Universal activation mechanism of class A GPCRs

Qingtong Zhou1,\#, Dehua Yang2,3,4,\#, Meng Wu1,3,5, Yu Guo1,3,5, Wangjing Guo2,3,4, Li Zhong2,3,4, Xiaoqing Cai2,4, Antao Dai2,4, Eugene Shakhnovich6, Zhi-Jie Liu1,5, Raymond C. Stevens1,5, M. Madan Babu7, Ming-Wei Wang2,3,4,5,8, Suwen Zhao1,5,*

1iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
2The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
3University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
4The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
5School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
6Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, U.S.A.
7MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
8School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
\#These authors contributed equally to this work.

*Correspondences to: Suwen Zhao (zhaosw@shanghaitech.edu.cn), Ming-Wei Wang (mwwang@simm.ac.cn) or Madan Babu (madanm@mrc-lmb.cam.ac.uk).
Abstract

Class A G protein-coupled receptors (GPCRs) influence virtually every aspect of human physiology. GPCR activation is an allosteric process that links agonist binding to G protein recruitment, with the hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6 movement and the key residue-level changes of this trigger remain less well understood. Here, by analyzing over 230 high-resolution structures of class A GPCRs, we discovered a modular, universal GPCR activation pathway that unites previous findings into a common activation mechanism, directly linking the bottom of ligand-binding pocket with G protein-coupling region. We suggest that the modular nature of the universal GPCR activation pathway allowed for the decoupling of the evolution of the ligand binding site, G protein binding region and the residues important for receptor activation. Such an architecture might have facilitated GPCRs to emerge as a highly successful family of proteins for signal transduction in nature.
Introduction

GPCRs are membrane proteins that contain a seven-transmembrane helix (7TM) architecture. In the last decade, we have witnessed a rapid development in GPCR structural biology (Figure 1a) and extensive research into the mechanism by which receptors are activated by diverse ligands including approved drugs. While these studies have provided key insights into GPCR activation mechanism and implicated different parts of the receptor as being crucial for activation, they do not fully explain the pattern of conservation of residues and the number of disease-associated mutations that are known to map on distinct regions of the receptor (Figure 1—figure supplement 1). Although it is well established that outward movement of transmembrane helix 6 (TM6) upon ligand binding is a common feature of receptor activation, what leads to the movement of TM6, are they conserved, how the other helices are rearranged to facilitate this movement, and the key residue level changes of this trigger all remain less well understood (Figure 1b). Receptor activation requires global reorganization of residue contacts as well as water-mediated interactions. Since prior studies primarily investigated conformational changes though visual inspection or through the presence or absence of non-covalent contacts between residues, we reasoned that one could gain comprehensive knowledge about mechanism of receptor activation by developing approaches that can capture not just the presence or absence of a contact but also subtle, and potentially important alterations in conformations upon receptor activation.

Results

A residue-residue contact score-based framework to characterize GPCR conformational changes

To address this, we developed an approach to rigorously quantify residue contacts in proteins structures and infer statistically significant conformational changes. We first defined a residue-residue contact score (RRCS) which is an atomic distance-based calculation that quantifies the strength of contact between residue pairs by summing up all possible inter-residue heavy atom pairs (Figure 2a...
and Figure 2—figure supplement 1a). We then defined ΔRRCS, which is the difference in RRCS of a residue pair between any two conformational states of a receptor that quantitatively describes the rearrangements of residue contacts (Figure 2b and Figure 2—figure supplement 1b). While RRCS can be 0 (no contact) or higher (stronger contact), ΔRRCS can be negative (loss in strength of residue contact), positive (gain in strength of residue contact) or 0 (no change in strength of residue contact).

To capture the entirety of conformational changes in receptor structure upon activation, we computed the ΔRRCS between the active and inactive state of a receptor and defined two types of conformational changes (Figure 2c): (i) switching contacts: these are contacts that are present in the inactive state but lost in the active state (or *vice versa*) such as loss of intrahelical contacts between $D/E^{3,49}$ (GPCRdb numbering) and $R^{3,50}$, and gain of interhelical hydrophobic contacts between residues at 3×40 and 6×48 upon receptor activation; and (ii) repacking contacts: these are contacts that result in an increase or decrease in residue packing such as the decreased packing of intrahelical sidechain contacts between $W^{6,48}$ and $F^{6,44}$, and the increase in interhelical residue packing due to the translocation of $N^{7,49}$ towards $D^{2,50}$ upon receptor activation. In this manner, we quantified the global, local, major and subtle conformational changes in a systematic way (*i.e.*, interhelical and intrahelical, switching and repacking contacts).

We then analysed 234 structures of 45 class A GPCRs that were grouped into three categories (Figure 1a): (i) antagonist- or inverse agonist-bound (inactive; 142 structures from 38 receptors); (ii) both agonist- and G protein/G protein mimetic-bound (fully active; 27 structures from 8 receptors); and (iii) agonist-bound (intermediate; 65 structures from 15 receptors). Among them, six receptors [rhodopsin (bRho), β_2-adrenergic receptor (*β_2AR), M2 muscarinic receptor (M2R), μ-opioid receptor (*μOR), adenosine A_2A receptor (*A_2AR) and κ-opioid receptor (*κ-OR)] have both inactive- and active-state crystal structures available. Given that ΔRRCS can capture major and subtle conformational changes, we computed RRCS for all structures and ΔRRCS for the six pairs of receptors and investigated the
existence of a common activation pathway (i.e., a common set of residue contact changes) across class A GPCRs. Two criteria (Figure 2d; further details in Methods) were applied to identify conserved rearrangements of residue contacts: (i) equivalent residue pairs show a similar and substantial change in RRCS between the active and inactive state structures of each of the six receptors (i.e., the same sign of ΔRRCS and $|\Delta$RRCS| > cut-off for all receptors) and (ii) family-wide comparison of the RRCS for the 142 inactive and 27 active state structures shows a statistically significant difference ($P<0.001$; two sample t-test). This allowed us to reliably capture both the major rearrangements as well as subtle but conserved conformational changes at the level of individual residues in diverse GPCRs in a statistically robust and significant manner. Consistent with this, a comparison with earlier studies revealed that the RRCS based approach is able to capture a larger number of conserved large-scale and subtle changes in residues contacts (Figure 2d) that would have been missed by visual inspection or residue contact presence/absence criteria alone (see Methods for conceptual advance of this approach and detailed comparison).

Discovery of the universal and conserved receptor activation pathway

Remarkably, for the first time, our analysis of the structures allowed the discovery of a universal and conserved activation pathway that directly links ligand-binding pocket and G protein-coupling regions in class A GPCRs (Figure 3). The pathway is comprised of 34 residue pairs (formed by 35 residues) with conserved rearrangement of residue contacts upon activation (Figure 2d), connecting several well-known but structurally and spatially disconnected motifs (CWxP$^{11, 20, 33}$, PIF$^{3, 36}$, Na^+ pocket$^{19, 24, 33}$, NPxxY$^{20, 23}$ and DRY$^{11, 14, 37}$) all the way from the extracellular side (where the ligand binds) to the intracellular side (where the G protein binds). Inspection of the rewired contacts as a ΔRRCS network reveals that the conserved receptor activation pathway is modular and involves conformational changes in four layers. In layer 1, there is a conserved signal initiation step involving changes in residue contacts at the bottom of the ligand-binding pocket and Na^+ pocket. In layer 2, critical
hydrophobic contacts are broken (i.e., opening of the hydrophobic lock). In layer 3, microswitch residues (6×37, $Y^{7 \times 53}$) are rewired and in layer 4, the residue $R^{3 \times 50}$ and G protein contacting positions are rewired, making them competent to bind to G protein on the cytosolic side (Figure 3). Strikingly, recently released cryo-EM structures of three receptors (5-HT_{1B}, A_{1R} and μOR) in complex with $G_{i/o}$ also support the conservation of contacts involving these 34 residue pairs (Figure 4, Figure 4—figure supplements 1 and 2). These observations highlight the conserved and universal nature of a previously undescribed activation pathway linking ligand binding to G protein coupling, regardless of the subtypes of intracellular effectors (i.e., G_s, $G_{i/o}$, arrestin or G protein mimetic nanobody/peptide, Figure 4a). Collectively, these findings illustrate how a combination of intrahelical and interhelical switching contacts as well as repacking contacts underlies the universal activation mechanism of GPCRs.

Molecular insights into the key steps of the universal receptor activation pathway

Receptor activation is triggered by ligand binding and is characterised by movements of different transmembrane helices. How does ligand-induced receptor activation connect the different and highly conserved motifs, rewire residue contacts and result in the observed changes in transmembrane helices?

