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Schizophrenia, as a mental disorder, has been well documented
with both structural and functional magnetic resonance imag-
ing. The developing field of connectomics has attracted much
attention as it allows researchers to take advantage of powerful
tools of network analysis in order to study structural and func-
tional connectivity abnormalities in schizophrenia. Many meth-
ods have been proposed to identify biomarkers in schizophrenia,
focusing mainly on improving the classification performance or
performing statistical comparisons between groups. However,
the stability of biomarkers selection has been for long over-
looked in the connectomics field. In this study, we follow a ma-
chine learning approach where the identification of biomark-
ers is addressed as a feature selection problem for a classifi-
cation task. We perform a recursive feature elimination and
support vector machines (RFE-SVM) approach to identify the
most meaningful biomarkers from the structural, functional,
and multi-modal connectomes of healthy controls and patients.
Furthermore, the stability of the retrieved biomarkers is as-
sessed across different subsamplings of the dataset, allowing us
to identify the affected core of the pathology. Further analy-
sis of the connectivity strength of the affected core quantified
with the generalized fractional anisotropy (gFA) and apparent
diffusion coefficient (ADC) reveal a significant alteration in pa-
tients. Considering our technique altogether demonstrates a
principled way to achieve both accurate and stable biomarkers
while highlighting the importance of multi-modal approaches to
brain pathology as they tend to reveal complementary informa-
tion.
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1 Introduction
Schizophrenia (SZ) is a severe psychiatric disorder charac-
terized by hallucinations and delusions, as well as impair-
ments in memory, attention, executive and other high-order
cognitive dysfunctions (1). The development of magnetic
resonance imaging (MRI) has offered an effective way to ex-
amine the anatomy of the brain and has motivated numerous
scientists to explore the underlying neuropathology of SZ.
Over the past few years, advances in high-field structural and
functional neuroimaging have made it possible to map the
macroscopic neural wiring system of the human brain (2, 3).
This framework allows us to combine a graph theoretical ap-
proach with functional and/or diffusion MRI to investigate

the brain network alterations occurring in SZ (4–6). Studies
from the graph theory perspective have shown alterations of
both structural and functional brain topology in SZ character-
ized by a less efficient network organization and the limited
capacity of functional integration. Further research using dif-
fusion spectrum imaging reported the brain areas responsible
for the loss of network integration and segregation proper-
ties (5, 7, 8). However, such findings were identified using
conventional univariate strategies performing a separate sta-
tistical test at each edge of the connectome under scrutiny,
thereby requiring excessively stringent corrections for mul-
tiple comparisons. On the other hand, multivariate methods
are promising, although they require specialized approaches
when the number of parameters dominates the observations
(9). In this study, we adopt a machine learning approach
that aims at discovering the most relevant set of biomarkers
for discriminating subjects groups and thus quantitatively de-
scribing the group differences, both in terms of classification
accuracy and stability of selected features.

