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Abstract 
 
Structural variants (SVs) contribute substantially to risk of many brain related disorders including autism and 

schizophrenia. However, annotating the potential contribution of SVs to disease remains a major challenge. Here, 

we integrated high resolution SV calling from genome-sequencing in 755 human post-mortem brains with dorsal 

lateral prefrontal cortex RNA-sequencing from a subset of 629 samples to quantify the dosage and regulatory 

effects of SVs. We show that genic (p = 5.44x10-9) and regulatory SVs (enhancer p = 3.22x10-23, CTCF p = 

3.86x10-18) are present at significantly lower frequencies than intergenic SVs after correcting for SV length. Copy 

number variants (CNVs)—deletions and duplications—exhibit a significant quantitative and directional 

relationship between the proportion of genic and regulatory content altered and gene expression, and the size of 

the effect is inversely correlated with the loss-of-function intolerance of the gene. We trained a joint linear model 

that leverages genic and regulatory annotations to predict expression effects of rare CNVs in independent samples 

(R2 = 0.21-0.41). We further developed a regulatory disruption score for each CNV that aggregates the predicted 

expression across all affected genes weighted by the genes’ intolerance score and applied it to an independent set 

of SVs from 14,891 genome-sequenced individuals. Pathogenic deletions implicated in neurodevelopmental 
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disorders by ClinGen had significantly more extreme regulatory disruption scores than the rest of the SVs. Rank 

ordering based on the most extreme regulatory disruption scores prioritized pathogenic deletions that would not 

have been prioritized by frequency or length alone. This work points to the deleteriousness of regulatory SVs, 

particularly those altering CTCF sites. We further provide a simple approach for functionally annotating the 

regulatory effects of SVs in the human brain that has potential to be useful in larger SV studies and should improve 

as more regulatory annotation data is generated. 

 
Introduction 
 
Structural variants (SVs) are a common and complex form of genetic variation that contribute substantially to 

phenotypic diversity and disease1–3. This contribution is particularly notable in brain related disorders and traits 

such as schizophrenia, autism spectrum disorder (ASD) and cognition4–8. The advent of short-read genome 

sequencing has facilitated SV detection at nucleotide resolution and enabled the generation of large-scale 

reference studies2,9,10. Despite this progress, we still have a limited understanding of the functional impact of these 

variants, particularly for those seen infrequently in populations. Developing approaches to infer the functional 

consequences of SVs in the brain could have a profound impact on interpretation of genetic risk of complex brain 

disorders. 

RNA-sequencing enables accurate measurement of transcription genome-wide11 and can thus facilitate a 

direct assessment of functional changes driven by genetic variants including single nucleotide variants (SNVs) 

and SVs12–15. Previous work using earlier technologies has demonstrated that SVs have profound effects on 

expression with estimates of large copy number variants (CNVs) alone explaining 18% of variation in gene 

expression in cell lines19. Most work in this area has focused on common variants for which there is statistical 

power to identify direct association of a variant with expression of a gene16. However, recent analyses have 

suggested a substantial regulatory role for rare variants by identifying an enrichment of expression outliers in 

individuals harboring such variation17,18. In a small number of examples, rare SVs have shown the potential to 

alter the expression of genes both within and outside the SV locus with disease relevant phenotypic consequences. 

Such SVs often alter the regulatory landscape directly or through positional effects that change the three-

dimensional structure of the genome19–23. For example, the expression of PLP1 is regulated by a downstream 
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duplication and is associated with spastic paraplegia type 2 with axonal neuropathy22. To date, few samples have 

thus far been able to leverage both comprehensive SV detection from genome-sequencing and RNA-sequencing 

to explore the effects of rare SVs on expression genome-wide. Despite the importance of rare SVs in brain-related 

disorders and the tissue specific nature of transcriptional regulation, efforts to understand the functional 

consequences of rare SVs in the brain have been impeded by the challenge in acquiring enough post-mortem brain 