To this end, we analysed the universal activation pathway in detail and mapped, where possible, how they influence helix packing, rotation and movement (Figure 3). A qualitative analysis suggests the presence of four layers of residues in the activation pathway linking the ligand binding residues to the G protein binding region.

Layer 1: We did not see a single ligand-residue contact that exhibits conserved rearrangement, which accurately reflects the diverse repertoire of ligands that bind GPCRs (2×12, 3×34) (Figure 3—figure supplement 1). Instead, as a first common step, binding of diverse extracellular agonist converges to trigger an identical alteration of the transmission switch (3×40, 5×51, 6×44 and 6×48) and Na$^+$ pocket (2×50, 3×39, 7×45 and 7×49). Specifically, the repacking of an intrahelical contact between residues at 6×48 and 6×44, together with the switching contacts of residue at 3×40 towards
6\times 48 and residue at 5\times 51 towards 6\times 44, contract the TM3-5-6 interface in this layer. This reorganization initializes the rotation of the cytoplasmic end of TM6. The collapse of Na$^+$ pocket$^{19,24,32-33}$ leads to a denser repacking of the four residues (2\times 50, 3\times 39, 7\times 45 and 7\times 49), initiating the movement of TM7 towards TM3.

Layer 2: In parallel with these movements, two residues (6\times 40 and 6\times 41) switch their contacts with residue at 3\times 43, and form new contacts instead with residues at 5\times 58 and 5\times 55, respectively. Residues at 3\times 43, 6\times 40 and 6\times 41 are mainly composed of hydrophobic amino acids and referred as hydrophobic lock22,28,39. Its opening loosens the packing of TM3-TM6 and facilitates the outward movement of the cytoplasmic end of TM6, which is necessary for receptor activation. Additionally, N$^{7\times 49}$ develops contacts with residue at 3\times 43 from nothing, facilitating the movement of TM7 towards TM3.

Layer 3: Upon receptor activation, Y$^{7\times 53}$ loses its interhelical contacts8 with residues at 1\times 53 and 8\times 50, and forms new contacts with residues at 3\times 43, 3\times 46 and R$^{3\times 50}$, which were closely packed with residues in TM6. Thus, the switching of contacts by Y$^{7\times 53}$ strengthens the packing of TM3-TM7, while the packing of TM3-TM6 is further loosened with the outward movement of TM6.

Layer 4: Finally, the restraints on R$^{3\times 50}$, including more conserved, local intrahelical contacts with D(E)$^{3\times 49}$ and less conserved ionic lock with D(E)$^{6\times 30}$, are eliminated11,14,37 and R$^{3\times 50}$ is released. Notably, the switching contacts between R$^{3\times 50}$ and residue at 6\times 37 are essential for the release of R$^{3\times 50}$, which breaks the remaining contacts between TM3 and TM6 in the cytoplasmic end and drives the outward movement of TM6. The rewired contacts of R$^{3\times 50}$ and other G protein contacting positions (3\times 53, 3\times 54, 5\times 61 and 6\times 33) make the receptor competent to bind to G protein on the cytosolic side.
Together, these findings demonstrate that the intrahelical/interhelical and switching/repacking contacts between residues is not only critical to reveal the continuous and modular nature of the activation pathway, but also to link residue-level changes to transmembrane helix-level changes in the receptor.

Universal activation pathway induced changes in transmembrane helix packing in GPCRs

To capture the patterns in the global movements of transmembrane helices, 8 residue pairs were chosen to describe the interhelical contacts between the cytoplasmic end of TM3 and TM6 as well as TM3 and TM7 (Figure 5a). Analysis of the RRCS_TM3-TM7 (X-axis) and RRCS_TM3-TM6 (Y-axis) for each of the 234 class A GPCR structures revealed distinct compact clusters of inactive and active states. Surprisingly, the inactive state has zero or close to zero RRCS_TM3-TM7 regardless of the wide distribution of RRCS_TM3-TM6. In contrast, the active state has a high RRCS_TM3-TM7 and strictly zero RRCS_TM3-TM6. Thus, receptor activation from inactive to active state occurs as a harmonious process of interhelical contacts changes: elimination of TM3-TM6 contacts, formation of TM3-TM7 contacts and repacking of TM5-TM6 (Figure 5b and Figure 5—figure supplement 1). In terms of global conformational changes, the binding of diverse agonists converges to trigger outward movement of the cytoplasmic end of TM6 and inward movement of TM7 towards TM3, thereby creating an intracellular crevice for G protein coupling (Figure 5b).

Experimental validation for the modular nature of the universal activation pathway

Based on the knowledge of the universal activation pathway, one would expect that mutations of residues in the pathway are likely to severely affect receptor activation. The two extreme consequences are constitutive activation (without agonist binding) or inactivation (abolished signalling). To experimentally test this hypothesis, we systematically designed site-directed mutagenesis for residues in the pathway on a prototypical receptor A_2AR, aiming to create constitutively activating/inactivating mutations (CAM/CIM), by promoting/blocking residue and helix level conformational changes revealed in the pathway. 6/15 designed CAMs and 15/20 designed CIMs were validated by functional
cAMP accumulation assays, and none of them were reported before for A2AR (Figure 6, Figure 6—
figure supplement 1 and Figure 6—source data 1). The design of functional active/inactive mutants has
been very challenging. However, the knowledge of universal activation pathway of GPCRs presented
here greatly improves the success rate. The mechanistic interpretation of 21 successful predicted
mutants is explained as below. We discuss the 14 unsuccessful predictions in the Figure 6—source
data 2.

In layer 1, the mutation I92340N likely stabilizes the active state by forming amide-π interactions with
W246648 and hydrogen bond with the backbone of C1855461, which rewire the packing at the
transmission switch and initiates the outward movement of the cytoplasmic end of TM6; this mutation
elevated the basal cAMP level by 7-fold. Conversely, I92340A would reduce the favourable contacts
with W648 upon activation, which retards the initiation of the outward movement of TM6; this
mutation resulted in a decrease in both basal cAMP level [71% of wild-type (WT)] and agonist
potency (8-fold). Another example is the residue at 6×44, the mutation F242644R would stabilize the
inactive state by forming salt bridge with D52250, which blocks the rotation of TM6 and thus
abolishes Gs coupling; indeed this mutation greatly reduced basal cAMP level (to 63% WT) and
agonist potency (by 374-fold). In contrast, F242644A would reduce contacts with W246648, loosen
TM3-TM6 contacts, diminish the energy barrier of TM6 release and make outward movement of TM6
easier; consistently this mutation elevated the basal cAMP level (by 2-fold) and increased the agonist
potency (by 8-fold). Mutations of residues forming the Na+
+ pocket, such as D52250A and N280745R,
would destroy the hydrogen bond network at the Na+
+ pocket and retard the initiation of the inward
movement of TM7. These mutations completely abolished agonist potency and greatly reduced the
basal cAMP level (to 80% and 78% of WT, respectively).
In layer 2, the mutations L953_A/R and I2386_Y would loosen the hydrophobic lock, weaken TM3-TM6 contacts, promote the outward movement of cytoplasmic end of TM6 and eventually make receptor constitutively active; this is reflected by remarkably high basal cAMP production (28-, 2- and 11-fold increase, respectively). Notably, mutations at/near the Na^+ pocket, L483_R and N2847_K, could lock the Na^+ pocket at inactive packing mode by introducing salt bridge with D525, thus block the inward movement of TM7 towards TM3. As expected, these mutations completely abolished agonist potency. The CIMs at/near the Na^+ pocket (from both layer 1 and 2) reflect the subtle inward movement of TM7 towards TM3 is essential for receptor activation, which is often underappreciated and overshadowed by the movement of TM6. In line with this, two mutations on TM7, N2847_A and Y2887_A, attenuate the TM3-TM7 contacts upon activation and completely abolished or greatly reduced (by 16-fold) agonist potency, respectively.

In layer 3, I983_A likely reduces contacts with Y2887_A, weakens the packing between TM3-TM7, and retards the movement of TM7 towards TM3; similarly, L2356_A would reduce contacts with F2015, weaken the packing between TM5-TM6, and makes the TM6 movement towards TM5 more difficult. In line with the interpretation, these mutations resulted in reduced basal cAMP level (72% and 71% WT, respectively) and decreased agonist potency (23- and 4-fold, respectively). These results are consistent with previous findings on vasopressin type-2 receptor (V2R)^8. In layer 4, D1013_N likely diminishes its intrahelical interactions with R1023 and thus makes the release of the latter easier, which in turn promotes the G protein recruitment. Consistent with this possibility, this mutation led to a greatly elevated basal cAMP level (8-fold).

Despite these A2AR mutants greatly affect receptor activation, our radioligand binding assay shows that they generally retain the agonist binding ability, with the exception of two CIMs: W2466_A and N2847_K (Figure 6b, c and Figure 6—source data 1). This suggests that the universal activation
pathway is modular and that such an organization allows for a significant number of residues involved in agonist binding to be uncoupled from receptor activation/inactivation and G protein binding.

