations of task relevant
variables. Mixed selectivity results in a high dimensional neural representations which
enables simple readouts to generate a high number of responses (Fusi, Miller, & Rigotti,
2016; Rigotti et al., 2013). Mixed selectivity has been found in a variety of time cells
populations for a variety of task relevant variables, including place (MacDonald et al.,
2011; Tiganj, Shankar, & Howard, 2017; Salz et al., 2016), cue stimulus identity (Terada,
Sakurai, Nakahara, & Fujisawa, 2017; Tiganj et al., 2018), and motor actions (Jin et al.,
2009; Mello, Soares, & Paton, 2015). The results of this paper add to these previous results
by showing mixed selectivity in response to a visual task paired associate task in primate
HPC and PFC simultaneously.

The temporal compression identified in this report is consistent with past work, both
behavioral work and previous reports of time cells. Behavioral work on timing shows that the
accuracy in estimating the elapsed time decreases with the amount of time to be estimated
(Rakitin et al., 1998; Lewis & Miall, 2009). Temporal compression is consistent with this
decrease in temporal accuracy. Temporal compression has been observed, for time cells in a
variety of brain regions, including the hippocampus (Howard et al., 2014; Salz et al., 2016),
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entorhinal cortex (Kraus et al., 2015), medial prefrontal cortex (mPFC) (Tiganj, Kim, et al.,
2017), lateral prefrontal cortex (lPFC) (Tiganj et al., 2018), dorsolateral prefrontal cortex
(dlPFC) (Jin et al., 2009), and striatum (Jin et al., 2009; Mello et al., 2015; Akhlaghpour
et al., 2016). The results of this paper add to past results by showing cue stimuli selectivity
and temporal compression in primate HPC simultaneously with PFC.

This observed temporal compression is consistent with the classical behavioral obser-
vation that learning is invariant of a temporal scale. Scale invariance is the property that
the features of a system do not change so long as the scales involved are multiplied by a
common factor. For instance, Balsam and Gallistel (2009) reviewed evidence that the learn-
ing of an association between a conditioned stimulus and unconditioned stimulus was not
dependent on the time between them, but rather the ratio of the time between them and the
overall time from trial to trial. Thus when both delay and intertrial interval were rescaled
by a same factor, the number of trials that the animal needed to learn the pairing between
conditioned and unconditioned stimulus remained constant, indicating that the leaning pro-
cess is invariant of the time scale. In other words, the process of associative learning was
not dependent on some critical window of time, but rather can work across a variety of
scales so long as the relevant timings are proportionate. A compressed temporal code could
potentially explain how this scale invariance is constructed, if the resolution of the temporal
code scales proportionality across the time interval it encodes, this representation would be
scale invariant (Tiganj, Shankar, & Howard, 2017; Shankar & Howard, 2013). The results
reported here showed a temporal code with non-uniform resolution (higher accuracy in the
beginning of the interval), allowing for the possibility that the resolution of the time code
might scale proportionality to the elapsed time in primate HPC and PFC.

Persistent Firing and Dynamic Coding for Working Memory

We found a large number of cells that coded for the identity of past stimulus but only
fired for a short period of time. Nonetheless, the population of such cells enabled readout
of stimulus identity throughout the delay. This pattern is not predicted by classical models
about the maintenance of information in a fixed-capacity buffer (Atkinson & Shiffrin, 1968)
that lead to the idea that the brain maintains information via persistent stimulus-specific
firing that is not temporally modulated (Fuster & Alexander, 1971; Funahashi, Bruce,
& Goldman-Rakic, 1989; Goldman-Rakic, 1996). This view led to computational models
that predict persistent neural activity (e.g., Compte, Brunel, Goldman-Rakic, & Wang,
2000; Durstewitz, Vittoz, Floresco, & Seamans, 2010; Chaudhuri & Fiete, 2016). In these
models when a to-be-remembered stimulus is presented, it activates a specific population of
neurons that remain firing at an elevated rate for as long as necessary until the information
is no longer required (Constantinidis et al., 2018). A great deal of work in computational
neuroscience has developed mechanisms for sustained stimulus-specific firing at the level of
circuits, channels, and LFPs (Compte et al., 2000; Durstewitz et al., 2010; Chaudhuri &
Fiete, 2016).