samples to be well-powered to quantify the dosage and regulatory effects of SVs  

The CommonMind Consortium (CMC; www.synpase.org/CMC) is a large collection of collaborating 

brain banks that includes over 1,000 samples. Here, we leveraged newly generated genome-sequencing data 

integrated with RNA-sequencing data in 629 samples that enabled us to directly study the effects of rare SVs on 

expression in the brain. We show that SVs affecting regulatory elements are at significantly lower variant 

frequencies than expected, suggesting their potential to be deleterious. We also provide a quantitative 

characterization of the effects of SVs altering different regulatory elements have on expression. These results 

show that most complete gene deletions and duplications do not result in expression outliers and that genic 

intolerance to variation informs their functional impact. Finally, we built a model to infer the expression effects 

of SVs and used it to calculate a cumulative measure of regulatory disruption of an SV across all genes. When 

applied to a large independent SV reference data set9,24, the regulatory disruption score improves prioritization of 

pathogenic deletions beyond the common practice of considering frequency and SV length. Altogether, this work 

advances our understanding of the transcriptional consequences of SVs in the human brain and provides a 

framework for functionally annotating these variants to aid in disease studies. 

 
Methods 

Cohorts: Samples were included from two different cohorts. The CMC study is a combined collection of brain 

tissues from the Mount Sinai NIH Brain Bank and Tissue Repository (n=127), The University of Pennsylvania 

Brain Bank of Psychiatric Illnesses and Alzheimer’s Disease Core Center (n=62) and The University of Pittsburgh 

NIH NeuroBioBank Brain and Tissue Repository (n=139). The CMC_HBCC study includes brain samples from 

the NIMH Human Brain Collection Core (n=445). 
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DNA Isolation: DNA for all 773 samples was isolated from approximately 50 mg dry homogenized tissue from 

the dorsal lateral prefrontal cortex (DLPFC). All tissue samples had corresponding tissue samples that were 

isolated for RNAseq. All DNA isolation was done using the Qiagen DNeasy Blood and Tissue Kit (Cat#69506) 

according to manufacturer’s protocol. DNA yield and genomic quality number (GQN) was quantified using 

Thermo Scientific’s NanoDrop and the Fragment Analyzer Automated CE System (Advanced Analytical). 96 

samples had a GQN <4, but were not excluded from genome-sequencing. The mean yield was 9.9 ug (SD = 

10.4) and the mean GQN was 5.6 (SD = 1.47). 

  

DNA Library Preparation: All samples were submitted to the New York Genome Center for genome-

sequencing, where they were prepared for sequencing in randomized batches of 95. The sequencing libraries 

were prepared using the Illumina PCR-free DNA sample preparation Kit. The insert size and DNA 

concentration of the sequencing library was determined on Fragment Analyzer Automated CE System 

(Advanced Analytical) and Quant-iT PicoGreen (ThermoFisher) respectively. A quantitative PCR assay 

(KAPA), with primers specific to the adapter sequence, was used to determine the yield and efficiency of the 

adaptor ligation process.  

  

Genome-sequencing library preparation and sequencing: Libraries for genome sequencing were generated 

from 100 ng of genomic DNA using the Illumina TruSeq Nano DNA HT sample preparation kit. Genomic DNA 

were sheared using the Covaris sonicator (adaptive focused acoustics), followed by end-repair, bead-based size 

selection, A-tailing, barcoded-adaptor ligation followed by PCR amplification. Final libraries were evaluated 

using qPCR, picogreen and Fragment analyzer. Libraries were sequenced on a 2x150 bp run of a HiSeq X 

instrument. 