A Machine learning and automatic biomarker
selection

The identification of regions or connections of interest asso-
ciated with a neural disorder is referred to as biomarker dis-
covery. The identification of such biomarkers in schizophre-
nia could lead to clinically useful tools for establishing both
diagnosis and prognosis. From a machine learning perspec-
tive, the choice of biomarkers can be addressed as a feature
selection problem, aiming to find a subset of relevant features
allowing us to differentiate patients from control subjects ac-
curately.
In this work, we perform an automatic feature selection pro-
cedure in order to identify biomarkers that are relevant for
the diagnosis of schizophrenia from brain connectivity data.
In this context, biomarkers, therefore, correspond to struc-
tural or functional links between neural Regions of Interest
(ROIs).
A key challenge in feature selection lies in the fact that di-
verse feature selection methods might result in different sets
of retrieved features. Even when using the same technique, it
may produce different results when applied to different split-
tings of the data. When the dimensionality of the input data is
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large and exceeds the number of training examples, the com-
plexity grows by several orders of magnitude (10, 11). As a
consequence, when two subsets of features are compared the
decision of which should be preferred involves uncertainty
(12).
These issues underline the need to integrate the stability in the
feature selection process so that the method can retrieve con-
sistent features across random subsamplings of the dataset.
This is especially true in a biomedical context where many
authors have focused on improving the classification perfor-
mance in several mental disorders such as schizophrenia (13),
Alzheimer (14), depression (15). Even though the stability
of biomarker selection has been studied mainly in genomics
and proteomics (12? ), the stability of feature selection has
been overlooked in the connectomics community. Therefore,
we propose a general framework for stability analysis of se-
lected features, thereby enabling the robust identification of
impaired connections in the connectome of schizophrenic pa-
tients. The proposed approach is extendable to other brain
disorders as well.
In the present work, we use Support Vector Machines (SVM)
as a classifier (10). This is a supervised machine learning
method that aims to classify data points by maximizing the
margin between classes in a high-dimensional space. This
classifier offers state of the art classification performances
on a wide range of applications and is particularly appropri-
ate for high-dimensional problems with few examples. The
SVM classifier has been integrated into an embedded fea-
ture selection approach (? ). The so-called Recursive Feature
Elimination with Support Vector Machine (RFE-SVM) tech-
nique was first introduced to perform gene selection for can-
cer diagnosis on microarray data (16). More recently, it has
also been used on human brain networks to identify differ-
ences in structural connectivity related to gender (? ). This
method trains an SVM classifier removing the less impor-
tant features and iteratively re-estimating the classifier with
the remaining features until reaching the desired number of
them. Accordingly, we adopt the RFE-SVM approach to au-
tomatically select brain connections that lead to the best dis-
crimination between patients and controls, and consequently
to highlight brain regions that are responsible for the disease.
The aim of the present work is threefold: First, we investigate
the effect of structural, functional, and multi-modal (struc-
tural+functional) connectome with different resolutions in
the classification performance of schizophrenia. Second, we
perform a careful feature selection procedure across modali-
ties in order to assess the robustness of the selected features
providing the best trade-off between high accuracy and sta-
bility. Finally, the analysis of retrieved biomarkers allows us
to identify a distributed set of brain regions engaged in the
discrimination of patients and control subjects.
This paper is organized as follows: Section 2 introduces the
properties of the dataset, the procedure for connectomes esti-
mation as well as the general protocol we used in biomarkers
identification. In section 3, we present the results on stability,
classification performances, and identification of brain areas
indicative of the pathology. Finally, in section 4, we lead a

discussion on our findings and conclusions.

2 Materials and methods
A Subjects
For this study, two age-balanced groups were considered.
The cohort consisted of a schizophrenic group of 37 subjects
with a mean age of 40.9± 9.4 years and a control group of
37 healthy subjects with a mean age of 32.3±7.6 years. The
patients in the schizophrenic group were recruited from the
psychiatric clinic at the Lausanne University Hospital. They
met DSM-IV criteria for schizophrenic and schizoaffective
disorders (American psychiatry association, 2000 ref). We
obtained written consent from all the subjects following the
institutional guidelines approved by the Ethics Committee of
Clinical Research of the Faculty of Biology and Medicine,
University of Lausanne, Switzerland.

B Brain network estimation
Magnetic resonance imaging
All subjects were scanned on the 3 Tesla Siemens Trio scan-
ner with a 32-channel head coil. Three acquisition proto-
cols were part of the MRI session: 1) magnetization-prepared
rapid acquisition gradient echo (MPRAGE) sequence with in-
plane resolution of 1 mm, slice thickness of 1.2 mm of total
voxel number of 240x257x160 and TR, TE and TI were 2300,
2.98 and 900 ms respectively, 2) diffusion spectrum imaging
(DSI) sequence with 128 diffusion-weighted images of b0 as
a reference image and a maximum b-value of 8000 s/mm2.
The time of acquisition was 13 min and 27s. The number of
voxels was 96x96x34 with a resolution of 2.2x2.2x3.3 mm,
and TR and TE were 6100 and 144 ms respectively. The is-
sue of motion- artifacts linked to signal drop-outs was dealt
with by visually inspecting the signal, and no subject had to
be excluded as a result of this (17).

