

Exploring the design space of recombinase logic circuits.

Sarah Guiziou ​† ​1​* ​#​, Guillaume Pérution-Kihli ​† ​2​, Federico Ulliana ​2​, Michel Leclère ​ ​‡​2​, Jérôme
Bonnet​ ​‡​1​*.
1 ​Centre de Biochimie Structurale (CBS). INSERM U154, CNRS UMR5048, University of Montpellier,
France.
2 ​Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM). CNRS
UMR 5506, University of Montpellier, France.
† These authors contributed equally to this work
‡ Co-last authors
​ ​Current address: Department of Biology, University of Washington, Seattle, Washington 98195, USA
*to whom correspondence should be addressed: ​guiziou.sarah@gmail.com​,
jerome.bonnet@inserm.fr

Abstract
Logic circuits operating in living cells are generally built by mimicking electronic layouts, and
scale-up is accomplished using additional layers of elementary logic gates like NOT and
NOR gates. Recombinase-based logic, in which logic is implemented using DNA inversion or
excision, allows for highly efficient, compact and single-layer design architectures. However,
recombinase logic architectures depart from electronic design principles, and gate design
performed empirically is challenging for an increasing number of inputs. Here we used a
combinatorial approach to explore the design space of recombinase logic devices. We
generated combinations and permutations of recombination sites, genes, and regulatory
elements, for a total of ~19 million designs supporting the implementation of all 2- and
3-input logic functions and up to 92% of 4-input logic functions. We estimated the influence
of different design constraints on the number of executable functions, and found that the use
of DNA inversion and transcriptional terminators were key factors to implement the vast
majority of logic functions. We provide a user-friendly interface, called RECOMBINATOR
(​http://recombinator.lirmm.fr/index.php ​), that enable users to navigate the design space of
recombinase-based logic, find architectures implementing a specific logic function and sort
them according to various biological criteria. Finally, we define a set of 16 architectures from
which all 256 3-input logic functions can be derived. This work provides a theoretical
foundation for the systematic exploration and design of single-layer recombinase logic
devices.

1

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

mailto:guiziou.sarah@gmail.com
http://recombinator.lirmm.fr/index.php
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

Keywords: synthetic biology, biological computing, recombinase, logic gates,
database, circuit design.

[MAIN TEXT]

INTRODUCTION
The field of synthetic biology aims at engineering new biological systems and functions to
solve pressing challenges in health, environment, or manufacturing, and to answer basic
research questions ​1​. Most engineered biological systems are designed using sensor, signal
processing, and output modules ​2 ​3​. In the past years, large efforts have been devoted to
reprogram cellular behavior by engineering logic devices operating within living cells ​using
transcriptional regulators ​4,5​, RNA molecules ​6,7​, proteins ​8,9​, or site-specific recombinases
10–12​.

Recombinase logic is of particular interest as it supports the implementation of complex logic
functions using reduced, single-layer designs ​10​. Recombinase logic devices operate via
recombinase mediated irreversible inversion or excision of regulatory elements controlling
gene expression. Recombinase logic devices are highly modular (i.e. inputs are easily
modified by changing the control signal driving integrase activity), are capable of data
storage ​13–15​, and can be adapted to various species with minimal modifications ​11,16–19​.

Several recombinase logic systems operating in single-cell or multicellular systems have
been described in recent years, mostly using serine integrases ​10–12​. All 2-input logic
functions have been realized through Boolean Integrase Logic (BIL) gates, using a
combination of DNA inversion, excision, asymmetric terminators and promoters, and one
pair of sites and integrase per input ​10 (Table S1). Another approach, termed BLADE, used
excision-based recombinase devices and integrase site variants to implement all 2- and
3-input logic gates in single-layer single-cell devices ​11​. BLADE offers a single, modular
genetic layout albeit with a less compact design since the number of required integrase site
variants increases exponentially in the number of inputs. The BIL gate strategy on the other
hand is more flexible and can potentially lead to most compact genetic layouts, which could
be easier to debug, implement, and scale, while however being highly divergent and ​ad-hoc.

Here we aimed to explore the design space of recombinase logic devices built using the BIL
gate strategy. Other types of cellular logic (e.g. transcription-factor based) have explored
circuit design spaces using electronic principles ​4​. Recombinase logic devices however
mark a departure from electronic layouts mimikry, and methods to explore their design space
have been lacking. Systematic design rules have been defined to generate a reduced set of
recombinase logic devices ​20​, but these approaches do not support the design of all possible
single-layer recombinase logic devices.

In this work, we set up two objectives: (i) to systematize the design of recombinase logic
devices based on the BIL gates strategy (Table S1) for an increasing number of inputs (i.e 3
and 4 inputs), and (ii) to determine if all 3-input and 4-input logic functions could be
implemented using BIL gate design.

2

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://paperpile.com/c/XSSzqt/JyTz
https://paperpile.com/c/XSSzqt/7RzW
https://paperpile.com/c/XSSzqt/SA2d
https://paperpile.com/c/XSSzqt/VFJy+pygh
https://paperpile.com/c/XSSzqt/e1w9+GOng
https://paperpile.com/c/XSSzqt/Hzwa+dU44
https://paperpile.com/c/XSSzqt/9ph3+zy0a+cMWT
https://paperpile.com/c/XSSzqt/9ph3
https://paperpile.com/c/XSSzqt/BjA9+xGvD+57Qg
https://paperpile.com/c/XSSzqt/zy0a+SagO+lkGF+toeM+XnJc
https://paperpile.com/c/XSSzqt/zy0a+cMWT+9ph3
https://paperpile.com/c/XSSzqt/9ph3
https://paperpile.com/c/XSSzqt/zy0a
https://paperpile.com/c/XSSzqt/VFJy
https://paperpile.com/c/XSSzqt/wWVR
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

We used a combinatorial approach in which we generated million of combinations and
permutations of recombination sites, genes, and regulatory elements. The ~19 million
architectures generated in this work can implement all 2- and 3-logic functions and 92% of
4-input logic functions. We provide a web-interface, called RECOMBINATOR, from which
users can obtain all possible architectures for any desired logic functions, and sort them
according to specific biological constraints. Finally, we defined a reduced set of sixteen logic
functions and corresponding architectures which once optimized should support the
implementation of all 3-input logic functions. The RECOMBINATOR database supports the
exploration of a wide range of single-layer recombinase-logic circuits designs and will
facilitate the deployment of recombinase logic for many synthetic biology applications.

3

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

RESULTS

1 - Formalizing logic architecture generation.

Recombinase-based logic devices are built by composing recombinase sites with biological
parts controlling gene-expression, plus at least one gene to provide the device output. In
order to generate our library of logic designs, we first developed a formalization for biological
parts functionality (semantics to which are associated biological elements) (Supplementary
text 3.1). We then generated recombinase site arrays (structures) that were functionalized by
combinatorially inserting semantics at each intersite position. These functionalized structures
were then converted to architectures by replacing semantics by their corresponding
biological element (Fig S1).

Formalizing functionality of biological parts.

Figure 1: Formalizing functionality of biological parts and part concatenations into a reduced
set of semantics (A) Formalism for the 6 semantics for a single DNA orientation and
corresponding biological elements. ​In terms of gene expression, DNA parts and their composition
can have 6 different functionalities in a single DNA orientation, called semantics: neutral (no function),
promote (promoter), terminate (terminator), encode (gene coding sequence), encode and promote
(concatenation of gene followed by a promoter), and express (concatenation of promoter then a
gene). ​(B) Example of forward and reverse semantics for parts and part concatenations. Each
part and part concatenation have a semantic in forward and in reverse orientation represented as
f(forward)/f(reverse). ​(C) Correspondence between semantics and elements. ​The columns
correspond to the forward semantics and the lines to the reverse semantics. In each cell of the table,

4

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

the element corresponding to semantics concatenation is represented. As the “express” semantic (fX)
prevails over any other semantic in both orientations, it is represented separately at the right of the
table.

In our design, we used three types of biological parts: promoter, terminator, and gene. While
these parts for gene expression can be composed in an infinite manner, the parts and the
composition of these parts are reducible to a limited number of semantics corresponding to
their function in the context of gene expression. We formalized here this finite set of
semantics.

Each biological part implement one semantic: a promoter promotes the initiation of
transcription (fP), a terminator terminates transcription (fT), and a gene encodes for a
function (encoded by a RNA molecule and/or a protein) (fG) (Fig1C). We assume that the
semantic of these parts is neutral in reverse orientation (fN). Each part has consequently a
forward and reverse semantic (f-/f-), e.g. a promoter in forward orientation has a fP semantic
and a fN semantic in reverse orientation, i.e. (fP/fN) (Fig1D).

The combination of parts two-by-two leads to only two novel semantics, as several
combinations are otherwise being simplifiable in the four previously defined semantics
(Table S2). The two novel semantics are: (1) the expression of a gene (fX) corresponding to
the concatenation of a promoter with a gene, and (2) the double semantic encapsulating
both promotion and encoding (fGP) corresponding to the concatenation of a gene with a
promoter (Fig1C).

To summarize, in one orientation (e.g. 5’->3’), all concatenations of biological parts can be
reduced to 6 semantics: neutral (fN), promote (fP), terminate (fT), encode (fG), express (fX),
encode and promote (fGP). Considering both orientations, 26 semantics exist, as the
semantic “express” prevails over all other semantics in both orientations (Fig1; Table S2;
Supplementary text 3.1).

Representing recombination site arrays as structures composed of well-balanced
sequences of brackets and parentheses

Site-specific recombinases drive the logic devices by catalyzing transitions between different
recombination intermediates having different output states. Each input signal induces the
activation of a single recombinase using either transcriptional, translational or
post-translational activation. A recombinase recognizes two specific DNA sequences called
pair of recombination sites and mediates excision of the DNA sequence placed between
sites in parallel orientation, or inversion for sites placed in antiparallel orientation (Fig2A-B).

In order to generate all possible site permutations, we used brackets and parentheses to
represent recombination sites respectively in inversion and excision orientations. We called
structure ​the sequence of parentheses and brackets representing a recombination site array.
As we focused on combinatorial logic, recombination reactions must be independent,
therefore recombination sites must not be interleaved. We thus generated only structures
composed of well-balanced sequences of brackets and parentheses (corresponding to a

5

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

Dyck word, see methods and supplementary materials for details). Consequently, the
identification of site pairs is unambiguous, and no annotation of parentheses and brackets is
required (e.g. Fig S2).

Architecture generation
To implement logic, biological parts are placed between integrase sites conditioning their
excision or inversion and subsequent effect on gene expression. Therefore, after having
generated structures, we generated ​functional ​structures by placing a semantic in each
available space between brackets or parentheses.

While various biological part concatenations can have the same semantic, we selected a
single element to encode each of the 26 semantics (Fig1C-D). The choice of each element
was guided by several criteria. As a general design rule, the chosen element had to be the
simplest concatenation of parts capable of encoding the semantic of interest. More
specifically, we aimed to use elements composed of the minimum number of parts, and
respecting as much as possible the following two architectural constraints (e.g. Fig S3A).
First, we prioritized avoiding promoters facing each other, a configuration known to generate
interferences and unexpected transcriptional behavior (e.g. PR-PF is favored to PF-PR) ​21,22​.
Then, we chose elements having the minimum number of parts between a gene and the
promoter controlling its transcription (e.g. GF-TR is favored to TR-GF), as gene expression
generally decreases with the distance between the promoter and the gene ​23​.

We then generated architectures from functional structures by replacing semantics by their
corresponding element (Fig2C).