  

Genome-sequencing pipeline: Paired-end 150 bp reads were aligned to the GRCh37 human reference using the 

Burrows-Wheeler Aligner (BWA-MEM v0.78) and processed using the best-practices pipeline that includes 

marking of duplicate reads by the use of Picard tools (v1.83,http://picard.sourceforge.net), realignment around 
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indels, and base recalibration via Genome Analysis Toolkit (GATK v3.2.2). Variants were called using GATK 

HaplotypeCaller, which generates a single-sample GVCF. To improve variant call accuracy, multiple single-

sample GVCF files were jointly genotyped using GATK GenotypeGVCFs, which generated a multi-sample 

VCF.  Variant Quality Score Recalibration (VQSR) was performed on the multi-sample VCF, which added 

quality metrics to each variant that can be used in downstream variant filtering. 

 

Structural Variant Discovery: SVs were detected using a discovery pipeline previously described25 that relies 

upon an ensemble of SV detection algorithms to maximize sensitivity, followed by a series of filtering modules 

to control the overall false discovery rate and refine variant predictions. In brief: 

1. Raw SV calls collection: Five algorithms that used discordant pair-end reads (PE) and split reads (SR) to 

predict SVs, i.e. Delly26 (v0.7.5), Lumpy27 (v0.2.13), Manta28 (v1.01), Wham29 (v1.7.0) and MELT30 (v2.1.4), 

were executed in per-sample mode with their default parameter. A series of read depth-based (RD) algorithms 

were also applied for copy number variant (CNV) detection, including CNVnator31 (v0.3.2), GenomeSTRiP32 

(v2), and  a custom version of cn.MOPS25. These algorithms were applied to male and female samples 

separately, each in ~100-sample batches. For each batch, we composed a coverage matrix across all samples 

at 300 bp and 1 kb bin sizes across each chromosome with N-masked bases excluded, then applied cn.MOPS, 

split raw calls per sample, segregated calls into deletions (copy number < 2) and duplications (copy number 

> 2) and merged the 300 bp and 1 kb resolution variant predictions per sample per CNV class using BEDTools 

merge.  

2. Aberrant alignment signature collection: We collected discordant PE and SR evidence through svtk collect-

pesr, RD evidence through svtk bincov with N-masked regions excluded (https://github.com/talkowski-

lab/CommonMind-SV/blob/master/files/h37.Nmask.bed), and B allele frequency (BAF) evidence from 

GATK HaplotypeCaller-generated VCFs using a custom script (vcf2baf, https://github.com/talkowski-

lab/CommonMind-SV/blob/master/scripts/vcf2baf.sh). Following evidence collection per sample, we 

constructed PE, SR, RD, and BAF matrices merged across each phase of sequencing that included 327 
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(SKL_10073), 326 (SKL_11154) and 119 (SKL_11694) samples respectively through customized scripts 

(https://github.com/talkowski-lab/CommonMind-SV/tree/master/Step1b_EvidenceCollection). 

3. SV integration and refinement: SV calls detected by each algorithm described above were integrated and 

calibrated through a series of filtering modules to control the overall false discovery rate (FDR) and refine 

variant predictions. Raw outputs from each algorithm were clustered across all samples for each of three 

sequencing phases (327 samples in SKL_10073; 326 samples in SKL_11154; 119 samples in SKL_11694). 

Once clustered across samples, the integrated call set was filtered through a random-forest module that tests 

for statistically significant differences between samples with and without each SV based on four semi-

orthogonal signatures: PE, SR, RD, and BAF. Finally, filtered, high-quality SV calls were integrated across 

all three sequencing phases, whereupon all breakpoints were genotyped, followed by alternate allele structure 

resolution, complex SV classification, other variant refinements, and gene annotation.  The filtering module 

is adaptable to multiple input algorithms, and this same pipeline has been applied to WGS data in ASD 

families25 and population variation datasets9.  