Structural networks
Structural and diffusion MRI data were used to estimate the
weighted and undirected structural connectivity matrices in
the Connectome Mapping Toolkit (7, 18, 19). Firstly, white
matter, grey matter, and cerebrospinal fluid segmentation was
performed on the structural data and further linearly regis-
tered to the b0 volumes of the DSI dataset. Secondly, the first
three scales of the Lausanne multi-scale atlas were used to
parcellate the grey matter. In detail, the first scale consisted
of 68 cortical brain regions and 14 subcortical regions with
scale two and three subdividing the first scale into 114 and
219 cortical regions (19). Further, deterministic streamline
tractography, estimating 32 diffusion directions per voxels,
was used to reconstruct the structural connectivities from the
DSI data(20). The normalized connection density quantified
the structural connectivity between brain regions and is de-
fined as follows,

wij = 2
SiSj

∑
f∈Ef

1
`(f) (1)
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Fig. 1. Overview of the proposed method. Feature selection is performed systematically across different partitions of the original dataset. Robustness of selected biomarkers
is assessed from the output of the RFE-SVM algorithm, and the final accuracy is averaged over subsamplings estimations.

where w represents an edge between brain regions i and j,
Si and Sj are the surface areas of regions i and j, f ∈ Ef
represents a streamline f in the set of streamlines E and `(f)
is a length of a given streamline f (2, 7). The normalisation
by brain region surfaces accounts for their slightly varying
size and the streamline length normalisation accounts for a
bias towards longer connections imposed by the tractography
algorithm.

Functional Networks
Functional connectivity matrices were computed from fMRI
BOLD time-series. Firstly, the first four-time points were
excluded, yielding the number of time points to be T =
276 (21). Rigid-body registration was applied to individual
timeslices for motion-correction. The signal was then lin-
early detrended and corrected for physiological confounds
and further motion artifacts by regressing white-matter, cere-
brospinal fluid, and six motion (translations and rotations)
signals. Lastly, the signal was spatially smoothed and
bandpass-filtered between 0.01−0.1 Hz with Hamming win-
dowed sinc FIR filter. Linear registration was performed be-
tween the average fMRI and MPRAGE images to obtain the
ROIs timeseries(22). An average timecourse for each brain
region was computed for the three atlas scales. In order to ob-
tain the functional matrices, the absolute value of the Pearson
correlation was computed between individual brain regions’
timecourses. All of the above was performed in subject na-
tive space with Connectome Mapper Toolkit and personal-
ized Python and Matlab scripts(18)(23).

C Biomarker evaluation protocol
Our evaluation methodology is based on Abeel et al 2010
(24) used for biomarker identification in cancer diagnosis on
microarray data. In order to assess the robustness of the
biomarker selection process, we generate slight variations

of the dataset and compare the outcome of selected features
across these variations. Therefore, for a stable marker se-
lection algorithm, small variations in the training set should
not produce important changes in the retrieved set of fea-
tures. Concretely, we generate 200 datasets from the orig-
inal one, repeating 20 times 10-fold cross-validation (CV).
Subsequently, for each CV partition, 90% of folds are used
as a training set for selecting the model and features, and
the remaining 10% as the testing set to provide an unbiased
evaluation of a final model and assess the performance of the
classifier. Therefore, the overall accuracy is given by the av-
erage testing accuracy across subsamplings. See Figure 1 for
a schematic view of the methodology.