The universal activation pathway allows mechanistic interpretation of mutations

Four hundred thirty five disease-associated mutations were collected, among which 28% can be mapped to the universal activation pathway, much higher than that to the ligand-binding and G protein-binding regions (20% and 7%, respectively) (Figure 7a, b). Furthermore, 272 CAMs/CIMs from 41 receptors (Figure 7c) were mined from the literature for the 14 hub residues (i.e., residues that have more than one edges in the pathway).

The average number of disease-associated mutations in the universal activation pathway is much higher than that of ligand-binding pocket, G protein-binding pocket, and residues in other regions (2.5-, 3.5- and 3.5-fold, respectively), reflecting the enrichment of disease-associated mutations on the pathway (Figure 7a). Within the universal activation pathway, the enrichment of disease mutations and CAMs/CIMs in layers 1 and 2 is noteworthy, which highlights the importance of signal initiation and hydrophobic lock opening, and further supports the modular and hierarchical nature of GPCR activation (Figures 3 and 5b). Notably, for certain residues, such as D²⁻⁵⁰ and Y⁷⁻⁵³, only loss-of-function disease mutations or CIMs were observed (Figures 7 and 8b), implying they are indispensable for receptor activation and the essential role of TM7 movement (Figures 3 and 5).

The functional consequence of these single point mutations can be rationalized by analysing if they are stabilizing/destabilizing the contacts in the universal activation pathway or promoting/retarding the required helix movement upon activation (Figure 7b and Figure 7—figure supplement 1). For example, I₁₃₀³⁻⁴₃N/F (in layer 2 of the universal activation pathway) in V₂R was reported as a gain-/loss-of-function mutation that causes nephrogenic syndrome of inappropriate antidiuresis⁴⁰ or nephrogenic diabetes insipidus⁴¹, respectively. I₁₃₀³⁻⁴₃N/F likely loosens/stabilizes the hydrophobic lock, weakens/strengthens the TM3-TM6 packing and leads to constitutively active/inactive receptors.
Another example is T581\times53M in rhodopsin, which was reported as a loss-of-function mutation that causes retinitis pigmentosa42. T581\times53M likely increases hydrophobic contacts with Y3067\times53 and P3037\times50, which retards the inward movement of TM7 towards TM3 and eventually decreases G protein recruitment. As in the case of disease-associated mutations, CAMs/CIMs that have been previously reported in the literature can also be interpreted by the framework of universal activation pathway (Figure 7—figure supplement 1b). For example, F2486\times44Y in CXCR\textsubscript{428} was reported as a CIM. This residue likely forms hydrogen bond with S1233\times39, which blocks the rotation of the cytoplasmic end of TM6, and decreases G protein engagement.

Not surprisingly, the 35 residues constituting the pathway are highly conserved across class A GPCRs, dominated by physiochemically similar amino acids (Figure 7—figure supplement 2). The average sequence similarity of these positions across 286 non-olfactory class A receptors is 66.2\%, significantly higher than that of ligand-binding pockets (31.9\%) or signalling protein-coupling regions (35.1\%). Together, these observations suggest that the modular and hierarchical nature of the activation pathway allows decoupling of the ligand-binding pocket, G protein-binding pocket and the residues contributing to the universal activation mechanism. Such an organization of the receptor might facilitate the uneven sequence conservation between different regions of GPCRs, confers their functional diversity in ligand recognition and G protein binding while still retaining a common activation mechanism.

Discussion

Using a novel, quantitative residue contact descriptor, RRCS, and a family-wide comparison across 234 structures from 45 class A GPCRs, we reveal a universal, modular activation pathway that directly links ligand-binding pocket and G protein-coupling regions. Key residues that connect the different modules allows for the decoupling of a large number of residues in the ligand-binding site, G protein
contacting region and residues involved in the activation pathway. Such an organization may have facilitated the rapid expansion of GPCRs through duplication and divergence, allowing them to evolve independently and bind to diverse ligands due to removal of the constraint (i.e. between a large number of ligand binding residues and those involved in receptor activation). This model unifies many previous important motifs and observations on GPCR activation in the literature (CWxP$^{11, 20, 33}$, DRY$^{11, 14, 37}$, Na$^+$ pocket$^{19, 24, 33}$, NPxxY$^{20, 23}$, PIP3,36 and hydrophobic lock$^{22, 28, 39}$) and is consistent with numerous experimental findings$^{21-22, 28, 33, 39}$.

We focused on the universal activation pathway (i.e., the common part of activation mechanism shared by all class A GPCRs and various intracellular effectors) in this study. Obviously, individual class A receptor naturally has its intrinsic activation mechanism(s), as a result of the diversified sequences, ligands and physiological functions. Indeed, receptor-specific activation pathways (including mechanisms of orthosteric, positive or negative allosteric modulators, biased signalling/selectivity of downstream effectors)$^5, 9, 17, 43-48$ have been revealed by both experimental studies including biophysical (such as X-ray, cryo-EM, NMR, FRET/BRET, DEER)$^2, 9, 14, 27, 33, 43, 49-52$, biochemical$^{28, 39}$ and computational approaches (such as evolutionary trace analysis$^{26, 30}$ and molecular dynamics simulations$^{16, 25, 31, 53}$), especially for the prototypical receptors such as rhodopsin, β2-adrenergic and A$_2A$ receptors. These studies demonstrated the complexity and plasticity of signal transduction of GPCRs. The computational framework we have developed may assist us in better understanding the mechanism of allosteric modulators, G protein selectivity and diverse activation processes via intermediate states as more GPCR structures become available. While we interpret the changes as a linear set of events, future studies aimed at understanding dynamics could provide further insights into how the common activation mechanism operates in individual receptors.

Given the universal and conserved nature of the pathway, we envision that the knowledge of the common activation pathway can not only be used to mechanistically interpret the effect of mutations in biological and pathophysiological context54 but also to rationally introduce mutations in other
receptors by promoting/blocking residue and helix level movements that are essential for activation. Such protein engineering approaches can obtain receptors in specific conformational states to accelerate structure determination studies using X-ray crystallography or electron microscopy in future. The approach developed here can be readily adapted to map allosteric pathways and reveal mechanisms of action for other key biological systems such as kinases, ion channels and transcription factors.
Figure 1. An increasing number of reported class A GPCR structures facilitates studies on universal activation mechanism. **a**, Distribution of structures in different states in the non-olfactory class A GPCR tree as of October 1, 2018. **b**, Universal GPCR activation mechanism and the residue-level triggers are not well understood.

The following source data and figure supplement are available for figure 1:

Source data 1. The released class A GPCR structures (as of October 1, 2018).

Source data 2. Disease mutations occurred in class A GPCRs.

Figure supplement 1. The pattern of conservation of residues and the map of number of disease-associated mutations on human class A GPCRs.
Figure 1—figure supplement 1. The pattern of conservation of residues and the map of number of disease-associated mutations on human class A GPCRs. The alignment of 286 non-olfactory, class A human GPCRs were obtained from the GPCRdb54,55 and sent for the sequence conservation score calculation for all residue positions by the Protein Residue Conservation Prediction56 tool with scoring method “property entropy”57. To obtain disease-associated mutations, we performed database integration and literature investigation for all 286 non-olfactory class A GPCRs. Four commonly used databases (UniProt58, OMIM59, Ensembl60 and GPCRdb54-55) were first filtered by disease mutations and then merged. Finally, we collected 435 disease mutations from 61 class A GPCRs (Figure 1—Source data 2).
Figure 2. Understanding GPCR activation mechanism by RRCS and ∆RRCS. a, Comparison of residue contact (RC)\(^8\) and residue-residue contact score (RRCS) calculations. RRCS can describe the strength of residue-residue contact quantitatively in a much more accurate manner than the Boolean descriptor RC. b, RRCS and ∆RRCS calculation for a pair of active and inactive structures can capture receptor conformational change upon activation. c, Two types of conformational changes (i.e., switching and repacking contacts) can be defined by RRCS to quantify the global, local, major and subtle conformational changes in a systematic way. d, Two criteria of identifying conserved residue rearrangements upon receptor activation by RRCS and ∆RRCS. 34 residue pairs were identified based on the criteria (please see Methods, Figure 2—Source data 1 and 2 for details), only 6 of them were discovered before\(^8\).

The following source data and figure supplement are available for figure 2:

Source data 1. Calculated RRCS of 34 residue pairs constituting the universal activation pathway for released class A GPCR structures.

Source data 2. Thirty-four residue pairs shown conserved rearrangements of residue contacts upon activation.