 

SV dataset description: We successfully applied all SV discovery algorithms on 772 / 773 (99.9%) of the CMC 

samples, with one failed sample (MSSM-DNA-PFC-375). All 772 samples were included in the SV integration 

pipeline with SVs assigned in the final call set. The final analyses yielded 125,260 SVs, including 62,948 

deletions, 30,547 duplications, 31,155 insertions, 268 simple inversions, 341 complex SVs and 1 reciprocal 

translocation. On average, 6,220 SVs were identified per sample, consisting of 3,579 deletions, 755 duplications, 

1,839 insertions, 15 inversions and 14 complex SVs.  For the insertions, 1,146 were further classified as mobile 

elements insertions (MEI), including 1,005 Alu, 92 LINE1 and 49 SVA variants. The number of SVs distributed 

proportionately by read depth among the phases and matched expected demographic history (e.g. 1,421 more SVs 

were detected on average for African-American individuals than all other populations).  
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Identification and removal of SV outliers: We carefully examined the set of 772 individuals with SV calls for 

technical outliers (e.g. related to genome-sequencing generation or biological processes associated with DNA 

extraction of the post-mortem samples). We removed one individual for presence of an abnormal sex chromosome 

(XXY) which had been previously noted33. We further identified 16 samples that represented CNV outliers 

resulting from anomalous read dosage as calculated by our dosage scoring metric9.  Individuals were removed if 

they carried too many or too few CNVs, defined by 3*IQR (interquartile range) of CNVs per individual or 

genomic content that they alter. After outlier exclusion, we retained 755 (97.8%) of samples with SV data. 

 

RNA-sequencing pipeline: The processing of the RNA-sequencing for these samples has been previously 

described 34, however we reiterate this process below for reading convenience. Samples were processed separately 

by cohort: CMC and CMC_HBCC. 

 

RNA-sequencing Re-alignment: RNA-sequencing reads were aligned to GRCh37 with STAR v2.4.0g151 from 

the original FASTQ files. Uniquely mapping reads overlapping genes were counted with featureCounts v1.5.252 

using annotations from ENSEMBL v75. 

 

RNA-sequencing Normalization: To account for differences between samples, studies, experimental batch 

effects and unwanted RNA-sequencing specific technical variations, we performed library normalization and 

covariate adjustments using fixed/mixed effects modeling. The workflow consisted of following steps:  

1. Gene filtering: Out of ~56K aligned and quantified genes only genes showing at least modest expression 

were used in this analysis. Genes that were expressed more than 1 CPM (read Counts Per Million total 

reads) in at least 50% of samples in each study were retained for analysis. Additionally, genes with 

available gene length and percentage GC content from BioMart December 2016 archive were subselected 

from the above list. This resulted in approximately 14K to 16K genes in each batch. 

2. Calculation of normalized expression values: Sequencing reads were then normalized in two steps. First, 

conditional quantile normalization (CQN)53 was applied to account for variations in gene length and GC 
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content. In the second step, the confidence of sampling abundance was estimated using a weighted linear 

model using voom-limma package in bioconductor54,55. The normalized observed read counts, along with 

the corresponding weights, were used in the following steps. 

3. Outlier detection: Based on normalized log2(CPM) of expression values, outlier samples were detected 

using principal component analysis (PCA)56,57 and hierarchical clustering. Samples identified as outliers 

using both the above methods were removed from further analysis. 

4. Covariate identification: Normalized log2(CPM) counts were then explored to determine which known 

covariates (both biological and technical) should be adjusted. For the CMC study, we used a stepwise 

(weighted) fixed/mixed effect regression modeling approach to select the relevant covariates having a 

significant association with gene expression. Here, covariates were sequentially added to the model if they 

were significantly associated with any of the top principal components, explaining more than 1% of 

variance of expression residuals. For CMC_HBCC, we used a model selection based on Bayesian 

information criteria (BIC) to identify the covariates that improve the model in a greater number of genes 

than making it worse. 

5. SVA adjustments: After identifying the relevant known confounders, hidden-confounders were identified 

using the Surrogate Variable Analysis (SVA)58. We used a similar approach as previously defined49 to 

find the number of surrogate variables, which is more conservative than the default method provided by 

the SVA package in R59. The basic idea of this approach is that for an eigenvector decomposition of 

permuted residuals each eigenvalue should explain an equal amount of the variation. By the nature of 

eigenvalues, however, there will always be at least one that exceeds the expected value. Thus, from a 

series of 100 permutations of residuals (white noise) we identified the number of covariates to include. 