However, there are both theoretical concerns that raise challenges to simple persistent
activity models of memory. Modeling work shows that persistent activity is metabolically
expensive (Lundqvist, Herman, & Miller, 2018; Stokes, 2015). In attractor models of per-
sistent firing, even a small, temporary disruption to the network can disrupt the memory
(Lundqvist et al., 2018). Of particular relevance to temporal continuity (discussed in the
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next section), information about the passage of time is lost because the firing rate is con-
stant while the stimulus is maintained in working memory. Thus a memory representation
based on sustained firing is not sufficient to represent information about time or maintain
temporal continuity. These modeling and theoretical objections do not rule out the possi-
bility of some role of persistent firing in working memory, but they do indicate that other
forms of memory encoding are needed.

Empirical results have directly shown activity beyond simple persistent firing in mem-
ory. Several studies have proposed and identified evidence for various dynamic coding
schemes. Stokes (2015) proposed “activity-silent” dynamic coding in which the memory
does not depend on continuous neural activity but rather modulation of synaptic weights.
Activity-silent working memory would address theoretical concerns about the metabolic cost
of working memory. Sreenivasan, Curtis, and D’Esposito (2014) found evidence to suggest
that lPFC supports more goal directed information and uses dynamic coding in addition
to persistent activity. Sreenivasan and D’Esposito (2019) reviewed numerous examples of
dynamic coding, and found evidence that LFP bursts play a role in working memory. Col-
lectively these results were not mutually exclusive with persistent activity serving a role in
memory, but they do indicate that memory in the brain involves a wider variety of neural
activity. Our results are consistent with some conceptions of dynamic coding. Collectively,
time cell activity is equivalent to a smooth trajectory through a state space.

Several studies have presented explanations for why persistent firing has been identi-
fied over other more complex actitvity patterns. Lundqvist et al. (2018) argued that more
complex tasks result in more complex neural activity, and that previous studies have used
simpler tasks, resulting in observations of simple persistent firing. Shafi et al. (2007) pro-
posed that persistent activity could be a result of trial averaging that could be obscuring
more complex neural activity and showed substantial variability in firing frequency across
trials. Sreenivasan et al. (2014) suggested that sensory cortex maintains the representation
while other areas support other forms of coding such as goal directed information. In this
study, time cells with sufficiently high constant terms or wide time fields could be potentially
misidentified as persistent firing cells by a less thorough analysis.

The time cells reported here were consistent with models of working memory that
propose continuous delay duration activity without stable persistent activity by individ-
ual neurons. In particular, these time cells were most consistent with models of working
memory that have proposed sequentially active firing (Goldman, 2009; Grossberg & Merrill,
1992). The population level analysis directly contradicted strictly persistent firing, because
persistent firing alone would result in a decoding accuracy that is constant across the entire
interval instead of higher at the diagonals. These results do not rule out the possibility that
other populations of neurons maintain persistent activity, or that this population of neu-
rons might maintain persistent activity in response to other tasks, but they do show there
is a population of neurons in HPC and PFC that do not need persistent activity to encode
stimulus identity. The findings in this paper are very much in line with the predictions of a
model of working memory maintenance in which the brain estimates the temporal history of
past events as a compressed timeline (Howard, Shankar, Aue, & Criss, 2015; Singh, Tiganj,
& Howard, in press; Howard, 2018).
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Temporal Continuity in Vision

Temporal continuity has been proposed as a key mechanism in the construction of
invariant object representations (DiCarlo, Zoccolan, & Rust, 2012). Invariant object rep-
resentation refers to the hypothesis that in visual object recognition the brain is able to
recognize objects at a variety of viewing angles, distances, and other conditions by con-
structing a representation that is constant across all these conditions. Because objects are
usually temporally continuous with themselves, even as the viewing conditions change, tem-
poral continuity could be used as a cue in learning invariant representations. For example,
walking towards an object, you sequentially see it appearing larger and larger as you get
closer and closer. In order for the brain to utilize temporal continuity, it needs a temporal
signal with object identity information that spans the relevant time scales. Stimulus spe-
cific time cells with the collective proprieties of a compressed representation are a suitable
case of such a temporal signal. Temporal continuity might play a role not only in build-
ing invariant representations, but also in statistical learning and other forms of associative
learning and memory across multiple timescales. This is suggested by empirical results on
timescales of saccades (Li & DiCarlo, 2008), seconds (Schapiro, Rogers, Cordova, Turk-
Browne, & Botvinick, 2013), and tens of seconds (Miyashita, 1988). The particular role of
HPC and PFC in visual associative memory is suggested by the underlying neuroanatomy,
including lesioning studies (Higuchi & Miyashita, 1996; Schapiro, Turk-Browne, Norman,
& Botvinick, 2016) and human fMRI studies (Schapiro, Kustner, & Turk-Browne, 2012;
Jackson III & Schacter, 2004).