Figure supplement 1. Calculation of RRCS and ∆RRCS.
Figure 2—figure supplement 1. Calculation of RRCS and ΔRRCS. a, Workflow of RRCS calculation. b, Examples of RRCS and ΔRRCS calculation for two residues pairs. c, Statistics of residue contacts and contact types for six receptors (bRho, β2AR, M2R, μOR, A2AR and κ-OR) in their inactive and active states. Contact type describes physicochemical properties of two interacted amino acids that form a pair. The amino acids with hydrophobic side chains (one-letter code: A, V, I, L, M, P, F, Y, W) contribute to the majority of residue contacts, either within themselves (50.1%) or with other amino acids (37.8%).
Figure 3. Universal activation pathway of class A GPCRs. Node represents structurally equivalent residue with the GPCRdb numbering while the width of edge is proportional to the average ∆RRCS among six receptors (bRho, β2AR, M2R, μOR, A2AR and κ-OR). Four layers were qualitatively defined based on the topology of the pathway and their roles in activation: signal initiation (layer 1), signal propagation (layer 2), microswitches rewiring (layer 3) and G protein coupling (layer 4).

The following figure supplement is available for figure 3:

Figure supplement 1. Rearrangements of ligand-residue contacts in ligand-binding pocket are not conserved, reflecting diverse ligand recognition modes.
Figure 3—figure supplement 1. Rearrangements of ligand-residue contacts in ligand-binding pocket are not conserved, reflecting diverse ligand recognition modes. a, Sphere representation of antagonist- and agonist-bound receptor crystal structures. b, Diverse LRCS and ∆LRCS reveal the repertoire of ligand recognition across class A GPCRs. The agonist or antagonist was treated as a single residue when calculating LRCS and ∆LRCS. As shown by the calculated ∆RRCS, no ligand-residue pair exhibits conserved rearrangements upon activation. c, Conserved conformational changes were only observed at the very bottom of ligand-binding pocket (6×48, 3×40 and 6×44).
Figure 4. The universal activation pathway is conserved, regardless of the subtypes of intracellular effectors. a, Intracellular binding partners used in the active state structures. b, Comparison of RRCS for active (green) and inactive (orange) states of 8 receptors with different intracellular binding partners, including three recently solved cryo-EM structures of $G_{i/o}$-bound receptors 38 (5-HT$_{1B}$, A$_1$R, µOR) whose resolution were low (usually \geq3.8 Å for the GPCR part).

Nevertheless, almost all conserved residue rearrangements in the pathway can be observed from these cryo-EM structures. Three of 34 residues pairs were shown here, see Figure 4—figure supplements 1 and 2 for the remaining 31 residue pairs.

The following figure supplements are available for figure 4:

Figure supplement 1. The switching conformation change is conserved upon receptor activation, regardless of the subtypes of intracellular effectors.

Figure supplement 2. The repacking conformation change is conserved upon receptor activation, regardless of the subtypes of intracellular effectors.
Figure 4—figure supplement 1. The switching conformation change is conserved upon receptor activation, regardless of the subtypes of intracellular effectors. Comparison of RRCS for active (green) and inactive (orange) states of 8 receptors with different intracellular binding partners, including three recently solved cryo-EM structures of $G_{i/o}$-bound receptors (5-HTB, $A_1\text{R}$, μOR) whose resolution were low (usually ≥3.8 Å for the GPCR part)18. Nevertheless, almost all conserved residue rearrangements in the pathway can be observed from these cryo-EM structures. Nineteen of 34 residues pairs were shown here, see Figure 4 and Figure 4-figure supplement 2 for the remaining residue pairs.
Figure 4—figure supplement 2. The repacking conformation change is conserved upon receptor activation, regardless of the subtypes of intracellular effectors. Comparison of RRCS for active (green) and inactive (orange) states of 8 receptors with different intracellular binding partners, including three recently solved cryo-EM structures of Gi/o-bound receptors (5-HT1B, A1R, µOR) whose resolution were low (usually ≥3.8 Å for the GPCR part)\(^{18}\). Nevertheless, almost all conserved residue rearrangements in the pathway can be observed from these cryo-EM structures. Twelve of 34 residue pairs were shown here, see Figure 4 and Figure 4-figure supplement 1 for the remaining residue pairs.
Figure 5. Universal activation model of class A GPCRs reveals the major changes upon GPCR activation.

(a), Active and inactive state structures form compact clusters in the 2D interhelical contact space: RRCSTM3-TM7 (X-axis) and RRCSTM3-TM6 (Y-axis). GPCR activation is best described by the outward movement of TM6 and inward movement of TM7, resulting in switch in the contacts of TM3 from TM6 to TM7.

(b), Universal activation model for class A GPCRs. Residues are shown in circles, conserved contact rearrangements of residue pairs upon activation are denoted by lines.

The following figure supplement is available for figure 5:

Figure supplement 1. Global conformational change upon activation.
Figure 5—figure supplement 1. Global conformational change upon activation. a, Distinct clustering of inactive- and active-state structures in 2-dimentional interhelical contact space RRCS_{TM5-TM6} vs. RRCS_{TM3-TM6}. b, The interhelical contacts comparison between inactive- and active-state structures. c, Receptor-specific interhelical contacts for all class A GPCR structures (inactive,
intermediate and active states are coloured in orange, cyan and green, respectively). These results demonstrate that receptor activation involves the elimination of TM3-TM6 contacts, formation of TM3-TM7 and TM5-TM6 contacts, reflecting the outward movement of the cytoplasmic end of TM6 away from TM3, the inward movement of TM7 towards TM3 and the repacking of TM5 and TM6.
Figure 6. Experimental validation of the universal activation mechanism. a, cAMP accumulation assay and b, radioligand binding assay, validated the universal activation pathway-guided design of CAMs/CIMs for A2AR. WT, CAMs and CIMs are shown in black, green and orange, respectively. c, Mechanistic interpretation of universal activation pathway-guided CAMs/CIMs design. N.D.: basal activity was too high to determine an accurate EC50 value.

<table>
<thead>
<tr>
<th>Mutations</th>
<th>Literature interaction</th>
<th>Expectation based on universal activation pathway</th>
<th>Experimental observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I92G</td>
<td>Favor the rotation of the cytoplasmic end of TM6, loosen the TM3-6 contacts</td>
<td>7-fold increase</td>
</tr>
<tr>
<td></td>
<td>F242A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L93R</td>
<td>Favor R102ββ-αα release</td>
<td>11.7% increase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63.1% decrease</td>
</tr>
<tr>
<td>3</td>
<td>D101R</td>
<td>Retard inward movement of TM7 towards TM3, loosen TM3-7 contacts</td>
<td>93.2% decrease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80.4% decrease</td>
</tr>
<tr>
<td>4</td>
<td>D284A</td>
<td>Retard inward movement of TM7 towards TM3, tighten the TM3-6 contacts</td>
<td>71.8% decrease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71.11% decrease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>102.6% decrease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>76.0% decrease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60.0% decrease</td>
</tr>
</tbody>
</table>

CC-BY 4.0 International license available under a not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
The following data and figure supplement are available for figure 6:

Source data 1. Functional and ligand binding properties of A2AR mutations.

Source data 2. Analysis on the 14 unsuccessful predictions of A2AR CAMs/CIMs.