We applied the “irw” (iterative re-weighting) version of SVA to the normalized gene expression matrix, 

along with the covariate model described above to obtain residual gene expression. 

6. Covariate adjustments: We performed a variant of fixed/mixed effect linear regression, choosing mixed-

effect models when multiple samples, were available per individual, as shown here: gene expression ~ 

Diagnosis + Sex + covariates + (1|Donor), where each gene in linearly regressed independently on 
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Diagnosis, identified covariates and donor (individual) information as random effect. Observation weights 

(if any) were calculated using the voom-limma54,55 pipeline, which has a net effect of up-weighting 

observations with inferred higher precision in the linear model fitting process to adjust for the mean-

variance relationship in RNA-sequencing data. The Diagnosis component was then added back to the 

residuals to generate covariate-adjusted expression.  

All these workflows were applied separately for each cohort. For CMC_HBCC, samples with age < 18 were 

excluded prior to analysis.  

 

Ensuring sample consistency between genome-sequencing and RNA-sequencing: To infer effects on 

expression from SVs, we had to ensure the genome-sequencing and RNA-sequencing data were from the same 

individual. To do so we used variant calling data from both platforms. We removed SNVs with missing rate ³ 

0.05 and restricted only to biallelic variants. Upon merging the genotypes from genome-sequencing and RNA-

sequencing we calculated genome-wide relatedness from estimates of identity-by-descent using Plink60 across all 

cross-platform pairs of samples. For each genome-sequencing sample we identified the appropriate matching 

RNA-sequencing sample requiring both near complete relatedness (Pihat > 0.8) and no other sample with high 

relatedness. Across both cohorts 622/632 (98%) samples matched the expected pair and 10 samples had to be 

corrected. 

 

Genomic annotation sources: All data were downloaded in the GRCh37/hg19 build of the human genome. We 

used TSS definitions from Ensembl v75. To map regions of open chromatin, we used a set of DNase 

hypersensitive sites (DHSs) downloaded from Roadmap Epigenomics61. We mapped the three-dimensional 

chromatin architecture using TAD domains identified by PsychENCODE from Hi-C contact matrices with 40 kb 

resolution in the prefrontal cortex (PFC, n=2,735)62. As a proxy for TAD boundaries or other insulated regions, 

we used a set of CTCF binding sites from ChIP-seq data downloaded from ENCODE in brain-relevant cell types63. 

We merged overlapping CTCF peaks from each tissue into a single consensus region (n=100,894). 
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Cis-regulatory element annotations: We downloaded PFC enhancer annotations (n=79,056) from the 

PsychENCODE project62. These were generated by overlapping cross-tissue DNase-seq and ATAC-seq assay 

information with H3K27ac ChIP-seq peaks. Regions overlapping H3K4me3 peaks and within 2 kb of a TSS were 

excluded from the set of putative enhancers. All ChIP-seq, ATAC-seq, and DNase-seq data were filtered to 

include only high-signal peaks with a z-score greater than 1.64. We also downloaded the high confidence set of 

enhancer annotations (n=18,212) which, in addition to the criteria above, require high PFC H3K27ac ChIP-seq 

signal (z-score > 1.64) in both the PsychENCODE and Roadmap Epigenomics experiments. We generated a set 

of promoter annotations by using 2 kb windows upstream from each TSS (n=57,773). We intersected these 2 kb 

windows with PFC H3K27ac from PsychENCODE and PFC H3K4me3 from Roadmap Epigenomics to create a 

set of  high confidence promoters (n=5,736)61,62. As in the enhancer definition, the H3K27ac and H3K4me3 ChIP-

seq data included only high signal peaks with a z-score > 1.64. 