Empirical results show temporal continuity causes neural representations to become
similar for visual stimuli across a variety of scales. In Li and DiCarlo (2008) monkeys were
presented with stimuli that were consistently swapped during saccade. This procedure,
with repeated exposures, caused neurons in the inferior temporal cortex (ITC) selective
for one stimulus over another to become equally selective to both stimuli being exchanged.
The stimulus before switching is temporally continuous to the stimulus after switching, and
their neural representations become similar. In Schapiro et al. (2013) stimuli are presented
continually to human subjects, with their order dictated by a random walk through a com-
munity structure that was not known to the participants. fMRI activation patterns for
stimuli adjacent in the structure become more similar. In other words, a neural represen-
tation become similar according to temporal continuity. In Miyashita (1988) sequentially
presented stimuli develop correlations in their neural representations in the ITC through
successive presentation. In all of these results, the continuity between visual stimuli pre-
sentation causes neural representations (whether neural firing in the case of (Li & DiCarlo,
2008; Miyashita, 1988) or fMRI activation patterns in the case of (Schapiro et al., 2013))
to become more similar.

The smoothly-changing temporal signal observed in HPC and PFC in this study has
many of the properties required to enable temporal continuity to influence visual represen-
tations. Indeed, there is a wealth of data that implicates HPC and PFC in vision. HPC
and PFC are both connected to areas responsible for visual processing. The HPC is re-
ciprocally connected to the EC which is in turn connected to the inferior temporal cortex
(ITC) (Canto, Wouterlood, & Witter, 2008). The PFC (area 46 in particular) is reciprocally
connected to the entorhinal cortex (EC) and perirhinal cortex (PRC) (Yeterian, Pandya,
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Tomaiuolo, & Petrides, 2012). The PFC (areas 45 and 46) is also reciprocally connected to
the ITC (area TE in particular) (Kravitz, Saleem, Baker, Ungerleider, & Mishkin, 2013).
The ITC is one of the last stages of the visual ventral stream, the network of brain regions
responsible for object identification. Lesioning monkey EC and PFC eliminated visual as-
sociative coding in inferior temporal cortex (ITC), while leaving the overall response to
visual stimuli intact (Higuchi & Miyashita, 1996). (Naya, Yoshida, & Miyashita, 2001)
showed that the associative signal originates past the ventral stream, possibly in the HPC
and PFC, and propagates backwards to the ITC. Miller, Erickson, and Desimone (1996)
showed visual stimulus selective neurons exist in the PFC in associative learning. Miller et
al. (1996) also showed that compared with the ITC, these PFC neurons showed a stronger
response to learned associations, indicating that visual associative learning is present in
PFC. Collectively, this evidence suggests that the underlying connectivity could allow the
temporal signal we identified in HPC and PFC to propagate to the ITC and contribute to
forming associative relationships in the visual system.

Indeed, many studies implicate HPC and PFC in visual statistical learning. In a case
study of a patient with complete bilateral hippocampal loss and broader medial temporal
lobe (MTL, of which the HPC, EC, and PRC are subregions) damage, the patient was able
to discriminate which individual visual shape and scene stimuli they had been exposed to,
but was unable to distinguish novel sequences from recurrent sequences of the visual stimuli,
indicating an inability to perform statistical learning (Schapiro et al., 2016). Human fMRI
studies show the role of MTL (Schapiro et al., 2012; Jackson III & Schacter, 2004) and
PFC (Ranganath, Cohen, Dam, & D’Esposito, 2004) in associate learning and statistical
learning. Collectively, all of these results suggest that HPC and PFC have an important
role in visual statistical learning.

Overall, the evidence suggests that a temporal signal sufficient to support temporal
continuity exists in HPC and PFC, that temporal continuity supports associative memory
(Schapiro et al., 2013; Miyashita, 1988), and that HPC and PFC are important to asso-
ciative memory (Higuchi & Miyashita, 1996; Schapiro et al., 2016, 2012; Jackson III &
Schacter, 2004). The proprieties of time cells reported here are consistent with the propri-
eties necessary for constructing associative representations across a variety of scales.