Figure supplement 1. Experimental validation of universal activation pathway-guided CAM/CIM design.
Figure 6—source data 1. Functional and ligand binding properties of A2AR mutations.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Position</th>
<th>Mutation</th>
<th>Expression (%WT)</th>
<th>Binding assay IC₅₀ (nM)</th>
<th>Function assay (cAMP accumulation) Basal activity (% WT)</th>
<th>EC₅₀ (nM)</th>
<th>Fold change in agonist potency</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td>100</td>
<td>318.7 ± 41.2</td>
<td>100</td>
<td>78.4 ± 22.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6×44</td>
<td>F242A</td>
<td>92.0 ± 10.3</td>
<td>120.8 ± 17.8</td>
<td>196.5 ± 38.9</td>
<td>10.4 ± 1.4</td>
<td>7.5-fold increase</td>
</tr>
<tr>
<td></td>
<td>3×40</td>
<td>I92N</td>
<td>66.7 ± 6.4</td>
<td>43.8 ± 10.5</td>
<td>735.1 ± 131.8</td>
<td>N.D.*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAM</td>
<td>3×43</td>
<td>L95A</td>
<td>96.7 ± 14.2</td>
<td>91.07 ± 53.0</td>
<td>2845.0 ± 738.6</td>
<td>N.D.*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3×43</td>
<td>L95R</td>
<td>42.3 ± 4.4</td>
<td>230.6 ± 57.1</td>
<td>224.8 ± 44.4</td>
<td>N.D.*</td>
<td>Constitutively active</td>
</tr>
<tr>
<td></td>
<td>6×40</td>
<td>I238Y</td>
<td>43.0 ± 2.1</td>
<td>159.8 ± 33.6</td>
<td>1074.9 ± 81.1</td>
<td>N.D.*</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3×49</td>
<td>D101N</td>
<td>41.7 ± 4.6</td>
<td>147.5 ± 99.4</td>
<td>840.6 ± 280.1</td>
<td>N.D.*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2×50</td>
<td>D52A</td>
<td>46.3 ± 1.7</td>
<td>154.6 ± 49.4</td>
<td>79.7 ± 7.8</td>
<td>N.D.*</td>
<td>Completely abolished</td>
</tr>
<tr>
<td></td>
<td>3×40</td>
<td>I92A</td>
<td>90.0 ± 8.6</td>
<td>440.3 ± 240.3</td>
<td>70.7 ± 2.2</td>
<td>593.6 ± 66.4</td>
<td>7.6-fold decrease</td>
</tr>
<tr>
<td></td>
<td>6×44</td>
<td>F242R</td>
<td>95.0 ± 2.7</td>
<td>894.0 ± 214.7</td>
<td>63.1 ± 12.6</td>
<td>29304.3 ±</td>
<td>373.6-fold decrease</td>
</tr>
<tr>
<td></td>
<td>6×48</td>
<td>W246A</td>
<td>116.0 ± 12.5</td>
<td>21672.5 ± 5153.4</td>
<td>80.9 ± 9.2</td>
<td>17247.5 ±</td>
<td>219.9-fold decrease</td>
</tr>
<tr>
<td></td>
<td>7×45</td>
<td>N280R</td>
<td>87.7 ± 8.7</td>
<td>700.2 ± 225.7</td>
<td>78.0 ± 9.3</td>
<td>N.D.*</td>
<td>Completely abolished</td>
</tr>
<tr>
<td>CIM</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2×46</td>
<td>L48R</td>
<td>63.7 ± 5.0</td>
<td>193.9 ± 50.6</td>
<td>93.3 ± 9.1</td>
<td>N.D.*</td>
<td>Completely abolished</td>
</tr>
<tr>
<td></td>
<td>3×43</td>
<td>L95F</td>
<td>98.7 ± 22.6</td>
<td>223.1 ± 79.3</td>
<td>93.2 ± 20.0</td>
<td>609.5 ± 42.1</td>
<td>7.8-fold decrease</td>
</tr>
<tr>
<td></td>
<td>6×41</td>
<td>V239Q</td>
<td>58.7 ± 4.9</td>
<td>60.1 ± 5.7</td>
<td>80.4 ± 12.8</td>
<td>515.7 ± 30.7</td>
<td>6.6-fold decrease</td>
</tr>
<tr>
<td></td>
<td>7×49</td>
<td>N284A</td>
<td>116.3 ± 17.0</td>
<td>459.1 ± 136.1</td>
<td>73.6 ± 11.1</td>
<td>N.D.*</td>
<td>Completely abolished</td>
</tr>
<tr>
<td></td>
<td>7×49</td>
<td>N284K</td>
<td>124.0 ± 24.6</td>
<td>5007.3 ± 1279.1</td>
<td>69.0 ± 4.3</td>
<td>N.D.*</td>
<td>Completely abolished</td>
</tr>
<tr>
<td></td>
<td>3×46</td>
<td>I98A</td>
<td>105.3 ± 15.1</td>
<td>818.2 ± 311.8</td>
<td>71.8 ± 4.3</td>
<td>1821.7 ± 513.3</td>
<td>23.2-fold decrease</td>
</tr>
<tr>
<td></td>
<td>6×37</td>
<td>L235A</td>
<td>100.7 ± 11.1</td>
<td>211.3 ± 181.8</td>
<td>71.1 ± 8.5</td>
<td>298.6 ± 95.8</td>
<td>3.8-fold decrease</td>
</tr>
<tr>
<td></td>
<td>7×53</td>
<td>Y288A</td>
<td>63.3 ± 6.2</td>
<td>159.7 ± 50.2</td>
<td>102.6 ± 12.8</td>
<td>1262.2 ± 188.2</td>
<td>16.1-fold decrease</td>
</tr>
<tr>
<td></td>
<td>7×54</td>
<td>A289F</td>
<td>122.3 ± 13.9</td>
<td>75.6 ± 3.6</td>
<td>76.0 ± 10.0</td>
<td>4706.7 ± 644.1</td>
<td>60.0-fold decrease</td>
</tr>
<tr>
<td>4</td>
<td>3×50</td>
<td>R102L</td>
<td>90.3 ± 4.8</td>
<td>33.9 ± 6.3</td>
<td>79.95 ± 29.6</td>
<td>789.1 ± 63.2</td>
<td>10.1-fold decrease</td>
</tr>
</tbody>
</table>

* Basal activity was too high to determine an accurate EC₅₀ value.

† No stimulation of cAMP production was observed with 50 μM CGS21680.
Figure 6—source data 2. Analysis on the 14 unsuccessful predictions of A2AR CAMs/CIMs.

\[\Delta\text{Stability} > 0 \text{ means destabilized; } < 0 \text{ means stabilized} \] is the change of receptor stability when a mutation was introduced, calculated by Residue Scanning module in BioLuminate\(^6\). WT, wild-type.

<table>
<thead>
<tr>
<th>Position</th>
<th>Mutation</th>
<th>Effect on inactive state (3EML)</th>
<th>Effect on active state (5G53)</th>
<th>Prediction</th>
<th>Experiment result</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×46</td>
<td>I98N</td>
<td>(\Delta\text{Stability} > 0)</td>
<td>(\Delta\text{Stability} > 0), H-bonds with F44(^{2-42})</td>
<td>Stabilizes active state</td>
<td>Low expression</td>
<td>May affect receptor folding or trafficking.</td>
</tr>
<tr>
<td>3×46</td>
<td>I98E</td>
<td>(\Delta\text{Stability} > 0)</td>
<td>(\Delta\text{Stability} > 0), salt bridge with R102(^{2-45})</td>
<td>Stabilizes active state</td>
<td>CIM, >20-fold decrease in EC(_{50})</td>
<td>May affect G protein coupling interface</td>
</tr>
<tr>
<td>3×49</td>
<td>D101S</td>
<td>(\Delta\text{Stability} > 0)</td>
<td>(\Delta\text{Stability} > 0), H-bonds with Y112(^{2-53})</td>
<td>Stabilizes active state</td>
<td>Close to WT</td>
<td>May affect G protein coupling interface</td>
</tr>
<tr>
<td>3×50</td>
<td>R102H</td>
<td>(\Delta\text{Stability} > 0)</td>
<td>(\Delta\text{Stability} > 0), salt bridge with D101(^{4-39})</td>
<td>Stabilizes active state</td>
<td>Close to WT</td>
<td>May affect G protein coupling interface</td>
</tr>
<tr>
<td>3×51</td>
<td>Y103E</td>
<td>(\Delta\text{Stability} > 0), salt bridge with R107(^{2-35})</td>
<td>(\Delta\text{Stability} > 0), salt bridge with R199(^{3-60})</td>
<td>Stabilizes TM5-TM6 contacts</td>
<td>Close to WT</td>
<td>May have indirect impact or no effect on TM6 rotation</td>
</tr>
<tr>
<td>6×40</td>
<td>I238Q</td>
<td>(\Delta\text{Stability} > 0)</td>
<td>(\Delta\text{Stability} > 0), H-bonds with R102(^{2-45}) and R291(^{3-56})</td>
<td>Stabilizes active state</td>
<td>Close to WT</td>
<td>Increases TM3-TM6 contacts, but may not affect the rotation of TM6</td>
</tr>
<tr>
<td>6×40</td>
<td>I238E</td>
<td>(\Delta\text{Stability} > 0)</td>
<td>(\Delta\text{Stability} > 0), salt bridge with R102(^{2-45})</td>
<td>Stabilizes active state</td>
<td>Close to WT</td>
<td>Increases TM3-TM6 contacts, but may not affect the rotation of TM6</td>
</tr>
<tr>
<td>6×40</td>
<td>I238A</td>
<td>(\Delta\text{Stability} > 0), less hydrophobic contacts</td>
<td>(\Delta\text{Stability} > 0), less hydrophobic contacts</td>
<td>Loosens TM3-TM6 contacts</td>
<td>Close to WT</td>
<td>Destabilizes both inactive and active states, but may not affect the rotation of TM6</td>
</tr>
<tr>
<td>7×45</td>
<td>N280S</td>
<td>(\Delta\text{Stability} > 0)</td>
<td>(\Delta\text{Stability} > 0), H-bonds with W246(^{3-48})</td>
<td>Stabilizes active state</td>
<td>Close to WT</td>
<td>Destabilizes both inactive and active states, but may not affect the rotation of TM6</td>
</tr>
</tbody>
</table>