Figure 2: Formalization rules for generating a complete and finite design space. (A and B)
Recombination mechanisms and its formalism. ​Each integrase is expressed in the presence of a
specific input signal. In A, the integrase sites (triangles) are in the same orientation, the integrase
mediates excision of the DNA between the two sites (here a promoter). Brackets are used to
represent integrase sites in excision orientation and a vertical bar for used site (either attL or attR)

6

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://paperpile.com/c/XSSzqt/TtMk+yLcb
https://paperpile.com/c/XSSzqt/N3xl
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

resulting from the excision. In B, the integrase sites are in opposite orientation, inversion of the DNA
between the two sites is then performed by the integrase (here a gene). Parentheses are used to
represent integrase sites in inversion orientation and curly braces for the resulting used sites (both
attL and attR). ​(C) Workflow for generating an architecture​. Site structures are generated as
functionalized Dyck words. Each space between sites, considered as variable, is filled with semantics
using a backtracking algorithm to obtain functionalized structures. Each semantic is associated to one
element, so that the architecture corresponding to each functionalized structure is obtained by direct
replacement.

2 - Algorithmic method for obtaining irreducible and non-redundant architectures.
We aimed at generating a recombinase device database composed of irreducible and
non-redundant architectures and without chiral pairs of architectures. An irreducible
architecture is an architecture in which no part can be removed without changing the logic
implemented (e.g. Fig S3B). A non-redundant architecture is an architecture which
implement a Boolean function which is not simplifiable into a Boolean function with a
reduced number of inputs. A chiral pair of architectures corresponds to two architectures
which are reverse-complement from each other (e.g. of chiral structures Fig S2C). We
performed the generation and sorting at the level of functionalized structures, and the
obtained set of irreducible and non-redundant functionalized structures was then converted
in architectures (Fig S1).

From one architecture, we generated the derived architectures, corresponding to the
different architectures resulting from integrase-mediated recombination (Fig 3A). A derived
architecture corresponds to a specific input state, and from one architecture: 2^N-1 derived
architectures are generated, with N being the number of integrase site pairs (equivalent to
number of inputs). For each input state, the algorithm determines the gene expression status
of the architecture. Determination of gene expression status was performed using a set of
rules (Supplementary text3.3 and Table S2) that translate the total concatenation of
semantics into a general semantic indicating its gene expression state, enabling the
generation of the architecture's truth table.

Importantly, during the generation, we did not attributed inputs to integrases and
recombination site pairs. All parenthesis and/or brackets can eventually be associated to a
specific input. All logic functions corresponding to the various input permutations are thus
implementable with one architecture (Fig3B). As logic functions are in the same
permutation-class (P-class) if they are equivalent by permutation of inputs, a given
architecture implements a complete P-class ​24​.

7

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://paperpile.com/c/XSSzqt/h0M8
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

Figure 3: From architecture to truth table. (A) Generation of architecture derived states and of
the corresponding truth table. ​For a given architecture, here also represented as a biological
device, the derived architectures corresponding to the different input states are obtained by simulating
integrase recombination. In this example, in the presence of one input (red) corresponding to the state
01, the gene is inverted, in the presence of the blue input (state 10), the promoter is excised and in
the presence of the two inputs, the promoter is excised and gene is inverted. From each architecture
and derived architecture, the gene expression state is obtained, and the truth table is generated. ​(B)
From one architecture, implementation of several logic functions belonging to the same
P-class. ​By differentially connecting inputs to integrases, various logic functions are obtained from the
same architecture. For example, the function NOT(B).A realized by connecting input B to integrase 1
(blue) and input A to integrase 2 (red). The permutation function NOT(A).B is obtained by permuting
the connections.

3 - Database analysis.

We performed the database generation for up to 4 inputs. We obtained 18,163,227
architectures implementing 3,608 ​P-classes corresponding to 59,820 logic functions. We
found that using our specifications, all 1-, 2- and 3-input functions and P-classes were
implementable (Table 1). On the other hand, 92.25% of the 4-input logic functions were
implementable, corresponding to 90.4% of the 4-input P-classes (the discrepancy between
the number of functions and P-classes arise from the fact that P-classes contain a different
number of functions).

8

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

Number of
inputs

Number of
architectures

Number of
function
implemented

% of
implemented
functions

Number of
P-class
implemented

% of
implemented
P-classes

1 10 2 100% 2 100%

2 724 10 100% 8 100%

3 96,981 218 100% 68 100%

4 18,065,512 59,590 92.25% 3530 90.4%

Table 1: Database characteristics. ​The ​number of generated architectures and the
corresponding functions/P-classes implemented are represented. Only non-redundant
Boolean functions are represented. The percentages of implemented functions and of
implemented P-classes were calculated as percentages of the total number of functions and
P-classes corresponding to a given number of inputs (Table S3).

Implementability of logic functions
Over all the 3,904 4-input P-classes, 374 P-classes are not implementable with our circuit
specifications. These P-classes are then the more complex ones to implement using
recombinase logic. We sought to understand if non-implementable P-classes shared
common properties. We started by searching if a correlation existed between the properties
of the logic equations and P-class implementability.

We write logic functions as a sum of product of NOT or IDENTITY functions, corresponding
to the minimal disjunctive form also called minimal SoP (sum of product) form ​25​. A
disjunctive form is called minimal if there exists no other equivalent expression involving
fewer products, and no other equivalent expression involving the same number of products
but a smaller number of literals ​25​.

We hypothesized that the most difficult P-classes to implement were the ones with the
largest equation, such as while written in a minimal disjunctive form, these equations
contained the highest number of terms, and the highest number of literals per term. Indeed,
the non-implementable 4-input P-classes correspond to the P-class with the highest number
of terms and highest number of literal per terms (Fig4A). While a total of 9.6% of 4-input
P-classes are not implementable, this number reaches 23.7% for P-classes with more than 4
terms and more than 2.5 literals per term (Table S4).

However, we found some exceptions to this trend: some clusters of P-classes with a very
high-number of terms and literals per term, such as 8 terms and more than 3 literals per
term, and 7 terms and 4 literals per term, were totally implementable. These exceptions
correspond to complete or partially symmetric functions (See supplementary text 3.4), such
as functions which are entirely or partially dependent on the number of inputs present, e.g. a
2-input XOR function.This can be explained by the fact that, in comparison to other design
strategy such as repressor-based logic, symmetric functions are easily implemented with
recombinase logic using nested inversion (​10​; Supplementary text 3.4).

9

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://paperpile.com/c/XSSzqt/WYG7
https://paperpile.com/c/XSSzqt/WYG7
https://paperpile.com/c/XSSzqt/9ph3
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

Number of architectures per P-class.
The number of architectures capable of implementing a particular P-class is highly variable,
ranging from 1 to 1.4.10^6 (Fig4B) (6 P-classes with only one architecture: Supplementary
text 3.5), and widely distributed (Fig4C). For implementable 4-input logic functions, the
median number of architectures is of 252, providing a wide design space for most functions.

Similarly than for implementability, P-classes with the highest number of possible
architectures are P-classes with the lowest number of terms and literals per term,
corresponding to the simplest functions (Fig4B, 4C left panel). Reciprocally, the P-classes
with the lowest number of possible architectures are the ones with the highest number of
terms and literals per term, corresponding to the more complex functions (Fig4B, 4C, right
panel). While the figure 4B represents the mean number of architectures for a cluster of
P-classes with a specific number of terms and literals per term, we also plotted for each
cluster the distribution of the number of architectures (Fig4C and FigS4). We found that the
distribution of the number of architectures was quite homogeneous in each cluster and
shifted from a high to a low number of architectures when P-classes complexity increased.

Figure 4: Implementability and number of possible architectures of P-classes according to
their complexity. ​(​A) and (B) P-classes with a specific number of terms and of literals per term are

10

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

represented in the corresponding x and y positions by a dot with a diameter proportional in
logarithmic scale to the number of P-classes. ​Representing in (A) the implementability of
P-classes, the blue dots correspond to all 4-input P-classes and the red ones to the not
implementable 4-input P-classes. In (B), only the 4-input implementable P-classes are represented.
Representing the number of possible architectures according the P-class complexity, ​the dot
colors are associated to the mean number of possible architectures for each set of P-classes. Blue
corresponding to a reduced number of architectures and yellow the highest number of architectures. 2
dots are surrounded by respectively an orange and red rectangle, corresponding to the two P-class
sets represented in (C). Detailing (B), the distribution of the number of architectures for these two sets
of P-classes is represented. For P-classes with 4 terms and 2.25 literals per term, the distribution is in
teal (blue/green) and for 5 terms and 3.2 literals per term in light green (used bin is 20). The
distribution for all 4-input P-classes is also represented in grey as reference (used bin is 40).

Influence of design specifications on P-classes implementability

Previously, various strategies have been defined for the design of recombinase-based
devices using either only excision ​11,12,26 or mainly inversion and terminator based elements
10​. In our database, we generated all possible designs using both excision and inversion, and
a flexible use of the previously-defined biological parts. By sorting these architectures, we
obtained the percentage of P-classes implementable with restrictive design criteria
corresponding to the previous works implementing recombinase logic ​10,11​.

Excision vs inversion
We first analyzed the influence of the type of recombination reaction on P-classes
implementability. We found that using only DNA excision highly reduces the number of
implementable P-classes (82% of 3-input P-classes implementable and only 26% of 4-input
P-classes) (Fig5). In contrast, almost all implementable P-classes can be realized using only
inversion (100% of 3-input and 86% of 4-input P-classes) (Fig5). One explanation is that
excision is a destructive mechanism leading from a specific semantic to a neutral semantic,
reducing the semantic space of the device. On the other hand, inversion leads to a semantic
change therefore permitting to implement more complex P-classes (Fig S5A-B). Very
interestingly, while all 3-input P-classes are implementable with only inversion, we found that
some 4-input P-classes (4.5% of implementable P-classes) require both inversion and
excision to be implementable.These P-classes cluster in the medium complexity region of
the plot (Fig S5C). Therefore, inversion only is not sufficient to implement the maximum
range of Boolean functions.

Number of genes, promoters, and terminators.
A functional logic device requires at least one promoter and one gene, and can therefore be
designed without a terminator. However, without terminator, 15% of 3-input P-classes are
not implementable, as well as 30% of 4-input implementable P-classes (Fig5). Terminators
are thus essential elements for recombinase logic implementation, in particular for the more
complex P-classes (Fig S6A). Similarly, by limiting the number of genes or the number of
promoters to one, the number of implementable P-classes is reduced by almost 50% for 4
inputs (Fig5). To conclude, using all gene-expression parts and letting flexible their
respective numbers permit to maximize the number of implemented logic functions.

11

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://paperpile.com/c/XSSzqt/zy0a+YlCS+cMWT
https://paperpile.com/c/XSSzqt/9ph3
https://paperpile.com/c/XSSzqt/zy0a+9ph3
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

In our design, we considered terminators as asymmetric terminators (terminating
transcription in a single orientation). Bidirectional terminators (semantic fT/fT) were obtained
by combining two terminators in opposite orientations. A reduced number of asymmetric
terminators has been characterized, and only in bacteria ​27​; such parts might thus limit the
portability of our devices to other organisms, particularly in eukaryotes. We wondered how
many P-classes required strictly asymmetric terminators to be implementable. Excluding
asymmetric terminators from the designs, we found that 93% of the 3-input P-classes and
54% of the 4-input implementable P-classes were implementable (Fig5 and FigS6B).

We previously designed 2-input logic gates in which a single output gene is placed in 3’ of
the device, and is easily interchangeable ​10​. In addition, this design allows the logic device to
be directly placed upstream of endogenous genes to add an externally-controlled layer of
logic to their regulation. By filtering the database for architectures possessing a single gene
in the 5’ or 3’ extremities, we found that all 3-input P-classes and 57% of 4-input
implementable P-classes are implementable using this design.