References

Akhlaghpour, H., Wiskerke, J., Choi, J. Y., Taliaferro, J. P., Au, J., & Witten, I. (2016).
Dissociated sequential activity and stimulus encoding in the dorsomedial striatum
during spatial working memory. eLife, 5 , e19507.

Arcediano, F., & Miller, R. R. (2002). Some constraints for models of timing: A temporal
coding hypothesis perspective. Learning and Motivation, 33 , 105-123.

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its
control processes. In K. W. Spence & J. T. Spence (Eds.), The Psychology of Learning
and Motivation (Vol. 2, p. 89-105). New York: Academic Press.

Balsam, P. D., & Gallistel, C. R. (2009). Temporal maps and informativeness in associative
learning. Trends in Neuroscience, 32 (2), 73–78.

Brincat, S. L., & Miller, E. K. (2015). Frequency-specific hippocampal-prefrontal in-
teractions during associative learning. Nature Neuroscience, 18 (4), 576-81. doi:
10.1038/nn.3954

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/709659doi: bioRxiv preprint 

https://doi.org/10.1101/709659


WHAT AND WHEN IN HPC AND PFC 17

Canto, C. B., Wouterlood, F. G., & Witter, M. P. (2008). What does the anatomical
organization of the entorhinal cortex tell us? Neural plasticity, 2008 .

Chaudhuri, R., & Fiete, I. (2016). Computational principles of memory. Nature Neuro-
science, 19 (3), 394–403.

Clark, L. L., Lansford, T. G., & Dallenbach, K. M. (1960). Repetition and associative
learning. The American journal of psychology, 73 (1), 22-40.

Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms
and network dynamics underlying spatial working memory in a cortical network model.
Cerebral Cortex, 10 (9), 910-23.

Constantinidis, C., Funahashi, S., Lee, D., Murray, J. D., Qi, X.-L., Wang, M., & Arnsten,
A. F. T. (2018). Persistent spiking activity underlies working memory. Journal of
Neuroscience, 38 (32), 7020-7028. doi: 10.1523/JNEUROSCI.2486-17.2018

DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object
recognition? Neuron, 73 (3), 415-34. doi: 10.1016/j.neuron.2012.01.010

Durstewitz, D., Vittoz, N. M., Floresco, S. B., & Seamans, J. K. (2010). Abrupt transitions
between prefrontal neural ensemble states accompany behavioral transitions during
rule learning. Neuron, 66 (3), 438-48. doi: 10.1016/j.neuron.2010.03.029

Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual
space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology,
61 (2), 331–349.

Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: high dimensionality for
higher cognition. Current Opinion in Neurobiology, 37 , 66–74.

Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory.
Science, 173 (3997), 652–654.

Goldman, M. S. (2009). Memory without feedback in a neural network. Neuron, 61 (4),
621–634.

Goldman-Rakic, P. S. (1996). Regional and cellular fractionation of working memory.
Proceedings of the National Academy of Science, USA, 93 (24), 13473-13480.

Grossberg, S., & Merrill, J. (1992). A neural network model of adaptively timed reinforce-
ment learning and hippocampal dynamics. Cognitive Brain Research, 1 , 3-38.

Hawkins, R. D., & Kandel, E. R. (1984). Is there a cell-biological alphabet for simple forms
of learning? Psychologial Review, 91 (3), 375.

Higuchi, S., & Miyashita, Y. (1996). Formation of mnemonic neuronal responses to visual
paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal
lesions. Proceedings of the National Academy of Science, USA, 93 (2), 739-743.

Howard, M. W. (2018). Memory as perception of the past: Compressed time in mind and
brain. Trends in Cognitive Sciences, 22 , 124-136.

Howard, M. W., MacDonald, C. J., Tiganj, Z., Shankar, K. H., Du, Q., Hasselmo, M. E.,
& Eichenbaum, H. (2014). A unified mathematical framework for coding time, space,
and sequences in the hippocampal region. Journal of Neuroscience, 34 (13), 4692-707.
doi: 10.1523/JNEUROSCI.5808-12.2014

Howard, M. W., Shankar, K. H., Aue, W., & Criss, A. H. (2015). A distributed represen-
tation of internal time. Psychological Review, 122 (1), 24-53.