Unsuccessful prediction of 5 CAMs

<table>
<thead>
<tr>
<th>Position</th>
<th>Mutation</th>
<th>Effect on inactive state (3EML)</th>
<th>Effect on active state (5G53)</th>
<th>Prediction</th>
<th>Experiment result</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×40</td>
<td>I92Y</td>
<td>(\Delta\text{Stability} > 0), stacking with F242(^{2-44})</td>
<td>(\Delta\text{Stability} > 0), side chains rotate away from F242(^{2-44})</td>
<td>Tightens TM3-6 contacts</td>
<td>Close to WT, slightly high basal activity</td>
<td>Makes the rotation of the cytoplasmic end of TM6 easier in active state</td>
</tr>
<tr>
<td>3×50</td>
<td>R102A</td>
<td>(\Delta\text{Stability} > 0)</td>
<td>(\Delta\text{Stability} > 0), affect G protein coupling interface</td>
<td>Reduces interaction with G protein</td>
<td>Close to WT</td>
<td>A102(^{2-45}) doesn’t affect G protein coupling for A2AR</td>
</tr>
<tr>
<td>6×40</td>
<td>I238M</td>
<td>(\Delta\text{Stability} > 0), more hydrophobic contacts</td>
<td>(\Delta\text{Stability} > 0), more hydrophobic contacts</td>
<td>Tightens TM3-6 contacts</td>
<td>Close to WT</td>
<td>May stabilize the active state, but may not affect the rotation of TM6</td>
</tr>
<tr>
<td>6×44</td>
<td>F242T</td>
<td>(\Delta\text{Stability} > 0)</td>
<td>(\Delta\text{Stability} > 0), may greatly affect signal initiation</td>
<td>May block the rotation of TM6</td>
<td>Close to WT</td>
<td>T242(^{6-44}) doesn’t affect signal initiation for A2AR</td>
</tr>
<tr>
<td>6×44</td>
<td>F242L</td>
<td>(\Delta\text{Stability} > 0)</td>
<td>(\Delta\text{Stability} > 0), may greatly affect signal initiation</td>
<td>May block the rotation of TM6</td>
<td>Close to WT</td>
<td>L242(^{6-44}) doesn’t affect signal initiation for A2AR</td>
</tr>
</tbody>
</table>
Figure 6—figure supplement 1. Experimental validation of universal activation pathway-guided CAM/CIM design. a, Cell surface expression of the WT A2AR and its mutants. WT, CAMs and CIMs are coloured by black, orange and green, respectively. b, Mapping of validated CAMs/CIMs to the universal activation pathway. c, The mechanisms of CAM/CIM design. CAMs and CIMs are in green and orange, respectively.
Figure 7. Importance of the universal activation pathway in pathophysiological and biological context.

(a) Comparison of disease-associated mutations in the universal activation pathway (further decomposed into layers 1-4), ligand-binding pocket, G protein-coupling region and other regions. Red line denotes the mean value.

(b) Mapping of disease-associated mutations in class A GPCRs to the

<table>
<thead>
<tr>
<th>Layer</th>
<th>Position</th>
<th>Y2H</th>
<th>13HH</th>
<th>M44H</th>
<th>L2HH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NDI (285N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NXY (179F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NDI (280C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NDI (L136F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-SNAD (1150N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NDI (V77A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NDI (N830L,M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NDI (R197G)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

universal activation pathway. c, Key roles of the residues constituting the universal activation pathway have been reported in numerous experimental studies on class A GPCRs. 272 CAMs/CIMs from 41 receptors were mined from the literature for the 14 hub residues (i.e., residues that have more than one edges in the pathway).

The following data and figure supplements are available for figure 7:

Source data 1. Constitutively activating/inactivating mutations for the 14 hub residues in the universal activation pathway

Figure supplement 1. The universal activation pathway can be used to mechanistically interpret disease-associated mutations and CAMs/CIMs.

Figure supplement 2. Residues in the universal activation pathway are more conserved than other functional regions of GPCR.
Figure 7—figure supplement 1. The universal activation pathway can be used to mechano-
tistically interpret disease-associated mutations and CAMs/CIMs. a, Pathway-guided mechanistic interpretations of two disease mutations. b, Pathway-guided mechanistic interpretations of four CAMs/CIMs.
Figure 7—figure supplement 2. Residues in the universal activation pathway are more conserved than other functional regions of GPCR. a, Illustration of different functional regions of GPCR. b–d, Sequence pattern of the G protein-coupling region (b), ligand-binding pocket (c) and the universal activation pathway (d). e, Distribution of sequence identity (left) and similarity (right) for functional regions across 286 non-olfactory class A receptors.
Materials and Methods

Glossary.

Transmembrane domains (TMD): the core domain exists in all GPCRs, and consists of seven-transmembrane helices (TM1–7) that are linked by three extracellular loops (ECL1-3) and three intracellular loops (ICL1-3).

GPCRdb numbering scheme: a structure-based numbering system for GPCRs, an improved version of sequence-based Ballesteros–Weinstein numbering that considers structural distortions such as helical bulges or constrictions. The most conserved residue in a helix is designated n×50, while other residues on the helix are numbered relative to this position.

Node: a point in a network at which lines intersect, branch or terminate. In this case, nodes represent amino acid residues.

Edge: a connection between the nodes in a network. In this case, an edge represents a residue-residue contact.

Hub: a node with two or more edges in a network.

Constitutively activating mutation (CAM): a mutant that could increase the inherent basal activity of the receptor by activating the G protein-signalling cascade in the absence of agonist.

Constitutively inactivating mutation (CIM): a mutant completely abolishes receptor signalling.

GPCR structure data set. As of October 1, 2018, there are 234 released structures of 45 class A GPCRs with resolution better than 3.8 Å (Figure 1—Source data 1), which covers 71% (203 out of 286 receptors, including 158 receptors that have no structures but share >50% sequence similarity in the TMD with the 45 structure-determined receptors) of class A GPCRs (Figure 1a). Based on the type of bound ligand and effector, these structures could be classified into three states: inactive state (antagonist or inverse agonist-bound, 142 structures from 38 receptors), active state (both agonist- and G protein/G protein mimetic-bound, 27 structures from 8 receptors) and intermediate state (only agonist-bound, 65 structures from 15 receptors). In this study, we primarily focused on conformational comparison between inactive- and active-state structures, while also investigating the intermediate state structures. In the structure data set, 7 receptors have both inactive and active structures: rhodopsin (bRho), β2-adrenergic receptor (β2AR), M2 muscarinic receptor (M2R), μ-opioid receptor (μOR), adenosine A2A receptor (A2AR), κ-opioid receptor (κ-OR) and adenosine A1A receptor (A1AR), the active state structure of which was recently determined by cryo-EM. In addition, 32 receptors have either inactive or active structures (Figure 1—Source data 1).

Calculation of residue-residue contact score (RRCS). We developed a much finer distance-based method (than coarse-grained Boolean descriptors such as contact map and residues contact), namely residue-residue contact score (RRCS). For a pair of residues, RRCS is calculated by summing up a plateau-linear-plateau form atomic contact score adopted from GPCR–CoINPocket for each possible inter-residue heavy atom pairs (Figure 2—figure supplement 1a). GPCR–CoINPocket is a modified version of the hydrophobic term of ChemScore that has been successfully used to describe hydrophobic contribution to binding free energy between ligand and protein. RRCS can describe the strength of residue-residue contact quantitatively in a much more accurate manner than Boolean descriptors. For example, Boolean descriptors do not capture side chain repacking if the backbone atoms of the two residues are close to each other (e.g., translocation of Y7×43 away from residue at 2×43 upon GPCR activation) and local contacts involving adjacent residues (residues within
four/six amino acids in protein sequence) (e.g., disengagement between D/E3,49 and R3,50), while both cases can be well reflected by the change of RRCS (Figure 2c and Figure 2—figure supplement 1b).

All RRCS data can be found in Figure 2—Source data 1. The computational details are listed as below:

(i) For the residue pairs between adjacent residues that are within four amino acids in protein sequence, only side chain heavy atom pairs were considered, atom pairs involving in backbone atoms (Ca, C, O, N) were excluded, since the latter seldom change during GPCR activation. For other residue pairs, all possible heavy atom pairs (including backbone atoms) were included when calculating RRCS.