Additionally, we tested the effect of combining criteria two by two, and found that for
stringent criteria such as the use of only excision, the combination with another criteria
drastically reduced the number of implementable P-classes (Fig S7-8).

Figure 5: Percentage of P-classes implementable as a function of various restricting criteria.
The columns denote the different set of P-classes, such as 3-input, 4-input and 4-input implementable
P-classes. Each line corresponds to the percentage of P-classes implementable with the
corresponding design specification, the color scale represent their respective percentages, from
yellow (0%) to dark blue (100%).

12

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://paperpile.com/c/XSSzqt/WlJY
https://paperpile.com/c/XSSzqt/9ph3
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

Based on literature, we believe that the following criteria should be satisfied in order to
obtain well-behaving logic devices:
1 - Not having two promoters facing each other, such as architectures respecting the no
cross promotion constraint (see material and methods for criteria list).
2 - To have a reduced distance between the gene and the promoter leading to the
expression of this gene.

In addition, in order to minimize differences in output level between the different input states,
we recommend:
3 - To avoid having two genes expressed at the same time.
4 - To avoid having two promoters mediating the expression of one gene.

These criteria are not absolute, and sometimes cannot be all satisfied for implementing all
logic functions. Experimental implementation and characterization of various architectures
will ultimately be the only way to validate their functionality.

4 - A web-interface to sort architectures according to user-defined constraints.

Based on this large database, we created a user-friendly web-interface allowing the users to
obtain all architectures implementing logic functions of their choice (Fig 6). For each
architecture, the various specifications of the design are listed, such as the number of inputs,
inversions, excisions, genes, terminators, and promoters, and the total number of parts.
Additionally, the approximate length of the architecture is specified (calculated by
considering as lengths: 20bp for a promoter, 40bp for a terminator and an integrase site, and
1 Kbp for a gene). We also specify if the architecture respects or not design criteria of
interest, such as having the gene at the extremity of the construct (5’ or 3’), the absence of
asymmetric terminators, or the absence of promoters facing each other. Indeed, while we
excluded facing promoters from element design, insertion of elements within functional
structures can still result in architectures containing facing promoters. In all cases, the list of
architectures can be re-ordered according to a criterion of choice. A filtering tool allows the
user to selectively display specific architectures respecting a given set of criteria.

When the user selects a specific architecture, all the derived states of the architecture are
also represented with the correspondence between sites and inputs. Additionally, all logic
functions implementable with the same architecture (therefore P-equivalent functions) are
accessible from this page.

13

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

Figure 6: The recombinator web-interface. A. Example of search results on the recombinator
web-interface ​with as entry the XOR logic function, 23 architectures are found with here the 20 first
architectures. This list can be sorted according to various criteria. ​B. The web-interface also allows
the user to directly provide an architecture to obtain all its derived states and the implemented
Boolean function.

5 - A reduced set of 16 NP-equivalent architectures based on DNA inversion to
implement all 3-input functions.

For most logic functions, the database provides many different possible architectures (with a
median of 252, and a maximum of 1.4 million for the logic function in supplementary text
3.6). An important gap remains between theoretical designs and well-behaving biological
devices, and experimentally testing all proposed architectures is challenging. We therefore
wanted to identify a method enabling us to reduce the number of biological devices to be
tested and optimized, while maximizing the number of implementable logic functions. We
already used permutation classes to reduce the number of generated architectures by not
assignating integrase sites to inputs. Here we built a minimization strategy based of
NP-classes, which corresponds to class of logic functions which are equivalent by
permutation and negation of inputs ​24​.

Permutation of inputs in integrase-based system is simply performed by permutation of the
connection between integrase and inducible promoters. Importantly, negation is very easily
performed in recombinase logic by using DNA inversion. For example, the NOT function

14

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://paperpile.com/c/XSSzqt/h0M8
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

being the negation of the identity function, a NOT device in recombinase logic can be
transformed into an IDENTITY by inverting the asymmetric terminator controlling the flow of
RNA polymerase, and vice versa (Fig7A). In this simple case, the negation of the input in a
logic function is performed by inversion of the part between integrase sites in inversion
orientation. This approach is generalizable to more complex devices that use only DNA
inversion. Consequently, starting from any all-inversion architecture, replacing LR sites by
BP sites in the recombination intermediates leads to a new architecture implementing a
specific P-class within the same NP-class (Fig7B).

Figure 7: Implementation of NP-equivalent Boolean functions using inversion-based logic
devices. ​(A) IDENTITY- and NOT- logic devices based on the inversion of an asymmetric terminator.
(B) A 2-input AND gate based on the combination of promoter and terminator modules and its
intermediate recombination states. (C) Implementation of all functions from the 2-input AND gate
NP-class. Designs are based on the AND gate represented in B and correspond to the intermediate
recombination states in which LR sites have been replaced by BP sites. The inversion of a single part
of the device for A.B leads to either NOT(A).B or A.NOT(B), and the inversion of both parts to
NOT(A).NOT(B) logic function.

We can thus reasonably assume that for a given NP-class, characterizing in all input states
and optimizing a single logic device executing one function should provide a good estimate
of the behavior of all derived logic devices implementing the NP-class. 16 and 380
NP-classes exists for 3-input and 4-input, respectively.

Because this approach is restricted to architectures using DNA-inversion, it is theoretically
possible to optimize one architecture for each of the 16 three-input NP-classes and for 322
of the 380 four-input NP-classes.

Inversion-only architectures represent only 25.4% of the original set (4.6 million of
architectures), thereby leading to a lower probability to find architectures respecting all the
biological criteria listed above (Fig S9). We present in Figure 8 an example of architecture
for each of the 16 3-input NP-classes, chosen according the our recommended criteria.

15

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

Figure 8: Selected architectures for the implementation of the 16 3-input NP-classes.
Each box implements one NP-class. Here one Boolean function and a selected logic device
implementing this Boolean function are depicted for each NP-class. Triangles correspond to
integrase sites, blue is for variable A, red for B and green for C.

16

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

DISCUSSION

Here we took a systematic approach to explore the design space of recombinase logic
devices. We devised a formal language to express and interpret the output state of genetic
devices, along with several strategies allowing us to minimize the number of generated
constructs to a non-redundant and irreducible set. We obtained a total of ~19 million
architectures, to date the largest database of biological logic designs, implementing a total of
59,820 Boolean functions (corresponding to 3,610 P-classes).

We proved that all 3-input and 92% of 4-input Boolean functions are implementable in single
cell using integrase-based devices within the constraints of using one integrase and one pair
of recombination sites pair per input. Most P-classes can theoretically be implemented by
hundreds of architectures. Not surprisingly, the number of possible architectures for a given
P-class is inversely correlated with their complexity (i.e. the number of terms and literals per
term).

We tested the impact of various design strategies on function implementability. Based on our
design specifications, using DNA inversion is the most stringent requisite to reach the largest
number of functions. We believe that this is due to the non-destructive nature of DNA
inversion compared to DNA excision, and to the fact that DNA-inversion increases the
semantic space accessible to a particular architecture. For example, symmetric functions
(e.g. XOR), which are highly complex, are easily designed using DNA inversion and nesting
pairs of sites. An important flexibility within the number of promoter, gene and terminator
also allows to implement more functions.

To navigate within the millions of architectures, we constructed a web-interface allowing
users to obtain all architectures implementing a logic function of interest with the possibility
of sorting them according to specific design and biological constraints. This web interface will
help biological logic designers to obtain minimized integrase-based logic circuits operating in
single-cell. Yet, for each function, myriad architectures with highly-divergent designs are
possible. Many will not be functional, and not all possible designs can be tested, making the
obtention of working logic devices from the database challenging. To circumvent this issue,
we reasoned that characterizing and optimizing a single inversion-based device per
NP-class would approximate the characterization of all logic devices from this NP-class. This
simplification reduces the number of devices to test to 16 for 3-input logic and to 380 for
4-input logic, of which 322 are implementable using only inversion. We provide an example
set of the 16 architectures required for 3-input logic implementation.

For a given architecture, specific integrases, integrase site positions and orientations, and
gene expression parts will have to be chosen. As highlighted in our previous work ​12​,
integrase sites can affect the behavior of logic devices. Previous characterization of
individual components coupled with mathematical modeling of part concatenations could be
used to limit the number of trial-and-error circles.

A key contribution of our work is the establishment of a formal language for expressing and
interpreting genetic construct functionality. The semantic we created, along with our

17

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://paperpile.com/c/XSSzqt/cMWT
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

semantic concatenation rules, support unambiguous interpretation of genetic construct
functionality. The reduced set of semantics proposed here could be extended to allow
interpretation of larger set of genetic constructs, and support numerous synthetic biology
applications.

While our minimization strategies allowed us to reduce the generation time to 1h30 for
4-input logic, this systematic generation method is unlikely to be applied for highest number
of inputs due to the enormous computation time required (more than one year for 6 inputs).
To obtain logic devices responding to a higher number of inputs, future work might focus on
extracting from the database systematic design rules generalizable to N-inputs. Additionally,
several characterization and optimization cycles could help determine rules for designing
architectures responding to an increasing number of inputs. As an alternative approach, the
2-, 3- and 4-input designs proposed here could be concatenated to generate n-input
designs.

This work lays the foundation for the systematic design of single-layer, compact
recombinase logic devices operating in single-cell. By providing a user-friendly interface to
navigate the design space of recombinase-based logic, we empower researchers and
engineers to expand the use and design principles of this highly useful class of logic devices.

Acknowledgments:
We thank the synthetic biology group and members of the CBS and LIRMM for fruitful
discussions.

Funding: ​Support was provided by an ERC Starting Grant “Compucell”, the INSERM
Atip-Avenir program and the Bettencourt-Schueller Foundation. S.G. was supported by a
Ph.D. fellowship from the French Ministry of Research and the French Foundation for
Medical Research (FRM) ​FDT20170437282 ​. The CBS acknowledges support from the
French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01.

Author contributions:
S.G. and J.B. designed the project. G.P., F.U. and M.L. designed the RECOMBINATOR
algorithm. G.P. wrote the RECOMBINATOR algorithm and implemented the web server.
S.G. and G.P. analyzed the data. S.G., G.P. and J.B. wrote the manuscript. All authors
approved the manuscript.

Competing interests: ​ The authors declare no competing interests.

18

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

(1) Endy, D. Foundations for Engineering Biology. ​Nature​ ​2005​, ​438​ (7067), 449–453.
(2) Chang, H.-J.; Voyvodic, P. L.; Zuniga, A.; Bonnet, J. Microbially Derived Biosensors for

Diagnosis, Monitoring and Epidemiology. ​Microbial biotechnology​ ​2017​.
https://doi.org/​10.1111/1751-7915.12791.

(3) Brophy, J. A. N.; Voigt, C. A. Principles of Genetic Circuit Design. ​Nat. Methods​ ​2014​,
11​ (5), 508–520.

(4) Nielsen, A. A. K.; Der, B. S.; Shin, J.; Vaidyanathan, P.; Paralanov, V.; Strychalski, E.
A.; Ross, D.; Densmore, D.; Voigt, C. A. Genetic Circuit Design Automation. ​Science
2016​, ​352​ (6281), aac7341.

(5) Macia, J.; Manzoni, R.; Conde, N.; Urrios, A.; de Nadal, E.; Solé, R.; Posas, F.
Implementation of Complex Biological Logic Circuits Using Spatially Distributed
Multicellular Consortia. ​PLoS Comput. Biol.​ ​2016​, ​12 ​ (2), e1004685.

(6) Win, M. N.; Smolke, C. D. Higher-Order Cellular Information Processing with Synthetic
RNA Devices. ​Science​ ​2008​, ​322​ (5900), 456–460.