 
Results 
 
Evidence for selection against SVs affecting transcriptional regulation 

The SV detection pipeline identified 116,471 high-quality variants across 755 individuals. The final set of SVs 

predominantly consisted of CNVs (73%) and mobile element insertions (18%). The vast majority of SVs were 

small and rare (Figure 1, Supplementary Table 1). The average length of SVs in this dataset was 7,053 bp (median 

= 280 bp), with 83% of variants less than 1 kb. We next identified a subset of large (> 1 kb) and rare SVs (observed 

in < 1% of individuals), representing 20,001 variants, 91% of which were CNVs given that most mobile elements 

are small. On average, individuals carried 75.8 rare, large SVs including 43.6 deletions and 25.7 duplications. 

These numbers differed by ancestry; individuals with African ancestry (mean = 121.9 SVs) carried substantially 

more rare SVs than individuals with European (mean = 51 SVs) or other ancestries, as expected.  

We next sought to characterize how frequently SVs putatively alter gene dosage based on overlap with 

genes or regulatory elements. We defined a set of regulatory elements that included CTCF sites (n=100,894), 

enhancers (n=79,056) derived exclusively from brain tissue (see Methods) and promoters (2 kb upstream of the 

transcription start site [TSS]). Genes were defined as those in Ensembl v75 (n=57,773) and where noted we split 

protein-coding genes from others which we label broadly as “other transcribed products.” For comparison, we 
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defined two “non-functional” categories of SVs: intronic and intergenic SVs lacking overlap with any annotation. 

Despite this annotation, these non-functional SV categories will include some proportion of SVs altering 

functional elements that were either not included, or not yet identified, which should make our comparisons 

conservative. The allele frequency (AF) of SVs affecting protein-coding genes (AF = 0.00167, p = 5.44x10-9), 

enhancers (AF = 0.0012, p = 3.22x10-23) and CTCF sites (AF = 0.00156, p = 3.86x10-18) were significantly lower 

and singleton proportions were significantly higher than intergenic SVs (mean AF = 0.00193) after matching for 

SV length (Table 1a, Wilcoxon test).  

To explore the contributions of different functional elements to this result, we stratified SVs based on the 

specific annotations (e.g., coding and enhancer, Supplementary Figure 1) to isolate those that alter combinations 

and those that uniquely alter a single annotation (Table 1b). We identified a significant negative correlation 

between the total number of annotations and minor allele frequency indicating that SVs with more potential to 

alter dosage are less likely to be tolerated (Supplementary Figure 2). Further, we show that SVs exclusively 

affecting CTCF sites (AF = 0.0017, p = 0.0001) had the lowest frequency and the most significant result when 

compared to intergenic variation at a level comparable to SVs that only affected protein-coding genes (AF = 

0.0019, p = 0.02). These results are consistent across SV type and this difference in allele frequency is seen when 

performing the same annotation of the gnomAD SV dataset of ~15k samples called from genome-sequencing 

using the same pipeline9 (Table 1c). These results suggest a similarly strong selection against SVs that alter CTCF 

sites and protein-coding genes, as presented previously64. Since not all genes are equally sensitive to dosage 

changes, we split protein-coding genes into two sets based on whether they were more constrained on average as 

defined from gnomAD loss-of-function observed/expected score < 0.49 and recalculated AF and singleton 

proportion. SVs affecting the genes in the more intolerant half had lower frequencies (AF = 0.00138) than those 

affecting CTCF sites (AF = 0.00146). 

 

Transcriptional consequences of regulatory SVs 

Among the samples with genome-sequencing, 629 individuals had RNA-sequencing data from the dorsal lateral 

pre-frontal cortex (DLPFC). RNA-sequencing was done across two cohorts (CMC and CMC_HBCC), results 
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were consistent across cohorts as shown in many instances. To quantify the transcriptional consequence of an SV, 

we defined expression in two ways. First, we calculated relative expression as the average expression of carriers 

divided by non-carriers. Second, we calculated z-scores using only non-carriers for calculating the mean and 

standard deviation. We use both measures throughout, relying on relative expression in certain cases for 

interpretation but preferring z-scores for their statistical properties. 