Assessing the stability of feature selection
We consider the vectorized connectivity matrices of the con-
nectomes as input features for the biomarker selection pro-
cess. Therefore, for a given connectome, one structural fea-
ture refers to the normalized connection density between two
linked brain regions, whereas a functional feature refers to
the Pearson correlation between two individual brain time
courses.
We consider a dataset with M = 74 subjects and N fea-
tures. If we denote the considered connectome resolution as
d∈ {83,129,234}, the number of features isN = d(d+1)

2 be-
cause of the symmetry of the connectivity matrices. Drawing
k = 200 subsamplings and after applying a feature selection
procedure (RFE-SVM) in the 90% of each subsampling, we
obtain a respective feature signature, i.e. sequence of indices
of selected features. Considering two signatures fi and fj
obtained from different subsamplings i and j, the stability
index (25) between fi and fj is defined as:

KI(fi,fj) = rN −s2

s(N −s) = r− (s2/N)
s− (s2/N) (2)
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where r = |fi∩fj | and s= |fi|= |fj |, the size of the signa-
ture, is the number of selected features. This quantity mea-
sures the consistency between pairs of features. For s and N
fixed KI increases when increases r, reaching its maximum
at 1 when the two subsets are identical. The minimum value
is bounded from below by −1 when the subsets are perfectly
disjoint and the signature size of N/2. The overall stability
index for a sequence of signatures is defined as the average
of all pairwise stability indices on k subsamplings:

Itot = 2
k(k−1)

k−1∑
i=1

k∑
j=i+1

KI(fi,fj) (3)

Given that Itot is bounded between−1 and 1, the greater this
value the better the agreement between the selected subsets
of features. In particular, a negative value for Itot indicates
that the potential agreement between the selected biomarkers
is mostly due to chance. In the sequel we will refer to the
overall stability Itot as the Kuncheva index (25).

D Measuring the classification performance
Because our dataset is class balanced and the task is a binary
classification problem, we adopt the accuracy as the metric
to quantify the performance of classification. This metric is
defined as the ratio of correct classifications to the number of
classifications done as follows:

ACC = TP +TN

TP +TN +FP +FN
(4)

where TP is true positive (number of control subjects clas-
sified correctly), TN is the true negative (patients classified
correctly), FP is false positives (number of patients classi-
fied as control subjects) and FN is false negatives (number of
control subjects misclassified).

E Embedded feature selection (RFE-SVM)
In this work we use a linear SVM classifier (10). SVM has
proven state of the art performance in computational biol-
ogy (26) in particular with problems of very high dimension,
scaling very well as a function of the number of examples.
Given a set of data examples, SVM aims to find the hyper-
plane that has the largest distance to the nearest training data
points of any class. The solution of the optimization problem
provides the coefficients of such a hyperplane as an affine
combination of the support vectors, i.e., points lying on the
max-margin hyperplane of separation between classes, and
the training examples. These coefficients can be interpreted
as a strength or contribution of each feature to the decision of
the hyperplane. As a consequence, the square value of each
coefficient (or weight) can be used as a score to rank features
from the most to the least important for the selection process.
Recursive feature elimination SVM (RFE-SVM) (16) is an it-
erative algorithm integrating a ranking criterion for eliminat-
ing features in a backward fashion. Starting with the whole
set of features, a linear SVM is estimated using the training
set, and their features are ranked according to the weights as-
signed by the algorithm. Consequently, the least important

features are removed and the remaining ones are used to train
a new model, repeating the process until reaching a desired
minimal subset of features.
The RFE-SVM algorithm has a set of internal parameters in-
fluencing the computational complexity and the accuracy of
the method. The fraction E of features to remove at each
step of RFE (also called step size) is critical for the running
time. Dropping one feature at a time allows a finer selec-
tion but with a prohibitive computational cost. Following the
work of Abeel et al. (24), we drop 20% of the least relevant
features at each iteration by default. Yet, a stopping crite-
rion is needed to finish the iterative process. Thus, in our
experiments, we dropped features until reaching a minimum
of s ∈ {0.5,1,2,5,10,25,50} percentage of selected features
(stopping criterion).
Another critical parameter is the regularization constant C
of the SVM. The C parameter controls the misclassification
rate of the classifier. A larger value makes the optimization
choose a smaller margin hyperplane, losing generalization
capabilities. The smaller theC, the larger the margin of sepa-
ration, yielding more misclassified points. Therefore this pa-
rameter influences the classification accuracy of the model.
We cross-validate the optimal C using only the training set,
e.g., the 90% of each subsampling.