(7) Green, A. A.; Kim, J.; Ma, D.; Silver, P. A.; Collins, J. J.; Yin, P. Complex Cellular Logic
Computation Using Ribocomputing Devices. ​Nature​ ​2017​, ​548​ (7665), 117–121.

(8) Miyamoto, T.; DeRose, R.; Suarez, A.; Ueno, T.; Chen, M.; Sun, T.-P.; Wolfgang, M. J.;
Mukherjee, C.; Meyers, D. J.; Inoue, T. Rapid and Orthogonal Logic Gating with a
Gibberellin-Induced Dimerization System. ​Nat. Chem. Biol.​ ​2012​, ​8 ​ (5), 465–470.

(9) Dueber, J. E.; Yeh, B. J.; Chak, K.; Lim, W. A. Reprogramming Control of an Allosteric
Signaling Switch through Modular Recombination. ​Science​ ​2003​, ​301​ (5641),
1904–1908.

(10) Bonnet, J.; Yin, P.; Ortiz, M. E.; Subsoontorn, P.; Endy, D. Amplifying Genetic Logic
Gates. ​Science​ ​2013​, ​340​ (6132), 599–603.

(11) Weinberg, B. H.; Pham, N. T. H.; Caraballo, L. D.; Lozanoski, T.; Engel, A.; Bhatia,
S.; Wong, W. W. Large-Scale Design of Robust Genetic Circuits with Multiple Inputs and
Outputs for Mammalian Cells. ​Nat. Biotechnol.​ ​2017​, ​35 ​ (5), 453–462.

(12) Guiziou, S.; Mayonove, P.; Bonnet, J. Hierarchical Composition of Reliable
Recombinase Logic Devices. ​Nat. Commun.​ ​2019​, ​10 ​ (1), 456.

(13) Podhajska, A. J.; Hasan, N.; Szybalski, W. Control of Cloned Gene Expression by
Promoter Inversion in Vivo: Construction of the Heat-Pulse-Activated Att-nutL-P-Att-N
Module. ​Gene​ ​1985​, ​40 ​ (1), 163–168.

(14) Bonnet, J.; Subsoontorn, P.; Endy, D. Rewritable Digital Data Storage in Live Cells
via Engineered Control of Recombination Directionality. ​Proc. Natl. Acad. Sci. U. S. A.
2012​, ​109​ (23), 8884–8889.

(15) Merrick, C. A.; Zhao, J.; Rosser, S. J. Serine Integrases: Advancing Synthetic
Biology. ​ACS Synth. Biol.​ ​2018​, ​7 ​ (2), 299–310.

(16) Bischof, J.; Maeda, R. K.; Hediger, M.; Karch, F.; Basler, K. An Optimized
Transgenesis System for Drosophila Using Germ-Line-Specific φC31 Integrases. ​Proc.
Natl. Acad. Sci. U. S. A. ​ ​2007​, ​104​ (9), 3312–3317.

(17) Hou, L.; Yau, Y.-Y.; Wei, J.; Han, Z.; Dong, Z.; Ow, D. W. An Open-Source System
for in Planta Gene Stacking by Bxb1 and Cre Recombinases. ​Mol. Plant​ ​2014​, ​7 ​ (12),
1756–1765.

(18) Lakso, M.; Sauer, B.; Mosinger, B., Jr; Lee, E. J.; Manning, R. W.; Yu, S. H.; Mulder,
K. L.; Westphal, H. Targeted Oncogene Activation by Site-Specific Recombination in
Transgenic Mice. ​Proc. Natl. Acad. Sci. U. S. A. ​ ​1992​, ​89 ​ (14), 6232–6236.

(19) Pichel, J. G.; Lakso, M.; Westphal, H. Timing of SV40 Oncogene Activation by
Site-Specific Recombination Determines Subsequent Tumor Progression during Murine
Lens Development. ​Oncogene​ ​1993​, ​8 ​ (12), 3333–3342.

19

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

http://paperpile.com/b/XSSzqt/JyTz
http://paperpile.com/b/XSSzqt/JyTz
http://paperpile.com/b/XSSzqt/JyTz
http://paperpile.com/b/XSSzqt/JyTz
http://paperpile.com/b/XSSzqt/JyTz
http://paperpile.com/b/XSSzqt/JyTz
http://paperpile.com/b/XSSzqt/JyTz
http://paperpile.com/b/XSSzqt/7RzW
http://paperpile.com/b/XSSzqt/7RzW
http://paperpile.com/b/XSSzqt/7RzW
http://paperpile.com/b/XSSzqt/7RzW
http://paperpile.com/b/XSSzqt/7RzW
http://paperpile.com/b/XSSzqt/7RzW
http://paperpile.com/b/XSSzqt/7RzW
http://dx.doi.org/10.1111/1751-7915.12791.
http://paperpile.com/b/XSSzqt/SA2d
http://paperpile.com/b/XSSzqt/SA2d
http://paperpile.com/b/XSSzqt/SA2d
http://paperpile.com/b/XSSzqt/SA2d
http://paperpile.com/b/XSSzqt/SA2d
http://paperpile.com/b/XSSzqt/SA2d
http://paperpile.com/b/XSSzqt/SA2d
http://paperpile.com/b/XSSzqt/VFJy
http://paperpile.com/b/XSSzqt/VFJy
http://paperpile.com/b/XSSzqt/VFJy
http://paperpile.com/b/XSSzqt/VFJy
http://paperpile.com/b/XSSzqt/VFJy
http://paperpile.com/b/XSSzqt/VFJy
http://paperpile.com/b/XSSzqt/VFJy
http://paperpile.com/b/XSSzqt/VFJy
http://paperpile.com/b/XSSzqt/pygh
http://paperpile.com/b/XSSzqt/pygh
http://paperpile.com/b/XSSzqt/pygh
http://paperpile.com/b/XSSzqt/pygh
http://paperpile.com/b/XSSzqt/pygh
http://paperpile.com/b/XSSzqt/pygh
http://paperpile.com/b/XSSzqt/pygh
http://paperpile.com/b/XSSzqt/pygh
http://paperpile.com/b/XSSzqt/pygh
http://paperpile.com/b/XSSzqt/e1w9
http://paperpile.com/b/XSSzqt/e1w9
http://paperpile.com/b/XSSzqt/e1w9
http://paperpile.com/b/XSSzqt/e1w9
http://paperpile.com/b/XSSzqt/e1w9
http://paperpile.com/b/XSSzqt/e1w9
http://paperpile.com/b/XSSzqt/e1w9
http://paperpile.com/b/XSSzqt/e1w9
http://paperpile.com/b/XSSzqt/GOng
http://paperpile.com/b/XSSzqt/GOng
http://paperpile.com/b/XSSzqt/GOng
http://paperpile.com/b/XSSzqt/GOng
http://paperpile.com/b/XSSzqt/GOng
http://paperpile.com/b/XSSzqt/GOng
http://paperpile.com/b/XSSzqt/GOng
http://paperpile.com/b/XSSzqt/GOng
http://paperpile.com/b/XSSzqt/Hzwa
http://paperpile.com/b/XSSzqt/Hzwa
http://paperpile.com/b/XSSzqt/Hzwa
http://paperpile.com/b/XSSzqt/Hzwa
http://paperpile.com/b/XSSzqt/Hzwa
http://paperpile.com/b/XSSzqt/Hzwa
http://paperpile.com/b/XSSzqt/Hzwa
http://paperpile.com/b/XSSzqt/Hzwa
http://paperpile.com/b/XSSzqt/Hzwa
http://paperpile.com/b/XSSzqt/dU44
http://paperpile.com/b/XSSzqt/dU44
http://paperpile.com/b/XSSzqt/dU44
http://paperpile.com/b/XSSzqt/dU44
http://paperpile.com/b/XSSzqt/dU44
http://paperpile.com/b/XSSzqt/dU44
http://paperpile.com/b/XSSzqt/dU44
http://paperpile.com/b/XSSzqt/dU44
http://paperpile.com/b/XSSzqt/dU44
http://paperpile.com/b/XSSzqt/9ph3
http://paperpile.com/b/XSSzqt/9ph3
http://paperpile.com/b/XSSzqt/9ph3
http://paperpile.com/b/XSSzqt/9ph3
http://paperpile.com/b/XSSzqt/9ph3
http://paperpile.com/b/XSSzqt/9ph3
http://paperpile.com/b/XSSzqt/9ph3
http://paperpile.com/b/XSSzqt/9ph3
http://paperpile.com/b/XSSzqt/zy0a
http://paperpile.com/b/XSSzqt/zy0a
http://paperpile.com/b/XSSzqt/zy0a
http://paperpile.com/b/XSSzqt/zy0a
http://paperpile.com/b/XSSzqt/zy0a
http://paperpile.com/b/XSSzqt/zy0a
http://paperpile.com/b/XSSzqt/zy0a
http://paperpile.com/b/XSSzqt/zy0a
http://paperpile.com/b/XSSzqt/zy0a
http://paperpile.com/b/XSSzqt/cMWT
http://paperpile.com/b/XSSzqt/cMWT
http://paperpile.com/b/XSSzqt/cMWT
http://paperpile.com/b/XSSzqt/cMWT
http://paperpile.com/b/XSSzqt/cMWT
http://paperpile.com/b/XSSzqt/cMWT
http://paperpile.com/b/XSSzqt/cMWT
http://paperpile.com/b/XSSzqt/cMWT
http://paperpile.com/b/XSSzqt/BjA9
http://paperpile.com/b/XSSzqt/BjA9
http://paperpile.com/b/XSSzqt/BjA9
http://paperpile.com/b/XSSzqt/BjA9
http://paperpile.com/b/XSSzqt/BjA9
http://paperpile.com/b/XSSzqt/BjA9
http://paperpile.com/b/XSSzqt/BjA9
http://paperpile.com/b/XSSzqt/BjA9
http://paperpile.com/b/XSSzqt/BjA9
http://paperpile.com/b/XSSzqt/xGvD
http://paperpile.com/b/XSSzqt/xGvD
http://paperpile.com/b/XSSzqt/xGvD
http://paperpile.com/b/XSSzqt/xGvD
http://paperpile.com/b/XSSzqt/xGvD
http://paperpile.com/b/XSSzqt/xGvD
http://paperpile.com/b/XSSzqt/xGvD
http://paperpile.com/b/XSSzqt/xGvD
http://paperpile.com/b/XSSzqt/57Qg
http://paperpile.com/b/XSSzqt/57Qg
http://paperpile.com/b/XSSzqt/57Qg
http://paperpile.com/b/XSSzqt/57Qg
http://paperpile.com/b/XSSzqt/57Qg
http://paperpile.com/b/XSSzqt/57Qg
http://paperpile.com/b/XSSzqt/57Qg
http://paperpile.com/b/XSSzqt/57Qg
http://paperpile.com/b/XSSzqt/SagO
http://paperpile.com/b/XSSzqt/SagO
http://paperpile.com/b/XSSzqt/SagO
http://paperpile.com/b/XSSzqt/SagO
http://paperpile.com/b/XSSzqt/SagO
http://paperpile.com/b/XSSzqt/SagO
http://paperpile.com/b/XSSzqt/SagO
http://paperpile.com/b/XSSzqt/SagO
http://paperpile.com/b/XSSzqt/SagO
http://paperpile.com/b/XSSzqt/lkGF
http://paperpile.com/b/XSSzqt/lkGF
http://paperpile.com/b/XSSzqt/lkGF
http://paperpile.com/b/XSSzqt/lkGF
http://paperpile.com/b/XSSzqt/lkGF
http://paperpile.com/b/XSSzqt/lkGF
http://paperpile.com/b/XSSzqt/lkGF
http://paperpile.com/b/XSSzqt/lkGF
http://paperpile.com/b/XSSzqt/lkGF
http://paperpile.com/b/XSSzqt/toeM
http://paperpile.com/b/XSSzqt/toeM
http://paperpile.com/b/XSSzqt/toeM
http://paperpile.com/b/XSSzqt/toeM
http://paperpile.com/b/XSSzqt/toeM
http://paperpile.com/b/XSSzqt/toeM
http://paperpile.com/b/XSSzqt/toeM
http://paperpile.com/b/XSSzqt/toeM
http://paperpile.com/b/XSSzqt/toeM
http://paperpile.com/b/XSSzqt/XnJc
http://paperpile.com/b/XSSzqt/XnJc
http://paperpile.com/b/XSSzqt/XnJc
http://paperpile.com/b/XSSzqt/XnJc
http://paperpile.com/b/XSSzqt/XnJc
http://paperpile.com/b/XSSzqt/XnJc
http://paperpile.com/b/XSSzqt/XnJc
http://paperpile.com/b/XSSzqt/XnJc
http://paperpile.com/b/XSSzqt/XnJc
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

(20) Chiu, T.-Y.; Jiang, J.-H. R. Logic Synthesis of Recombinase-Based Genetic Circuits.
Sci. Rep.​ ​2017​, ​7 ​ (1), 12873.