(ii) Atomic contact scores are solely based on interatomic distance, and they were treated equally without weighting factors such as atom type or contact orientation. In principle, weighting of atomic contact by atom type and/or orientation would improve residue-residue contact score. However, parameterization of atom type or contact orientation is relatively arbitrary, subjective and complicated, especially considering the lipid bilayer environment surrounding GPCRs. Our preliminary study for twelve structures from six receptors (bRho, β\textsubscript{2}AR, M2R, µOR, A\textsubscript{25}AR and κ-OR) revealed that amino acids with hydrophobic side chains (one-letter code: A, V, I, L, M, P, F, Y, W) contribute to the majority (~88%) of residue pairs. Meanwhile, ionic lock opening of well-known motif DRY upon receptor activation can be adequately reflected by RRCS change between D/E3,49 and R3,50. These results suggest that interatomic distance-dependent residue pair contact score may represent an acceptable approximation of actual (either hydrophobic or charge-charge) interaction energies34 and is accurate enough for identifying conserved rearrangements of residue contacts upon receptor activation.

(iii) The quality of structures is extremely important for RRCS calculation. We adopted two criteria to exclude unreliable structures and residues: (a) crystal structures whose resolution is ≥3.8 Å. Structures in this category are: 5DGY (7.70 Å), 2I37 (4.20 Å), 2I36 (4.10 Å), 5TE5 (4.00 Å), 4GBR (4.00 Å), 5NJ6 (4.00 Å), 5V54 (3.90 Å), 2I35 (3.80 Å), 5DSB (3.80 Å), 4XT3 (3.80 Å); (b) residues whose residue-based real-space R-value (RSR30) is greater than 0.35. RSR is measure of how well ‘observed’ and calculated electron densities agree for a residue. RSR ranges from 0 (perfect match) to 1 (no match); RSR greater than 0.4 indicates a poor fit71. Here we adopted a stricter cut-off, 0.35. Among the 234 class A GPCR structures, 156 have available RSR information72 (http://eds.bmc.uu.se), with 8.8% residues have RSR >0.35 and they are omitted in our analysis. For the 35 residues that constitute the universal activation pathway, 255 out of 5460 RSR data points (~4.7%, lower than 8.8% for all residues) were omitted for having RSR values >0.35.

(iv) For structures with multiple chains, RRCS were the average over all chains. For residues with multiple alternative conformations, RRCS is the sum of individual values multiplied by the weighting factor: occupancy value extracted from PDB files. Small molecule/peptide ligand, or intracellular binding partner (G protein or its mimic) was treated as a single residue.

(v) For the family-wide comparison of conformational changes upon activation, structurally equivalent residues are numbered by GPCRdb numbering scheme35, 62. Of the 35 residues in the universal activation pathway, their GPCRdb numbering in all structures is almost identical to the Ballesteros–Weinstein numbering63, the exceptions are residues at 6×37, 6×41 and 6×44 for five receptors: FFAR1, P2Y\textsubscript{1}, P2Y\textsubscript{12}, F2R and PAR2, which are all from the delta branch of class A family.

Identification of conserved rearrangements of residue contacts upon activation. Using RRCS, structural information of TMD and helix 8 in each structure can be decomposed into 400~500 residue pairs with positive RRCS. ARRCs, defined as RRCS\textsubscript{active} − RRCS\textsubscript{inactive}, reflects the change of RRCS for a residue pair from inactive- to active- state (Figure 2b-d and Figure 2—figure supplement 1b). To identify residue pairs with conserved conformational rearrangements upon activation across class A...
GPCRs, two rounds of selections (Figure 2d and Figure 2—Source data 1) were performed: (i) identification of conserved rearrangements of residue contacts upon activation for six receptors (bRho, β2AR, M2R, μOR, A2A and κ-OR), i.e., equivalent residue pairs show a similar and substantial change in RRCs between the active and inactive state structure of each of the six receptors (the same sign of ΔRRCs and |ΔRRCs| > 0.2 for all receptors) and (ii) family-wide RRCs comparison between the 142 inactive and 27 active state structures to identify residues pairs of statistically significant different (P<0.001; two sample t-test) RRCs upon activation.

Round 1. Identification of conserved rearrangements of residue contacts. Six receptors with available inactive- and active-state structures were analysed using ARRCs to identify residue pairs that share similar conformational changes. Twelve representative crystal structures (high-resolution, no mutation or one mutation in TMD without affecting receptor signalling) were chosen in this stage: 6 inactive state structures (PDB codes 1GZM for bRho, 2RH1 for β2AR, 3U0N for M2R, 4DKL for μOR, 3EML for A2A and 4DJE for κ-OR) and 6 active state structures (3PQR for bRho, 3SN6 for β2AR, 4MQS for M2R, 5C1M for μOR, 5G53 for A2A and 6B73 for κ-OR) (Figure 2d, Figure 2—figure supplement 1c and Figure 2—Source data 1). Each receptor has approximately 600 residues pairs (2A for M2R, 5C1M for μOR, 5G53 for A2A and 6B73 for κ-OR) (Figure 2d, Figure 2—Source data 1).

To identify residue pairs that share conserved rearrangements of residue contacts upon activation, two steps are performed to qualify residue pairs for the next round. Firstly, residue pairs with same sign of ARRCs and |ARRCs| > 0.2 for all six receptors were identified. There are 32 intra-receptor residue pairs (1×49:7×50, 1×53:7×53, 1×53:7×54, 2×37:2×40, 2×42:4×45, 2×43:7×53, 2×45:4×50, 2×46:2×50, 2×50:3×39, 2×57:7×42, 3×40:6×48, 3×43:6×40, 3×43:6×41, 3×43:7×49, 3×43:7×53, 3×46:6×37, 3×46:7×53, 3×49:3×50, 3×50:3×53, 3×50:6×37, 350:7×53, 3×51:5×57, 5×51:6×44, 5×58:6×40, 5×62:6×37, 6×40:7×49, 6×44:6×48, 7×50:7×55, 7×52:7×53, 7×53:8×50, 7×54:8×50 and 7×54:8×51) and 5 receptor-G protein/its mimetic residue pairs (3×50:G protein, 3×53:G protein, 3×54:G protein, 5×61:G protein and 6×33:G protein) that meet this criterion. Secondly, we also investigated residue pairs with ARRCs that are conserved in five receptors (i.e., with one receptor as exception). Considering there is no Na+ pocket for rhodopsin, 3 residue pairs (2×50:7×49, 6×44:7×45, 6×48:7×45) around Na+ pocket were analysed for five receptors but not bRho. Additionally, 3 residue pairs have 0 (3×46:3×50, 5×55:6×41) or negative (7×45:7×49) ARRCs for κ-OR but positive ARRCs for the other five receptors. As for 3×46:3×50, nanobody-stabilized active structures (β2AR: 3P0G, 4LDO, 4LDL, 4LDE, 4QKX; and μOR: 5C1M) generally have lower contact scores (<0.4) compared with G protein-bound active-state structures (2.17 for 3SN6 of β2AR, 2.57 for 5G53 of A2A and 6.93 for 3PQR of bRho). For these residue pairs, we added newly determined Gs-bound active receptors A1AR and 5-HT1B and found they have positive ARRCs, like other five receptors (Figure 4—figure supplements 1 and 2). Thus, these three residue pairs (3×46:3×50, 5×55:6×41 and 7×45:7×49) were retained. Totally, 6 residue pairs with conserved ARRCs in five receptors were rescued. Taken together, 38 intra-receptor residue pairs and 5 receptor-G protein/its mimetic residue pairs were identified to have conserved rearrangements of residue contacts upon activation.

Round 2. Family-wide conservation analysis of residue contact pattern. To investigate the conservation of residue contact pattern for the 38 intra-receptor residue pairs across these functionally diverse receptors, two-tailed unpaired t-test between inactive state (142 inactive structures from 38 receptors)
and active state (27 active structures from 8 receptors) groups were performed (Figure 2d and Figure 2—Source data 2). Thirty one residue pairs have significantly different RRCS between inactive- and active-state (P<10^-5). As rhodopsin lacks Na^+ pocket, all rhodopsin structures were neglected in the analysis of 3 residue pairs around Na^+ pocket (2×50:7×49, 6×44:7×45 and 6×48:7×45), which have good P value (<10^-3) for these non-rhodopsin class A GPCRs. 4 residue pairs were filtered out in this round due to their poor P value, i.e., there are no statistically significant difference in RRCS between inactive and active states (P=0.01 for 2×37:2×40, 0.96 for 2×42:4×45, 0.02 for 2×45:4×50 and 0.014 for 2×57:7×42).

Finally, 34 intra-receptor residue pairs (Figure 2d, Figure 4—figure supplements 1 and 2) and 5 receptor-G protein residue pairs were identified with conserved rearrangements of residue contacts upon activation, including all six residues pairs identified by the previous RC approaches.