3 RESULTS
A Connectomes classification and features sta-

bility
First, we investigated the effect of different brain connectiv-
ity modalities and different scales in the discrimination of pa-
tients and normal controls. For each case, we control the step
size and the percentage of selected features of the RFE-SVM
algorithm, assessing their impact on the classification accu-
racy and the stability of the selected features.
Figures 2, 3 and 4 show the average classification accuracy
after performing RFE-SVM as well as the stability of selected
biomarkers across modalities and scales. It can be seen that
across scales, the functional connectivity matrices (Fig. 3)
achieve better accuracies than the structural matrices (Fig. 2),
but conversely, structural matrices are more stable than func-
tional. However, when combining the two modalities, i.e., by
concatenating features of both modalities and letting the al-
gorithm choose a blend of structural and functional features
we achieve the best performances (Fig. 4) in terms of both ac-
curacy and stability. Note that the multi-modal curves over-
lap more than the structural and functional ones in the same
resolutions. This shows that the multi-modal matrices pro-
vide similar performance in both accuracy and stability with
respect to the number of dropped features in the RFE-SVM
algorithm. It is to be noted that in the multi-modal case, the
percentage of finally selected features is divided by two since
we combine twice as many features as in the case of struc-
tural or functional connectivity alone. In doing so, the stop-
ping criterion will be the same for all modalities. We observe
in all cases that the stability increases with the percentage of
selected features, which is expected since the overlapping be-
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B Identification of brain regions in schizophrenia diagnosis

Structural 83x83 Structural 129x129 Structural 234x234

step size step size step size

step sizestep sizestep size

Fig. 2. Each column represents the average classification accuracy (top) and stability (bottom) for a given scale of the structural connectome. The colors correspond to the
percentage of features dropped (step size) at each step of the RFE-SVM algorithm.

Functional 83x83 Functional 129x129 Functional 234x234

step size

step size

step size

step size

step size

step size

Fig. 3. Each column represents the average classification accuracy (top) and stability (bottom) for a given scale of the functional connectome. The colors correspond to the
percentage of features dropped (step size) at each step of the RFE-SVM algorithm.

tween signatures in Eq. 3 is more likely when more features
are considered.
To further investigate the effect of modalities and resolutions
on both classification accuracy and stability, we extract the
best scores from Figs. 2, 3 and 4, and plot them in Fig. 5.
As demonstrated, the best trade-off between both metrics is
achieved by 129×129 and 83×83 multi-modal resolutions.
The 234× 234 multi-modal resolution has the lowest stabil-
ity, which can be explained by the fact that finer resolutions

are subsamplings of smaller ROIs introducing redundant and
correlated edges in the connectome.

B Identification of brain regions in
schizophrenia diagnosis

We proceed with the identification of brain areas involved in
the classification of patients and controls. For simplicity in
the identification of brain regions and comparison with other
authors, we analyze the results for the multi-modal 83× 83
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Multimodal 83x83 Multimodal 129x129 Multimodal 234x234

step size step size step size

step size step size step size

Fig. 4. Each column represents the average classification accuracy (top) and stability (bottom) for a given scale of the multimodal connectome. The colors correspond to the
percentage of features dropped (step size) at each step of the RFE-SVM algorithm.

connectome.
Selected features in the graph space correspond to links rep-
resenting either connection densities in the structural ma-
trices or Pearson correlations in the functional connectome.
Furthermore, inspecting the frequency of each selected fea-
ture across subsamplings informs us about the overall rele-
vance of the edge in the classification. In other words, the
frequency of an edge is indicative of the importance of the
associated ROIs in the classification task.
Given a brain connectivity matrix at a resolution r we de-
fine W as the r× r matrix where the element wi,j encodes
the frequency at which the edge (i, j) is selected as relevant
across subsamplings. Thus, the degree of relevance of an ROI
i reads:

di =
∑
j∈Ni

wi,j (5)

Figure 7 represents the degree of relevance of brain regions
for the multi-modal 83×83 connectome sorted in decreasing
order. We defined the affected core (a-core) to be composed
of brain areas with a degree of relevance higher than the over-
all average. These findings overlap with the brain regions in
the definition of the affected core of Griffa et al. 2015 (7).
We plot the brain surface in Figure 9, normalizing both FC
and SC by the sum of all their connections and plotted the
regions above the median distribution.