(21) Boque-Sastre, R.; Soler, M.; Oliveira-Mateos, C.; Portela, A.; Moutinho, C.; Sayols,
S.; Villanueva, A.; Esteller, M.; Guil, S. Head-to-Head Antisense Transcription and
R-Loop Formation Promotes Transcriptional Activation. ​Proc. Natl. Acad. Sci. U. S. A.
2015​, ​112​ (18), 5785–5790.

(22) Uesaka, M.; Nishimura, O.; Go, Y.; Nakashima, K.; Agata, K.; Imamura, T.
Bidirectional Promoters Are the Major Source of Gene Activation-Associated
Non-Coding RNAs in Mammals. ​BMC Genomics​ ​2014​, ​15 ​, 35.

(23) Chizzolini, F.; Forlin, M.; Cecchi, D.; Mansy, S. S. Gene Position More Strongly
Influences Cell-Free Protein Expression from Operons than T7 Transcriptional Promoter
Strength. ​ACS Synth. Biol.​ ​2014​, ​3 ​ (6), 363–371.

(24) Jaakko T. Astola, R. S. S. ​Fundamentals of Switching Theory and Logic Design​;
Springer, Ed.; 2006.

(25) Hill, F. J.; Peterson, G. R. ​Introduction to Switching Theory and Logical Design​;
philpapers.org, 1981.

(26) Guiziou, S.; Ulliana, F.; Moreau, V.; Leclere, M.; Bonnet, J. An Automated Design
Framework for Multicellular Recombinase Logic. ​ACS Synth. Biol.​ ​2018​, ​7 ​ (5),
1406–1412.

(27) Chen, Y.-J.; Liu, P.; Nielsen, A. A. K.; Brophy, J. A. N.; Clancy, K.; Peterson, T.;
Voigt, C. A. Characterization of 582 Natural and Synthetic Terminators and
Quantification of Their Design Constraints. ​Nat. Methods​ ​2013​, ​10 ​ (7), 659–664.

(28) Brewka, G. Artificial Intelligence—a Modern Approach by Stuart Russell and Peter
Norvig, Prentice Hall. Series in Artificial Intelligence, Englewood Cliffs, NJ. ​The
Knowledge Engineering Review​. 1996, p 78.
https://doi.org/​10.1017/s0269888900007724.

(29) Georges, G. Bases de Données: Objet et Relationnel. ​Éditions Eyrolles​ ​1999​.

20

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

http://paperpile.com/b/XSSzqt/wWVR
http://paperpile.com/b/XSSzqt/wWVR
http://paperpile.com/b/XSSzqt/wWVR
http://paperpile.com/b/XSSzqt/wWVR
http://paperpile.com/b/XSSzqt/wWVR
http://paperpile.com/b/XSSzqt/wWVR
http://paperpile.com/b/XSSzqt/wWVR
http://paperpile.com/b/XSSzqt/TtMk
http://paperpile.com/b/XSSzqt/TtMk
http://paperpile.com/b/XSSzqt/TtMk
http://paperpile.com/b/XSSzqt/TtMk
http://paperpile.com/b/XSSzqt/TtMk
http://paperpile.com/b/XSSzqt/TtMk
http://paperpile.com/b/XSSzqt/TtMk
http://paperpile.com/b/XSSzqt/TtMk
http://paperpile.com/b/XSSzqt/TtMk
http://paperpile.com/b/XSSzqt/yLcb
http://paperpile.com/b/XSSzqt/yLcb
http://paperpile.com/b/XSSzqt/yLcb
http://paperpile.com/b/XSSzqt/yLcb
http://paperpile.com/b/XSSzqt/yLcb
http://paperpile.com/b/XSSzqt/yLcb
http://paperpile.com/b/XSSzqt/yLcb
http://paperpile.com/b/XSSzqt/yLcb
http://paperpile.com/b/XSSzqt/yLcb
http://paperpile.com/b/XSSzqt/N3xl
http://paperpile.com/b/XSSzqt/N3xl
http://paperpile.com/b/XSSzqt/N3xl
http://paperpile.com/b/XSSzqt/N3xl
http://paperpile.com/b/XSSzqt/N3xl
http://paperpile.com/b/XSSzqt/N3xl
http://paperpile.com/b/XSSzqt/N3xl
http://paperpile.com/b/XSSzqt/N3xl
http://paperpile.com/b/XSSzqt/N3xl
http://paperpile.com/b/XSSzqt/h0M8
http://paperpile.com/b/XSSzqt/h0M8
http://paperpile.com/b/XSSzqt/h0M8
http://paperpile.com/b/XSSzqt/h0M8
http://paperpile.com/b/XSSzqt/WYG7
http://paperpile.com/b/XSSzqt/WYG7
http://paperpile.com/b/XSSzqt/WYG7
http://paperpile.com/b/XSSzqt/WYG7
http://paperpile.com/b/XSSzqt/YlCS
http://paperpile.com/b/XSSzqt/YlCS
http://paperpile.com/b/XSSzqt/YlCS
http://paperpile.com/b/XSSzqt/YlCS
http://paperpile.com/b/XSSzqt/YlCS
http://paperpile.com/b/XSSzqt/YlCS
http://paperpile.com/b/XSSzqt/YlCS
http://paperpile.com/b/XSSzqt/YlCS
http://paperpile.com/b/XSSzqt/YlCS
http://paperpile.com/b/XSSzqt/WlJY
http://paperpile.com/b/XSSzqt/WlJY
http://paperpile.com/b/XSSzqt/WlJY
http://paperpile.com/b/XSSzqt/WlJY
http://paperpile.com/b/XSSzqt/WlJY
http://paperpile.com/b/XSSzqt/WlJY
http://paperpile.com/b/XSSzqt/WlJY
http://paperpile.com/b/XSSzqt/WlJY
http://paperpile.com/b/XSSzqt/WlJY
http://paperpile.com/b/XSSzqt/wxgx
http://paperpile.com/b/XSSzqt/wxgx
http://paperpile.com/b/XSSzqt/wxgx
http://paperpile.com/b/XSSzqt/wxgx
http://paperpile.com/b/XSSzqt/wxgx
http://paperpile.com/b/XSSzqt/wxgx
http://dx.doi.org/10.1017/s0269888900007724.
http://paperpile.com/b/XSSzqt/EE2Q
http://paperpile.com/b/XSSzqt/EE2Q
http://paperpile.com/b/XSSzqt/EE2Q
http://paperpile.com/b/XSSzqt/EE2Q
http://paperpile.com/b/XSSzqt/EE2Q
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

BOX1:

DEFINITIONS

Structure ​: a sequence of bracket and parenthesis corresponding to recombinase site arrays.
Semantic​: gene expression function. The elementary semantics are: promote, terminate,
encode, neutral. All sequences have a forward and reverse semantic, written as forward
semantic / reverse semantic.
Functional structure ​: a structure with a semantic between each bracket and parenthesis. A
functional structure is composed of 2N brackets and parentheses and 2N+1 semantics, with
N the number of inputs.
Part:​ a promoter, gene or terminator.
Element​: composition of parts enabling the “simplest” implementation of a specific forward
and reverse semantic. These elements are selected to be composed from a reduced number
of parts, to avoid facing promoters, and to reduce the space between a promoter and its
transcribed gene.
Architecture ​: functional structure in which semantics have been replaced by their
corresponding elements.
Biological device ​: an architecture with assignation of input to the parenthesis (integrase
sites).
Boolean function ​: a function with binary variables and a binary output which can be
expressed as a propositional formula.
P-class​: permutation class, a set of Boolean functions equivalent by permutation of inputs.
NP-class​: negation and permutation class, a set of Boolean functions equivalent by
permutation and negation of inputs.
Non-redundant​: a Boolean function is non-redundant if it cannot be simplified into a Boolean
function with a reduced number of inputs. A non-redundant functionalized structure or
architecture implement a Boolean function which cannot be simplified into a Boolean
function with a number of inputs lower than the number of recombination pairs.
Symmetric​: an object is symmetric if it is the reverse complement of itself.
Chiral: two objects (e.g. architectures, structures, functional structures, devices) are chirals if
one object is the reverse complement of the other one.
Irreducible ​: a functionalized structure is irreducible if changing a semantic to a semantic
implemented with a reduced number of parts changes the implemented Boolean function (or
P-class).
Atomic recombination ​: an atomic recombination (either excision or inversion) corresponds to
a recombination which do not contain other recombination inside it.

21

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

Methods

1 - Algorithm for architecture generation.

The generation algorithm is summarized in Fig S3. To generate the architecture database,
we first generated all the structures. Structures correspond to well-balanced sequences of
two sets of parentheses ([] and ()) corresponding therefore to all the Dyck word of size 2N
(with N the number of inputs) with the two sets of parentheses. For non symmetric
structures, we removed one of the two structures of a chiral pair.

The next step of the algorithm consists of assigning a semantic between parentheses. We
defined variables as the space between the parentheses, each structure is composed of
2N+1 variables. We defined a semantic domain for each variable, corresponding to a list of
semantic which can be assigned to this variable. Domains are composed of either all
possible 26 semantics or a reduced set defined to reduce the generation of reducible
functionalized structures (see supplementary text 3.2).

For semantic assignation, we used a backtracking algorithm​28​. Briefly, a semantic is
assigned to a variable, constraints are evaluated to determine if the semantic is useful. If a
constraint is violated, a new track is followed, then the next semantic of the domain is
assigned and tested. If no constraint is violated, the assignation algorithm pass to the
following variables. All constraints are defined in supplementary text 3.2, the objective of
these constraints being that each semantic in both forward and reverse orientations is useful
in at least the functionalized structure or one of the derived structures.

When a complete assignation is obtained, the irreducibility of the functionalized structure is
tested. To check it, each semantic is replaced with a less complex semantic (see
supplementary text 3.2), as an example, fGP is replaced by fG, fP and fN. If the obtained
structures implement the same logical function than previously, the initial functionalized
structure is reducible.

The truth tables of irreducible functionalized structures are computed by generating all
derived structures and computing the semantic of each structure and derived structure. By
arbitrarily assigning each parenthesis to an input, one possible Boolean function is obtained
and its redundancy can be tested. If the Boolean function cannot be simplified into a function
with a reduced number of inputs, the functionalized structure as being non-redundant is
saved with its associated Boolean function corresponding to one of the Boolean functions of
the implemented P-class.