Hyman, J. M., Zilli, E. A., Paley, A. M., & Hasselmo, M. E. (2005). Medial prefrontal
cortex cells show dynamic modulation with the hippocampal theta rhythm dependent

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/709659doi: bioRxiv preprint 

https://doi.org/10.1101/709659


WHAT AND WHEN IN HPC AND PFC 18

on behavior. Hippocampus, 15 (6), 739-749.
Hyman, J. M., Zilli, E. A., Paley, A. M., & Hasselmo, M. E. (2010). Working mem-

ory performance correlates with prefrontal-hippocampal theta interactions but not
with prefrontal neuron firing rates. Frontiers in Integrative Neuroscience, 4 , 2. doi:
10.3389/neuro.07.002.2010

Jackson III, O., & Schacter, D. L. (2004). Encoding activity in anterior medial temporal
lobe supports subsequent associative recognition. NeuroImage, 21 (1), 456–462.

James, W. (1890). The principles of psychology. New York: Holt.
Jin, D. Z., Fujii, N., & Graybiel, A. M. (2009). Neural representation of time in cortico-

basal ganglia circuits. Proceedings of the National Academy of Sciences, 106 (45),
19156–19161.

Jones, M. W., & Wilson, M. A. (2005). Theta rhythms coordinate hippocampal-prefrontal
interactions in a spatial memory task. PLoS Biol, 3 (12), e402. doi: 10.1371/jour-
nal.pbio.0030402

Kim, H. (2011, February). Neural activity that predicts subsequent memory and forgetting:
A meta-analysis of 74 fmri studies. NeuroImage, 54.3 .

Kraus, B. J., Brandon, M. P., Robinson, R. J., Connerney, M. A., Hasselmo, M. E., &
Eichenbaum, H. (2015). During running in place, grid cells integrate elapsed time
and distance run. Neuron, 88 (3), 578–589.

Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The
ventral visual pathway: an expanded neural framework for the processing of object
quality. Trends in Cognitive Sciences, 17 (1), 26–49.

Lewis, P. A., & Miall, R. C. (2009). The precision of temporal judgement: milliseconds,
many minutes, and beyond. Philosophical Transcripts of the Royal Society London B:
Biological Sciences, 364 (1525), 1897-905. doi: 10.1098/rstb.2009.0020

Li, N., & DiCarlo, J. J. (2008). Unsupervised natural experience rapidly alters invariant
object representation in visual cortex. Science, 321 (5895), 1502-7. doi: 10.1126/sci-
ence.1160028

Lundqvist, M., Herman, P., & Miller, E. K. (2018). Working memory: Delay activity, yes!
persistent activity? maybe not. Journal of Neuroscience, 38 (32), 7013-7019. doi:
10.1523/JNEUROSCI.2485-17.2018

MacDonald, C. J., Lepage, K., Eden, U., & Eichenbaum, H. (2010). Hippocampal neu-
rons encode the temporal organization of non-spatial event sequences. Society for
Neuroscience Abstracts, 36 , 100.15.

MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal
“time cells” bridge the gap in memory for discontiguous events. Neuron, 71 (4), 737-
749.

Mello, G. B., Soares, S., & Paton, J. J. (2015). A scalable population code for time in the
striatum. Current Biology, 25 (9), 1113–1122.

Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working
memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16 (16), 5154-
67.

Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory in the
primate temporal cortex. Nature, 335 (6193), 817-820.

Naya, Y., Chen, H., Yang, C., & Suzuki, W. A. (2017). Contributions of primate pre-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/709659doi: bioRxiv preprint 

https://doi.org/10.1101/709659


WHAT AND WHEN IN HPC AND PFC 19

frontal cortex and medial temporal lobe to temporal-order memory. Proceedings of
the National Academy of Sciences, 114 (51), 13555–13560.

Naya, Y., & Suzuki, W. (2011). Integrating what and when across the primate medial
temporal lobe. Science, 333 (6043), 773-776.

Naya, Y., Yoshida, M., & Miyashita, Y. (2001). Backward spreading of memory-retrieval
signal in the primate temporal cortex. Science, 291 (5504), 661-664.

Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsaki, G. (2008). Internally generated
cell assembly sequences in the rat hippocampus. Science, 321 (5894), 1322-7.