Sequence analysis of class A GPCRs. The alignment of 286 non-olfactory, class A human GPCRs were obtained from the GPCRdb\(^{35,62}\). The distribution of sequence similarity/identity across class A GPCRs were extracted from the sequence similarity/identity matrix for different structural regions by using “Similarity matrix” tool in GPCRdb. The sequence conservation score (Figure 1—figure supplement 1) for all residue positions across 286 non-olfactory class A GPCRs were evaluated by the Protein Residue Conservation Prediction\(^{56}\) tool with scoring method “property entropy”\(^{57}\). Sequence conservation analysis (Figure 7—figure supplement 2) were visualized by WebLogo3\(^{73}\) with sequence alignment files from GPCRdb as the input.

CAM/CIM in class A GPCRs. For the 14 hub residues in the universal activation pathway, we collected the functional mutation data from literature and GPCRdb\(^{35,62}\). Mutations with “more than two-fold increase in basal activity/constitutively active” or “abolished effect” compared to the wild-type receptor were selected. Together, 272 mutations from 41 class A GPCRs on the 14 hub residues were collected, including the mutations we designed and validated in this work (Figure 7—source data 1).

Disease-associated mutations in class A GPCRs. To reveal the relationship between disease-associated mutations and associated phenotypes of different transmembrane regions\(^{74-77}\), we collected disease-associated mutation information for all 286 non-olfactory class A GPCRs by database integration and literature investigation. Four commonly used databases (UniProt\(^{58}\), OMIM\(^{59}\), Ensembl\(^{60}\) and GPCRdb\(^{54,55}\)) were first filtered by disease mutations and then merged. Totally 435 disease mutations from 61 class A GPCRs were collected (Figure 1—Source data 2).

Pathway-guided CAM/CIM design in A2AR. We designed mutations for a prototypical receptor A2AR, guided by the universal activation pathway, aiming to get constitutively active/inactive receptor. Mutations that can either stabilize active or inactive state structures of A2AR or promote/block the conformational change upon activation were designed (Figure 6c and Figure 6—figure supplement 1) and tested by functional cAMP accumulation assays. The inactive state structure 3EML and active state structure 5G53 were used. *In silico* mutagenesis was performed by Residue Scanning module in BioLuminate\(^{61}\). Sidechain prediction with backbone sampling and a cut-off value of 6Å were applied during the scanning. \(\Delta\)Stability is the change of receptor stability when introducing a mutation. We filtered the mutations by one of the following criteria: (i) \(\Delta\)Stability in active and inactive structures have opposite sign; or (ii) \(\Delta\)Stability in active and inactive structures have the same sign, but favourable interactions such as hydrogen bonds, salt bridge or pi-pi stacking exist in only one structure that can promote/block the conformational change upon activation. Totally, 15 and 20 mutations were predicted to be CAMs and CIMs, respectively. (Figure 6c and Figure 6—figure supplement 1).
cAMP accumulation assay. The desired mutations were introduced into amino-terminally Flag®-tagged human A2AR in the pcDNA3.1 vector (Invitrogen, Carlsbad, CA, USA). This construct displayed equivalent pharmacological features to that of untagged human receptor based on radioligand binding and cAMP assays. The mutants were constructed by PCR-based site-directed mutagenesis (Muta-directTM kit, Beijing SBS Genetech Co., Ltd., China). Sequences of receptor clones were confirmed by DNA sequencing. HEK-293 cells were seeded onto 6-well cell culture plates. After overnight culture, the cells were transiently transfected with WT or mutant DNA using Lipofectamine 2000 transfection reagent (Invitrogen). After 24 h, the transfected cells were seeded onto 384-well plates (3,000 cells per well). cAMP accumulation was measured using the LANCE cAMP kit (PerkinElmer, Boston, MA, USA) according to the manufacturer’s instructions. Briefly, transfected cells were incubated for 40 min in assay buffer (DMEM, 1 mM 3-isobutyl-1-methylxanthine) with different concentrations of agonist [CGS21680 (179 pM to 50 μM)]. The reactions were stopped by addition of lysis buffer containing LANCE reagents. Plates were then incubated for 60 min at room temperature and time-resolved FRET signals were measured at 625 nm and 665 nm by an EnVision multilabel plate reader (PerkinElmer). The cAMP response is depicted relative to the maximal response of CGS21680 (100%) at the WT A2AR.

CGS21680 binding assay. CGS21680 (a specific adenosine A2A subtype receptor agonist) binding was analyzed using plasma membranes prepared from HEK-293 cells transiently expressing WT and mutant A2ARs. Approximately 1.2×10^8 transfected HEK-293 cells were harvested, suspended in 10 ml ice-cold membrane buffer (50 mM Tris-HCl, pH 7.4) and centrifuged for 5 min at 700 g. The resulting pellet was resuspended in ice-cold membrane buffer, homogenized by Dounce Homogenizer (Wheaton, Millville, NJ, USA) and centrifuged for 20 min at 50,000 g. The pellet was resuspended, homogenized, centrifuged again and the precipitate containing the plasma membranes was then suspended in the membrane buffer containing protease inhibitor (Sigma-Aldrich, St. Louis, MO, USA) and stored at -80°C. Protein concentration was determined using a protein BCA assay kit (Pierce Biotechnology, Pittsburgh, PA, USA). For homogeneous binding, cell membrane homogenates (10 µg protein per well) were incubated in membrane binding buffer (50 mM Tris-HCl, 10 mM NaCl, 0.1 mM EDTA, pH 7.4) with constant concentration of $[^3H]$-CGS21680 (1 nM, PerkinElmer) and serial dilutions of unlabeled CGS21680 (0.26 nM to 100 µM) at room temperature for 3 h. Nonspecific binding was determined in the presence of 100 µM CGS21680. Following incubation, the samples were filtered rapidly in vacuum through glass fiber filter plates (PerkinElmer). After soaking and rinsing 4 times with ice-cold PBS, the filters were dried and counted for radioactivity in a MicroBeta2 scintillation counter (PerkinElmer).

Surface expression of A2ARs. HEK-293 cells were seeded into 6-well plate and incubated overnight. After transient transfection with WT or mutant plasmids for 24 h, the cells were collected and blocked with 5% BSA in PBS at room temperature for 15 min and incubated with primary anti-Flag antibody (1:100, Sigma-Aldrich) at room temperature for 1 h. The cells were then washed three times with PBS containing 1% BSA followed by 1 h incubation with anti-rabbit Alexa-488-conjugated secondary antibody (1:1000, Cell Signaling Technology, Danvers, MA, USA) at 4°C in the dark. After three washes, the cells were resuspended in 200 µl of PBS containing 1% BSA for detection in a NovoCyte flow cytometer (ACEA Biosciences, San Diego, CA, USA) utilizing laser excitation and emission wavelengths of 488 nm and 519 nm, respectively. For each assay point, approximately 15,000 cellular events were collected, and the total fluorescence intensity of positive expression cell population was calculated.
Data and materials availability: The open source code is available at GitHub (https://github.com/zhaolabSHT/RRCS). For availability of codes that were developed in-house, please contacts the corresponding authors. All data is available in the main text or the source data.

Acknowledgments: This work was partially supported by National Key R&D Program of China grants 2016YFC0905900 (S.Z.) and 2018YFA0507000 (S.Z. and M.-W.W.), National Mega R&D Program for Drug Discovery grants 2018ZX09711002-002-005 (D.H.Y.) and 2018ZX09735-001 (M.-W.W), National Natural Science Foundation of China grants 21704064 (Q.Z.), 81573479 (D.H.Y.) and 81773792 (D.H.Y.), Shanghai Science & Technology Development Fund grants 16ZR1448500 (S.Z.) and 16ZR1407100 (A.T.D.), Young Talent Program of Shanghai (S.Z.), Novo Nordisk-CAS Research Fund grant NNCAS-2017-1-CC (D.H.Y.), the Medical Research Council MC_U105185859 (M.M.B.), and annual overhead support from ShanghaiTech University and Chinese Academy of Sciences. We thank A. Sali, M.A. Hanson and A.J. Venkatakrishnan for valuable discussions, Y.M. Xu for technical assistance, and A.P. IJzerman for providing the WT A2A R plasmid.

Authors contributions: Q.Z. and S.Z. conceived the project; M.-W.W. and M.M.B. expanded the scope of the project. Q.Z. performed computational studies. Q.Z., D.H.Y., S.Z. and M.M.B. designed the mutagenesis experiments. M.W. helped with data collection and initial mutagenesis study. Y.G. wrote the code for RRCS calculation. W.J.G., L.Z., X.Q.C., A.T.D. and D.H.Y. conducted mutagenesis and pharmacology experiments with the supervision of M.-W.W. E.S., Z.-J.L. and R.C.S. provided academic support or technical inputs to the project. Q.Z., D.H.Y., M.M.B., M.W.W. and S.Z. interpreted the data and wrote the manuscript. S.Z. and M.-W.W. managed the entire project.

Competing interests: The authors declare no competing interests.
References