We implemented the generation algorithm in C++ 17 with Boost library (code available in git
directory: ​https://bitbucket.org/Guigui_PL/genetixV2 ​). We performed the generation for up to
four inputs using a high performance computer with a processor Intel Xeon E5-2680 v4,
2.40GHz, 14 physical cores, and with 128Go RAM DDR4 2400Mhz. The generation took
around 1h30 for 4 inputs.

22

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://paperpile.com/c/XSSzqt/wxgx
https://bitbucket.org/Guigui_PL/genetixV2
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

2 - Database creation and Recombinator web-interface.

The database construction is decoupled from the generation as the used high performance
computer does not have any database management system. From the text files containing
the functionalized structures, we created a database satisfying the two normalization form​29
which permit to not have redundancy in the database. We decomposed the database in five
tables: Boolean functions, P-classes, semantics, structures and functionalized structures
(Fig S10). Each table contains in addition to its primary key the filtering criteria depending on
this key, such as for the structure table, the number of excisions and number of inversions.

We implemented this database generation algorithm in C++ 14 with Boost and libpq++
libraries. The database management system is PostgreSQL (code available in git directory:
https://bitbucket.org/Guigui_PL/genetix/src​).

The web interface is built with the PHP Framework Yii2. In the web-interface, users fill in a
Boolean function of interest either as formulae of propositional logic or as a binary number
corresponding to the truth table. A list of architectures is obtained, architectures can be
sorted and filtered according to a list of criteria defined in the following section. Users can
select a specific architecture and obtain all corresponding information such as the derived
architectures.

3 - Analyse of the architecture database using python scripts.

From the database of 19 millions of architectures, a file was generated for each P-class: an
example of function, the total number of architectures implementing this P-class and the
number of architectures respecting various criteria.
Following is the detailed list of criteria used in this work and their precise definition:

Filtering
criterion

Filtering type Definition

No cross
promotion

Boolean For derived architecture with fX semantic, no
promoter in opposite orientation of the promoter
transcribing the gene is positioned between the
promoter and its transcribed gene and the
sequence in 3’ of the gene does not have a -/fP
semantic.

No
asymmetric
terminator

Boolean All fT/- and -/fT are replaceable by fT/fT without
changing the semantic of the architecture and
derived architectures

functional
asymmetric
terminator

From 0 to #
terminators

Number of terminator which are not replaceable
by a double terminator without changing the
semantic of the architecture and derived

23

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://paperpile.com/c/XSSzqt/EE2Q
https://bitbucket.org/Guigui_PL/genetix/src
https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

architectures

Gene at
extremities

Boolean True if fG/- semantic as last variable or -/fG
semantic as first variable and no other fG
semantic

terminators From 0 to 2 ​N+1 Number of terminator parts in the architecture,
such as of fT/- and -/fT semantics

inversion From 0 to # of inputs Number of inversion in the architecture, such as
of pair of ()

excision From 0 to # of inputs Number of excision in the architecture, such as of
pair of []

promoters From 1 to 2 ​N+1 Number of promoter parts in the architecture,
such as of fP/-, -/fP, fX, fGP/-, and -/fGP
semantics

genes From 1 to 2 ​N+1 Number of gene parts in the architecture, such as
of fG/-, -/fG, fX, fGP/-, and -/fGP semantics

Architecture
size

Integer Integer corresponding to an approximate size of
the architecture considering a gene as 1kb, a
promoter as 20bp, a site as 40bp, and a
terminator as 20bp.

Distance P-G Integer from 0 to
(architecture size -
1020)

For one derived architecture with fX semantic
(expression of a gene), the distance corresponds
to the minimum distance between the promoter
and its transcribed gene (as several promoter can
promote the transcription of a gene). The distance
of the architecture corresponds to the maximum
distance between all derived architectures with fX
semantic.

Low distance
P-G

Boolean Architecture with distance P-G lower than 1000

From this file, python scripts were used to extract the percentage table (Fig5) and generated
P-class cluster and distribution plots (Fig4, FigS4-S5-S6). For distribution plots, histograms
were generated with 20 bins for P-class clusters and 40 bins for histograms corresponding to
all P-classes.

Additionally for the database, a file containing the full list of architectures and architecture
characteristics was generated. This file was used to generate the two-by-two constraint
tables (FigS7-S8-S9) using an automated python script.

4 - Selection of architectures for the 16 3-input NP-classes.

24

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

To select one architecture based on inversion per NP-class, the web interface was used. We
first generated the list of NP-classes and associated P-classes with one Boolean function
per P-classes. From this list, we randomly selected a single Boolean function per NP-class
and searched in the database for architectures implementing this Boolean function. We
sorted this list of architectures according to the number of excision in decreasing order to
select architectures based on inversion only. We then sorted architectures according to the
following two boolean constraints: no cross promotion and the low distance between the
promoter and the gene. We selected one or several architectures following as much as
possible these two criteria and having the lowest number of parts. This selection is not
absolute and for most Boolean functions corresponding to one NP-class several
architectures existand could be selected.

25

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

Supplementary Information:
Exploring the design space of compacted recombinase logic

circuits.

Sarah Guiziou*†1#, Guillaume Perution-Kihli†2, Federico Ulliana2, Michel Leclere2, and Jerome
Bonnet*1

1Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier,
France.

2Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier (LIRMM). CNRS
UMR 5506, University of Montpellier, France.

†These authors contributed equally to this work
*To whom correspondence should be addressed: guiziou.sarah@gmail.com, jerome.bonnet@inserm.fr

#Current address: Department of Biology, University of Washington, Seattle, Washington 98195, USA

These supplementary materials contain:
-Supplementary Tables S1 to S4.
-Supplementary Figures S1 to S10.
-Supplementary Texts.

1

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

1 Supplementary Tables

Design Specifica-
tions

Motivations

One pair of
sites/integrase

- Reduce problems of non-specific recombination.
- Reduces genetic instability.
- Reduces difficulties to synthesize.
- Reduces the size of the circuit.

One integrase by input - Reduce the number of orthogonal integrase needed.
- Reduces metabolic load to the cell.
- Reduces the size of the circuit.

Regulation of transcrip-
tion using promoters
and terminators

- Simple set of tools.
- Two parts for opposite behaviors.

Supplementary Table 1: Specification of our logic design.

5’ to 3’ fN fP fT fG fGP fX

fN fN fP fT fG fGP fX

fP fP fP fT fX fX fX

fT fT fP fT fT fP fX

fG fG fGP fG fG fGP fX

fGP fGP fGP fG fX fX fX

fX fX fX fX fX fX fX

Supplementary Table 2: Simplification of all possible concatenations of the six seman-
tics two by two, the row corresponds to the semantic in 5’ and the column the semantic in
3’.

2

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

1 input 2 inputs 3 inputs 4 inputs 5 inputs

functions with strictly N inputs 2 10 218 64,594 4.3 109

P-classes with strictly N inputs 2 8 68 3904 3.7 107

NP-classes with strictly N inputs 1 5 16 380 1,227,756

Supplementary Table 3: Number of functions, P-classes, NP-classes for a given number
of inputs.

> 1 term > 2 terms > 3 terms > 4 terms > 5 terms > 6 terms > 7 terms

> 3.5 literals
25.1% 26.7% 36.1% 38.7% 60.6% 53.3% 0%

(223) (210) (155) (93) (33) (15) (2)

> 3 literals
20.7% 21.3% 25% 29.6% 37.2% 51.8% 0%

(1098) (1065) (908) (514) (188) (56) (7)

> 2.5 literals
13.3% 13.6% 16.7% 23.7% 39.9% 53.3% 30%

(2816) (2750) (2241) (1181) (336) (75) (10)

> 2 literals
10.4% 10.66% 13% 20.3% 36.7% 50% 30%

(3599) (3509) (2875) (1381) (365) (80) (10)

> 1.5 literals
9.64% 9.9% 12.3% 19.7% 36.2% 50% 30%

(3879) (3775) (3047) (1418) (370) (80) (10)

> 1 literal
9.6% 9.87% 12.3% 19.7% 36.2% 50% 30%

(3894) (3790) (3053) (1418) (370) (80) (10)

Supplementary Table 4: Percentage of P-classes not implementable for P-classes of
specific number of terms and mean number of literal per terms. Each cell corresponds
to the P-classes with a number of term higher than the corresponding column value and a mean
number of literal per terms higher than the corresponding line value. And in each cell is filled
with the percentage of not implementable P-classes on these specific P-classes and bellow the
number of not implementable P-classes.

3

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

2 Supplementary Figures

ALL
STRUCTURES

STRUCTURE
FINAL SET

FUNCTIONAL
STRUCTURES

ARCHITECTURE

BIOLOGICAL
DEVICE

SEMANTICS

ELEMENTS

Constraints to reduce
generation of chiral pairs and
reducible functional structures

P-class

Boolean function

irreducible and non-redundant
FUNCTIONAL STRUCTURES

Remove
chiral pairs

Verification of irreducibility
and non-redundancy

Attribution
1 semantic=1element

Input
attribution

ARCHITECTURE
subset

NP-class derivable

Only
inversion

Supplementary Figure 1: General workflow of architecture generation.

4

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

attB attP
()

attB attP
[]

[()] ()
A BInversion

Excision

Recombinase-site array Structure

[] () []

(([]))

1.

2.

3.

C
[()] ()

Chiral pair
Equivalent [()] ()

Supplementary Figure 2: Correspondence between recombinase-site array and structure
A - Integrase sites in inversion orientation are represented by parenthesis while integrase sites in
excision orientation are represented by brackets. B - Three examples of recombinase-site array
and the corresponding structure. In recombinase-site array, each color corresponds to a different
input. In the structure, correspondence between parenthesis and input is not specified. C -
Example of two chiral structures and their corresponding recombinase-site arrays.

5

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

A B

G

fP/fN or

fP/fG G

or
[] ()GG eq [] ()Greducible irreducible

Supplementary Figure 3: Irreducible architecture A - Example for two semantics of the
element selection, two examples of part composition are represented, the one selected as element
is surrounded by a red rectangle. For the semantic fP/fN the selection is performed to reduce the
number of biological parts while for the semantic fP/fG is performed to avoid cross promotion. B
- Two architectures are represented, both implement the same P-class, one being reducible and
the other one irreducible.

6

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

1 2 3 4 5 6 7 8

Terms

Li

te
ra

ls
 p

er
 te

rm

Architectures

Pr
op

or
tio

n
P-

cl
as

s

Legend

All P-classes

P-classes
of the selection

median
90%10%

Supplementary Figure 4: Distribution of the number of architecture for the implemen-
tation of P-classes with specific number of literal per terms and terms. Each plot is the
distribution of the number of possible architectures (in orange) for a specific set of P-classes;
P-classes with a specific number of terms and literals per term (from the lowest in the bottom left
to the highest in the top right). These distributions were obtain from a bin of 20. In the legend,
the distribution for all P-classes is represented (with a bin of 40). In all graphs, the 10-percentile,
the median and the 90-percentile of the distribution of all P-classes is shown in grey.

7

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

P-classes
not implementable
with only excision

All 4-input
P-classes

P-class

500

50

5

P-classes
not implementable
with only inversion

All 4-input
P-classes

A B

P-classes requiring
excision and inversion
to be implementable

All 4-input
P-classes

C

M
ea

n
nu

m
be

r o
f l

ite
ra

ls
 p

er
 te

rm

M
ea

n
nu

m
be

r o
f l

ite
ra

ls
 p

er
 te

rm

M
ea

n
nu

m
be

r o
f l

ite
ra

ls
 p

er
 te

rm

Supplementary Figure 5: Implementability of P-classes with only excision and inversion
according to their complexities. In both plots, P-classes with a specific number of terms and
of literals per term are represented in the corresponding position in the plot by a point with the
diameter being proportional in logarithm to the number of P-classes. The blue points are for
all 4-input P-classes and the red points are for P-classes not implementable with only excision
in (A), with only inversion in (B), and P-classes requiring both inversion and excision to be
implementable in (C).