Rakitin, B. C., Gibbon, J., Penny, T. B., Malapani, C., Hinton, S. C., & Meck, W. H.
(1998). Scalar expectancy theory and peak-interval timing in humans. Journal of
Experimental Psychology: Animal Behavior Processes, 24 , 15-33.

Ranganath, C., Cohen, M. X., Dam, C., & D’Esposito, M. (2004). Inferior temporal,
prefrontal, and hippocampal contributions to visual working memory maintenance
and associative memory retrieval. Journal of Neuroscience, 24 (16), 3917–3925.

Rigotti, M., Barak, O., Warden, M. R., Wang, X.-J., Daw, N. D., Miller, E. K., & Fusi,
S. (2013). The importance of mixed selectivity in complex cognitive tasks. Nature,
497 (7451), 585-90. doi: 10.1038/nature12160

Salz, D. M., Tiganj, Z., Khasnabish, S., Kohley, A., Sheehan, D., Howard, M. W., & Eichen-
baum, H. (2016). Time cells in hippocampal area CA3. Journal of Neuroscience, 36 ,
7476-7484.

Schapiro, A. C., Kustner, L. V., & Turk-Browne, N. B. (2012). Shaping of object represen-
tations in the human medial temporal lobe based on temporal regularities. Current
Biology, 22 , 1622–1627.

Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B., & Botvinick, M. M.
(2013). Neural representations of events arise from temporal community structure.
Nature Neuroscience, 16 (4), 486-92. doi: 10.1038/nn.3331

Schapiro, A. C., Turk-Browne, N. B., Norman, K. A., & Botvinick, M. M. (2016). Statistical
learning of temporal community structure in the hippocampus. Hippocampus, 26 (1),
3–8.

Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., & Bodner, M. (2007). Variability
in neuronal activity in primate cortex during working memory tasks. Neuroscience,
146 (3), 1082-1108.

Shankar, K. H., & Howard, M. W. (2013). Optimally fuzzy temporal memory. Journal of
Machine Learning Research, 14 , 3753-3780.

Singh, I., Tiganj, Z., & Howard, M. W. (in press). Is working memory stored along a
logarithmic timeline? converging evidence from neuroscience, behavior and models.
Neurobiology of Learning and Memory.

Sreenivasan, K. K., Curtis, C. E., & D’Esposito, M. (2014). Revisiting the role of persistent
neural activity during working memory. Trends in Cognitive Sciencesciences, 18 (2),
82–89.

Sreenivasan, K. K., & D’Esposito, M. (2019, May). The what, where and how of delay
activity. Nature Reviews Neuroscience.

Stokes, M. G. (2015). “activity-silent” working memory in prefrontal cortex: a dynamic
coding framework. Trends in Cognitive Sciences, 19 (7), 394–405.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/709659doi: bioRxiv preprint 

https://doi.org/10.1101/709659


WHAT AND WHEN IN HPC AND PFC 20

Terada, S., Sakurai, Y., Nakahara, H., & Fujisawa, S. (2017). Temporal and rate coding
for discrete event sequences in the hippocampus. Neuron, 94 , 1-15.

Tiganj, Z., Cromer, J. A., Roy, J. E., Miller, E. K., & Howard, M. W. (2018). Compressed
timeline of recent experience in monkey lPFC. Journal of Cognitive Neuroscience, 30 ,
935-950.

Tiganj, Z., Kim, J., Jung, M. W., & Howard, M. W. (2017). Sequential firing codes for
time in rodent mPFC. Cerebral Cortex, 27 , 5663-5671.

Tiganj, Z., Shankar, K. H., & Howard, M. W. (2017). Scale invariant value computation for
reinforcement learning in continuous time. In AAAI 2017 spring symposium series -
science of intelligence: Computational principles of natural and artificial intelligence.

Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20 (2),
158.

Wu, M. D. P. L. (1999, November). The emperor’s new tests. Statistical Science, 14 (4),
355-369.

Yeterian, E. H., Pandya, D. N., Tomaiuolo, F., & Petrides, M. (2012). The cortical
connectivity of the prefrontal cortex in the monkey brain. Cortex, 48 (1), 58–81.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 22, 2019. ; https://doi.org/10.1101/709659doi: bioRxiv preprint 

https://doi.org/10.1101/709659