C Characterizing intergroup differences
We also investigate the influence of the selected biomarkers
in the brain connectivity networks for patients and healthy
subjects. To do so, the connectivity strength inside and
outside the identified a-core was estimated and compared
between both groups. The connectivity strength between

Fig. 5. Accuracy versus stability for all considered modalities and resolutions.

ROIs was quantified with two metrics: the inverse appar-
ent diffusion coefficient (iADC) and the generalized frac-
tional anisotropy (gFA). These measures were weighted by
the tract size expressed as the number of fibers. Subsequently,
they were averaged over all connectivity strengths between
a-core nodes and all connectivity strengths between regions
outside the a-core. We reported the p−values from the
Mann–Whitney–Wilcoxon (MWW) test for between-group
differences of the averaged connectivity strengths, with a sig-
nificance level α= 0.05.

As can be seen in Figure 6, the weighted gFA and weighted
iADC were altered in patients compared with controls. When
averaging within the a-core the gFA was decreased with
p−value = 0.00017 as well the iADC with p−value =
0.01845. None difference between groups was found in the
outside a-core network of averaged gFA and iADC.
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C Characterizing intergroup differences

Left hemisphere

Right hemisphere

Fig. 7. Degree of relevance for ROIs in the structural mode of the multimodal 83×83 connectome. The horizontal line is the average degree of relevance.

Left hemisphere

Right hemisphere

Fig. 8. Degree of relevance for ROIs in the functional mode of the multimodal 83×83 connectome. The horizontal line is the average degree of relevance.
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Node strengths for multimodal 83x83 

Fig. 9. Brain surface representation of brain areas with higher relevance degree than the average for the 83×83 resolution of the multi-modal structural and functional mode.

iADC

gFA

Within a-core Outside a-core

Fig. 6. Boxplots of the distribution of connectivity strength averaged within (left) and
outside the a-core. Both considered metrics, the generalized fractional anisotropy
(gFA) and inverse apparent diffusion coefficient (ADC) were weighed by the size of
the tracts.

4 CONCLUSIONS
This paper has investigated the effect of different connectivity
modes of the human connectome in the identification of ro-
bust biomarkers for the diagnosis of schizophrenia. We per-
form an automatic feature selection process on the edge space
aiming to retrieve a compact subset of meaningful biomark-
ers performing accurately on the diagnosis of schizophrenia.
Besides, we analyze the robustness of the retrieved features
concerning the sample variation, based on the fact that stable
biomarkers will not change dramatically in different subsam-
plings of the underlying dataset (24). It turns out that com-
bining structural and functional connectivity matrices as a
multi-modal representation of connectomes provides the best
trade-off between high accurate and stable biomarkers.
Importantly, the fact that the best accuracy and stability was
achieved by combining SC and FC features reflects the rele-
vance of both approaches to studying and classifying brain
disorders. It contributes to the literature of the relation-
ship between structural and functional large-scale networks
(23, 27) and highlights the importance of understanding both

approaches to explain complex neural disorders at least inso-
far the prediction of them is concerned.
Based on the frequency from which the RFE-SVM algorithm
selects relevant edges, we can map edges to the node space by
looking at the strengths of connection densities or correlation
between brain regions. The degree of relevance for nodes al-
lows us to identify the affected core as the brain regions that
are highly active during the training phase and therefore, are
selected more often for relevant edges. Our findings over-
lap results from Griffa et al. 2015 (7) and provide further
evidence of brain regions involved in the pathology. Further-
more, they offer a unique perspective in defining the affected
core both from the influence of SC and FC and hence defin-
ing an SC-FC a-core which might give a richer description of
the regions that are affected in SCHZ (6, 7).
The alterations of gFA and iADC values within and outside
the a-core depicted in Fig. 6, suggest a micro-structural im-
pairment of the a-core regions given by an interruption of
white matter across the affected core circuits.
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