8

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

A
M

ea
n

nu
m

be
r o

f l
ite

ra
ls

 p
er

 te
rm

Number of terms

P-classes
implementable
without terminator

All 4-input
P-classes

P-classes
implementable
without asymmetric
terminator

All 4-input
P-classes

B

M
ea

n
nu

m
be

r o
f l

ite
ra

ls
 p

er
 te

rm
Number of terms

P-class

500

50

5

Supplementary Figure 6: Implementability of P-classes without terminator or without
asymmetric terminator. In both plots, P-classes with a specific number of terms and of literals
per term are represented in the corresponding position in the plot by a point with the diameter
being proportional in logarithm to the number of P-classes. The blue points are for 4-input
P-classes implementable without terminators in (A) and without asymmetric terminator in (B),
and the orange points are for all 4-input P-classes.

9

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

%
 o

f i
m

pl
em

en
ta

bl
e

P-
cl

as
se

s
Supplementary Figure 7: Percentage of 3-input P-classes implementable with each
constraint and each two-by-two constraint composition. Each cell corresponds to the
percentage of 3-input P-classes implementable with the constraints corresponding to the specific
line and column. The color of the cell is related to this percentage, from yellow with 0% to dark
blue with 100%. The constraints are explained in the material and methods.

10

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

%
 o

f i
m

pl
em

en
ta

bl
e

P-
cl

as
se

s

A

B

%
 o

f i
m

pl
em

en
ta

bl
e

P-
cl

as
se

s

Supplementary Figure 8: Percentage of 4-input P-classes implementable with each
constraint and each two-by-two constraint composition. (A) Percentage on all 4-input
P-classes and (B) percentage on the 4-input implementable P-classes. Each cell corresponds to
the percentage of implementable P-class with the constraints corresponding to the specific line
and column. The color of the cell is related to this percentage, from yellow with 0% to dark blue
with 100%. The constraints are explained in the material and methods.

11

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

%
 o

f i
m

pl
em

en
ta

bl
e

P-
cl

as
se

s

A

B

%
 o

f i
m

pl
em

en
ta

bl
e

P-
cl

as
se

s

Supplementary Figure 9: Percentage of P-classes implementable with only inversion
and with each two-by-two constraint composition. (A) Percentage on all 3-input P-classes
and (B) percentage on all 4-input P-classes. Each cell corresponds to the percentage of imple-
mentable P-class with only inversion and the constraints corresponding to the specific line and
column. The color of the cell is related to this percentage, from yellow with 0% to dark blue with
100%. The constraints are explained in the material and methods.

12

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

1,1

1,N

HAS CLASS

1,1

1,N

HAS STRUCTURE

1,1

1,N

HAS SEMANTICS

1,11,N

IS IN CLASS
Permutation_class

permutation_class
nb_inputs

Functional_structure

id_functional_structure
no_cross_promotion
nb_asymetric_terminators
promoter_gene_distance

Function

dnf
permutation_class

Semantics

id_semantics
semantics
nb_inputs
length
nb_genes
gene_at_ends
nb_parts
nb_promoters
nb_terminators

Structure

id_structure
structure
nb_excisions
nb_inversions

Supplementary Figure 10: Entity-relationship model of the database. The database is
composed of five tables: Boolean functions, P-class, semantics, structure and functionalized
structures (corresponding to the purple rectangles). In each rectangle, all variables are listed with
the primary key underlined. Their relations are also represented by line with a name specified and
either a 1,1 or 1,N relationship.

13

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

3 Supplementary Texts

3.1 Mathematical formalization of the syntax and semantic of archi-
tectures

3.1.1 Syntax of an architecture

An architecture is an expression obtained by combining primitives by concatenation or by nesting
an expression E between two marks of an excision or inversion reaction. The excision marks are
denoted by a pair of square brackets [[E]] while the inversion marks are denoted by a pair of round
brackets (()). The empty expression is denoted by ε and EE denotes the concatenation. The
design language of such architecture is defined by the following grammar:

E ::= ε | S | EE | [[]] | (())

S ::= � |

�

| > | ⊥ | G |

G

An architecture without pair of sites is called an element.

3.1.2 Semantics of an architecture

Every biological part has a function, also called semantic. The function of a promoter denoted by
fP, is the initiation of transcription. The function of a terminator is to terminate transcription,
denoted by fT. The function of a gene is to encode for a RNA/protein, denoted by fG. Also, each
part has an orientation which can be either forward or reverse (Fig1C).

The semantic of an architecture (that is, whether it expresses a gene) is a function whose
input is a set of active recombinases and the output is a transcriptional value. The transcriptional
value is a couple (fF,fR) where fF denotes the semantic of the device in the forward direction and
fR denotes the semantic of the device in the reverse direction.

We start by defining the transcriptional semantic of biological parts and elements, as this is
independent from any recombinase activation. The transcriptional semantic of a biological part
in forward orientation is a couple (f,fN) where f denotes is its semantic (that is, fP or fT or fG)
and fN denotes the neutral function meaning that no action is performed. For instance, (fP/fN)
is the transcriptional semantic of an architecture reduced to a single forward promoter (Fig1D).
In a similar way, the transcriptional semantic of a biological part in reverse orientation is a couple
(fN,f) where again f is the function of the biological part.

An element is a concatenation of biological parts. The transcriptional semantic of an ele-
mentary sequence is thus given by the left-to-right composition of the semantics of its biological
parts in forward orientation together with the right-to-left composition of the semantics of its
biological parts in reverse orientation. The composition of semantics of biological parts yields
two new semantics, namely the expression of a gene (denoted by fX) and the encapsulation of
both encoding and promotion (denoted by fGP). Concretely, the semantic fX is given by the

14

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

concatenation of promoter with a gene, while the semantic fGP is given by the concatenation of
a gene with a promoter.

Importantly, no other function is needed to express the transcriptional semantic of an elemen-
tary device. This means that, whatever the size of an element (i.e. the number of its biological
parts), its transcriptional semantic is a couple of values (fF,fR) where both fF and fR are one
of fN, fP, fT, fG, fGP, fX. Table1C presents the semantics of the composition of the biological
parts functions. This means that any element has exactly one among 36 possible transcriptional
semantic. Nevertheless, as our objective is too determine the gene expression state of an archi-
tecture, all couples (fF,fR) containing at least one fX function are considered as equivalent. In
this regard, there are only 26 possible transcriptional semantic for an element.

The transcriptional behaviour of an architecture takes also into account the set of recombi-
nases that are active. Every active pair of sites induces a transformation of the DNA sequence,
which can be performed in any order. Once all transformations have been performed, the archi-
tecture cannot evolve anymore, and can therefore be seen as an element whose transcriptional
semantic can be computed as described before.

The transcriptional semantic of an architecture is a set of couples (A,S) where A is a set of
active inputs and S is the semantics of the elementary sequence obtained from the device after
all DNA transformations have been performed.

The transcriptional semantic of an architecture can be put in correspondence with Boolean
functions. Indeed, a transcriptional semantic can be seen as a truth table where each line cor-
responds to a couple (A,S). An input that belongs to the set A is active (1) and non active (0)
otherwise. Then, the semantic S denotes either gene expression (1) if and only if it contains the
behaviour fX.

15

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

3.2 Details on the constraints used to reduce the generation of irre-
ducible architectures.

3.2.1 Utility of a sequence according to another one.

A semantic s1 is useful after another semantic s2 if there is no less complex semantic s′1 of s1
such that s2.s1 ≡ s2.s

′
1. And a semantic s1 is useful before another semantic s2 if there is no

less complex semantic s′1 of s1 such that s1.s2 ≡ s′1.s2.
s1 is less complex than s2 if all the corresponding parts of s1 are strictly included in the

corresponding parts of s2.

Example We defined s1 = fP/fN and s2 = fT/fN . s1 is useless before s2 because s1.s2 =
fT/fN and therefore, it exists s1′ = fN/fN such that s1′ .s2 = fT/fN . But s1 is useful after
s2 because there exists no s1′ less complex that s1 such that s2.s1 ≡ s2.s

′
1.

Constraints With this concept of utility, we create two constraints, one to check the utility of
a semantic after another one, and a second one to check the utility of a semantic before another
one, for each variable. A semantic is useful if, on one derived structure, there is an utility in
the forward direction and on another one derived structure (not necessarily the same as before),
there is an utility in the reverse direction.

All cases of utility are presented in the table S5 of this section. There is only the forward
semantics : for the reverse semantics, the table must be read in the other direction.

To know if a semantic is useful before another one, we read the row and after the column.
For example, if s1 = fP and s2 = fT , to check if s1 is useful before s2, we read the row fP
and the column fT : in the bottom-left corner of the cell, we can read fN , so there exists a
s1′ = fN such that s1.s2 ≡ s1′ .s2. If the cell was blank, s1 would be useful before s2.

To know if a semantic is useful after another one, we read the row before the column. For
example, if s1 = fGP and s2 = fP , to check if s1 is useful before s2, we read the column fGP
and the row fP : in the top-right corner of the cell, we can read fG, so there exists a s1′ = fG
such that s1.s2 ≡ s1′ .s2. If the cell was blank, s1 would be useful before s2.

16

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

s1.s2 fN fP fT fG fGP fX
fN

fP
fN

fN
fN

fG
fN

fG

fT
fN fN

fN fN fP
fN

fG
fN

fN
fN

fN
fP

fN

fGP
fG

fN
fG fP fP

fG
fN

fG

fX
fN fN

fP
fN

fP
fN

fN
fN

Supplementary Table 5: utilities of a semantic concatenated to another one

3.2.2 Utility of prefix and suffix semantics.

The principle here is similar to the one described before. Instead of compare a semantic to a
semantic before or after another one, we compare it to the prefix semantic or the suffix semantic
of the variable in the derived functional structures.

The prefix semantic of a variable is the concatenation of all semantics before this variable.
And the suffix semantic is the concatenation of all semantics after this variable.

The table S5 of this section must be read in the same way as the table S6.

Semcolumn.Semrow fN fP fT fG fGP fX

fN
fN fN fP

fP
fN fN

fN
fN

fG
fN

fG

fT
fN fN fN

fN fN fP
fN

fG
fN

fN
fN

fN
fP

fN

fGP
fG fG

fN
fG fP fP

fG
fN

fG

fX
fN fN

fP
fN

fP
fN

fN
fN

Supplementary Table 6: utilities prefix and suffix.

17

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

3.2.3 Domain definitions

By default, each variable has in its domain all the 26 semantics. But, in some cases, we can
reduce the domain of some variables.

Atomic inversion and excision A pair of sites is atomic if there is no site between them.
In an atomic excision, we do not assign the fN/fN semantic because. Indeed, after excision,
the semantic will remained identical (fN/fN) leading to the implementation of a redundant
Boolean function.
Identically for atomic inversion to avoid redundant Boolean function, we do not assign symmetric
semantics as they are not modified by inversion (fN/fN, fP/fP, fG/fG, fT/fT, fGP/fGP, fX).

Expressed semantic The semantic fX can only be put in an excision. Otherwise, the gene
would be always expressed on all derived structures leading to the implementation of the True
Boolean function which is redundant.

Semantics at the ends of a functional structures As a consequence of the prefix and suffix
constraints, we only assign four semantics in the first variable (fN/fN, fP/fN, fN/fG, fP/fG) and
four in the last variable (fN/fN, fN/fP, fG/fN, fG/fP). Indeed, the prefix of the first variable is
always fN/fN to respect the previously defined constraints these are the only semantics that have
a prefix utility after fN/fN. The same applies with the suffix of the last variable.

3.3 Rules permitting to simplify a concatenation of semantics, permit-
ting therefore to determine the gene expression state.

Transcriptional parts are concatenated to form transcriptional sequences. We defined a set of
rules to determine the semantics of sequences. As any forward and reverse semantics can be
considered separately, the following properties are defined considering a single orientation of the
construct. For simplification, the properties are written in the forward orientation, from 5’ to 3’.

The semantic of a transcriptional sequence corresponds to the concatenation of the semantics
of each part of the sequence. Indeed, to determine the semantics of a concatenation of tran-
scriptional parts, we use a step-wise iterative process in which semantics are composed two by
two.

This concatenation can be simplified with the following rules in a reduced set of six elementary
semantics. These six semantics correspond to the four semantics described previously (fP, fT, fG,
and fN) plus the semantics corresponding to the expression of a gene: fX and the composition
of fG followed by fP: fGP. As the two-by-two concatenation of the four basic semantics leads to
one of these six semantics, this set of semantics is complete (detailed below).

Rules:
(1) Non-commutativity: Concatenation of semantics is not commutative as parts concatenated
in a different order do not lead to the same semantic. As an example, PF-GF permits expression
of the gene, therefore encoding the semantic fX, which is not the case for GF-PF.

18

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

(2) Neutrality: A sequence without any activity in a particular orientation does not affect other
sequences placed in the same orientation (i.e. fN is neutral to other semantics similarly oriented).
(3) Assimilation of fX: The semantic of gene expression, fX, assimilates all other semantics.
In others words, the composition of the fX semantic with another semantic is simplifiable to
fX. In this work, we aim at defining if a construct leads to expression of a gene or not and the
composition of fX with another semantic does not affect the fX semantic.
(4) Idempotent: all semantics are idempotent (an operation has the same effect even if applied
multiple times), as we consider that the concatenation of two similar parts is equivalent to a
single part.

Others rules are due to the mechanism of gene expression. A gene is expressed if it is tran-
scribed by RNA polymerase; consequently, a promoter needs to be positioned upstream without
a terminator positioned between the promoter and the gene. This mechanism can be assimilated
to a flow that is opened by the promoter, stopped by the terminator, and the system is ON when
the flow is at a specific location: the gene.
(5) Expression occurs only if a promoter is placed upstream of a gene without a terminator in
between. Such as, the concatenation of the semantic promotion with semantic gene is simplifiable
to fX. i.e. fP-fG=fX
(6) A gene followed by a promoter leads to the semantic fGP, as the promoter can be active
for a downstream gene and the gene can be expressed by an upstream promoter. Consequently,
fG-fP=fGP. In this case, we have associativity of the semantics fG and fP.
(7) If a promoter is followed by a terminator, the RNA polymerase flux is blocked by the termi-
nator, consequently, fP-fT=fT.
(8) If a terminator is followed by a promoter, the terminator will have no effect on the semantic
of the sequence as the terminated transcription will be re-initiated by the promoter, consequently:
fT-fP=fP.
(9) If a terminator is followed by a gene, the gene cannot be expressed as the RNA polymerase
flux is blocked by the terminator; consequently, fT-fG=fT.
(10) If a gene is followed by a terminator, the terminator will have no effect on the semantic
of the word; indeed, if the previous semantic is fP, it will result in the expression of the gene,
consequently: fG-fT=fG.

Mathematical definition of the rules for semantic composition. For two semantics fA
and fB, fA-fB is the concatenation of fA with fB, fA being in 5’ and fB in 3’.
(1) Not commutative: fA-fB6=fB-fA
(2) Neutrality of fN: fN-fA=fA and fA-fN=fA
(3) Assimilation by fX: fX-fA=fX and fA-fX=fX
(4) Isomorphism: fA-fA=fA
(5) Condition of gene expression: fP-fA-fG=fX only if fA 6=fT or fA=fP
(6) Composition of Gene-Promoter: fG-fP=fGP
(7) A terminator cancels promotion: fP-fT=fT
(8) A promoter cancels termination: fT-fP=fP

19

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

(9) A terminator block transcription of a following gene: fT-fG=fT
(10) A terminator cannot block transcription of a previous gene: fG-fT=fG

We concatenated the six previously defined semantics two by two. Using the previously defined
rules, all concatenations of these six semantics are simplifiable to one of the six semantics (Ta-
bleS2). Therefore, the set of semantics is complete and our rules are scalable to the concatenation
of N transcriptional parts.

3.4 Symmetric functions are implementable with recombinases.

3.4.1 Definition of a symmetric function

A symmetric function of n variable is a function which is equivalent by any permutation
of the n variable.
As examples:
(1) f(a,b,c)=a.b.c+!a.!b.!c (with !x being the negation of x) is a symmetric function which is
equal to 1 if the number of one variable is zero or three. Therefore, it can be written as S3

0,3(a,b,c),
a,b and c being the variable of the symmetric function.
(2) f(a,b,c)=a.!b.c+!a.b.!c is also a symmetric function. Here the variables are a, !b, c and the
function can be written as S3

0,3(a,!b,c).

We note symmetric functions as: Sn
{ak}(x

j1
1 , x

j2
2 , ..., x

jm
n), where the ji may take on only the

values 0 and 1, and:
xjii = xi if ji = 0 and xjii = ¬xi =!xi if ji = 1

3.4.2 Formal implementation of symmetric functions with recombinases.

Symmetric functions are usually functions with a large number of terms and of literal per terms,
so requiring large circuits for implementation if using second-order circuits based on sum-of-
products or product-of-sums function expression. However, in electronic, in the 1960 century,
methods have been developed to easily and economically realize completely symmetric functions
using contact-type gating elements. As well in biology, symmetric functions are easily imple-
mentable using recombinases using nested inversion-based elements.

As example, the 2-input XOR gate were realized by Bonnet and colleagues using a single
terminator nested inversion-based elements as represented in Figure bellow. In the presence of
none of the input, the terminator is blocking the expression of the output gene. In presence of a
single input, the terminator is inverted leading to expression of the output gene. In presence of
the two input, the terminator is inverted back in its blocking orientation, the output gene is then
not express. This design can be generalize for an n number of input for even and similarly odd
symmetric functions (Figure S11).

20

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

0
0
1
1

0
1
0
1

0
1

0
1

input out

T

2-input ODD function

0
0
1
1

0
1
0
1

0
1

0
1

input out

T

2-input EVEN function

T
n-input ODD function n-input EVEN function

[]n []n

T[]n []n

A B

C D

Supplementary Figure 11: Implementation of odd and even symmetric functions using
recombinases. (A) For the implementation of 2-input odd function also called XOR function,
Bonnet and colleagues used a terminator nested inversion-based element. In more detail, the
device is composed on an asymmetric terminator in blocking orientation surrounded by two
nested pairs of integrase sites in inversion orientation. (B) Similarly, for the implementation of
the 2-input even function also called NXOR function, Bonnet and colleagues used a terminator
nested inversion-based element, however here the asymmetric terminator is in passing orientation
in the off state. (C) and (D) These 2-input designs can be generalized to N-input designs by
nested N-integrase site pairs in inversion orientation.

3.4.3 All fully implementable clusters of complex functions are composed of symmet-
ric or partially symmetric Boolean functions.

List of all logic functions with 8 terms and 4 literals per terms:
ODD PARITY FUNCTION: S4

1,3(a,b,c,d)=!a.!b.!c.d + !a.!b.c.!d + !a.b.!c.!d + a.!b.!c.!d +
!a.b.c.d + a.!b.c.d + a.b.!c.d + a.b.c.!d
EVEN PARITY FUNCTION: S4

0,2,4(a,b,c,d)=!a.!b.!c.!d + !a.!b.c.d + !a.b.!c.d + !a.b.c.!d +
a.!b.!c.d + a.!b.c.!d + a.b.!c.!d + a.b.c.d

List of all logic functions with 7 terms and 4 literals per terms:
S4
2,4(a,b,c,d)=!a.!b.c.d + !a.b.!c.d + !a.b.c.!d + a.!b.!c.d + a.!b.c.!d + a.b.!c.!d + a.b.c.d

S3
1,3(a,b,c).!d+S3

2(a,b,c).d=!a.!b.c.!d + !a.b.!c.!d + a.!b.!c.!d + !a.b.c.d + a.!b.c.d + a.b.!c.d +
a.b.c.!d
S4
1(a,b,c,d)+S3

2(b,c,d).a==!a.!b.!c.d + !a.!b.c.!d + !a.b.!c.!d + a.!b.!c.!d + a.!b.c.d + a.b.!c.d
+ a.b.c.!d
S4
0,4(a,b,c,d)+S2

1(a,b).S2
1(c,d)=!a.!b.!c.!d + !a.b.!c.d + !a.b.c.!d + a.!b.!c.d + a.!b.c.!d + a.b.!c.!d

+ a.b.c.d
S4
0,2(a,b,c,d)=!a.!b.!c.!d + !a.!b.c.d + !a.b.!c.d + !a.b.c.!d + a.!b.!c.d + a.!b.c.!d + a.b.!c.!d

21

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

List of all logic functions with 8 terms and 3.5 literals per terms:
S4
1,3,4(a,b,c,d)=!a.!b.!c.d + !a.!b.c.!d + !a.b.!c.!d + a.!b.!c.!d + b.c.d + a.c.d + a.b.d + a.b.c

S2
1(c,d).!a.!b+c.d.S2

1(a,b)+S2
0,1(c,d).a.b+!c.!d.S2

1,2(a,b)=!a.!b.!c.d + !a.!b.c.!d + !a.b.c.d + a.!b.c.d
+ b.!c.!d + a.!c.!d + a.b.!c + a.b.!d
S3
0,2,3(a,b,c).!d+S3

1,3(a,b,c).d=!a.!b.!c.!d + !a.!b.c.d + !a.b.!c.d + a.!b.!c.d + b.c.!d + a.c.!d +
a.b.!d + a.b.c
S3
0,2(b,c,d).!a+S3

0,1,3(b,c,d).a =!a.!b.c.d + !a.b.!c.d + !a.b.c.!d + a.b.c.d + !b.!c.!d + a.!b.!c +
a.!b.!d + a.!c.!d
S4
0,1,3(a,b,c,d)=!a.b.c.d + a.!b.c.d + a.b.!c.d + a.b.c.!d + !a.!b.!c + !a.!b.!d + !a.!c.!d + !b.!c.!d

3.5 List of 4-input P-classes with a single possible architectures.

Six 4-input P-classes are implementable with a single possible architectures, following an example
of logic function in a Quine McKluskey form for each of these 6 P-classes.
f1=!a.b.c.d + a.!b.!c + a.!b.!d + a.!c.!d
f2=a.b.c.d + !a.!b.!d + !a.!c.!d + !b.!c.!d
f3=a.!b.!c + a.!b.!d + a.!c.!d + b.c.d
f4=!a.!b.!d + !a.!c.!d + !b.!c.!d + a.b.c
f5=a.!b.!c + a.!b.!d + a.!c.!d + !a.c.d + !a.b.d + !a.b.c
f6=!a.!b.!d + !a.!c.!d + !b.!c.!d + b.c.d + a.c.d + a.b.d

3.6 4-input P-class with the maximum number of architectures.

Following an example of logic function of the P-class with the maximum number of architectures
(1.4 millions).
f=a+b+!c+!d

22

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/711374doi: bioRxiv preprint

https://doi.org/10.1101/711374
http://creativecommons.org/licenses/by-nc/4.0/

	RECOMBINATOR - Exploring the design space of compacted recombinase logic circuits.-4.pdf
	Supplementary_Information__Exploring_the_design_space_of_compacted_recombinase_logic_circuits.pdf