We expect complete deletion or duplication of a gene to result in a 50% decrease or increase in expression, 

respectively. Relative expression calculated using read counts per million total reads (CPM) demonstrated the 

expected 50% decrease or increase from full gene deletions or duplications, on average (Supplementary Figure 

3). Deletions fit this expectation better than duplications, suggesting more variability among duplication calls 

and/or their functional effects. Normalization and linear covariate adjustment, which is necessary to account for 

confounders and batch effects (see Methods) alters the relative difference in expression among carriers to be 

closer to 25% while also reducing the variance, enabling clear demonstration of expression differences among 

individuals carrying full gene deletions or duplications (Supplementary Figure 3). In general, expression was 

substantially lower across the full set of deletions and higher across the full set of duplications affecting genes 

(Figure 2), and these results were consistent across RNA-sequencing cohorts (Supplementary Figure 4). Not 

surprisingly, other classes of SVs did not show a directional expression difference.  

While there is an expectation for the effect of full gene deletions and duplications, the effects that other 

SVs may have on expression are not obvious. We identified a relationship between proportion of exonic sequence 

deleted/duplicated and expression (Supplementary Figure 5) where the more exonic sequence deleted or 

duplicated the more extreme the expression difference. We defined expression outliers as those with z-scores 

greater than 2 or less than -2, and considered all pairs of SV and genes within 1 Mb of the SV. After Bonferroni 

correcting for 36 tests (p < 0.0014), we identified significant excess of positive expression outliers for genic 

duplications (14.6%, p = 8.4x-10-158, Fisher’s exact test) and significant excess of negative expression outliers for 

genic deletions (22.8%, p = 8.4x10-163) when compared within the same CNV type but not affecting protein-

coding genes (Table 2). These results remained consistent whether we tested protein-coding genes or other 

transcribed gene products (Table 2). Among the other SV classes, only inversions provided a large enough set to 
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test, and we identified a significant excess of expression outliers among genic inversions when considering 

outliers in both directions (6.8%, p = 1.2x10-4, Table 2), with a slightly larger contribution from positive 

expression outliers (4.1%, p = 1.1x10-3) than negative expression outliers (2.7%, p = 3.2x10-2) 

Our data show an enrichment of expression outliers among genic SVs. However, we emphasize that the 

impact of structural rearrangement on expression is non-uniform and more complex than a simple accounting of 

the presence or absence of an SV. Even in the most extreme case of 100% gene deletion or duplication, the 

affected gene would only be considered an expression outlier in 47% of deletions and 30% of duplications (Figure 

2). Furthermore, across all genic CNVs, only 22.8% of genic deletions and 14.6% of genic duplications result in 

gene expression outliers. These results demonstrate that the majority of known genic SVs would not be identified 

if restricted to expression outliers, so in contrast to this thresholding approach, a quantitative approach can more 

accurately assess the effects that SVs have on gene expression. 

Next, we quantified the transcriptional consequences of SVs that affect regulatory elements; this requires 

determination of a set of genes to analyze for each element. Our definition of promoters was necessarily gene 

specific; however, for enhancers we explored numerous approaches concluding that genes predicted to be targets 

of enhancers from Hi-C65 was the most interpretable and useful for downstream analyses. Other approaches that 

we considered including the nearest gene, all genes within a shared topological associating domain (TAD) and 

all genes within a 1 Mb window showed similar results. We therefore included 90,015 enhancer-gene pairs 

covering 6,535 genes and 32,803 enhancers predicted from PsychENCODE Hi-C data65. To capture the relative 

contributions of all annotations, we tested the relationship between gene expression z-score and SV annotations 

with a joint linear model that included exon proportion, promoter proportion, sum proportion of all affected 

enhancers, whether SV and gene were within the same TAD and SV length. The most significant contributor to 

expression was the proportion of the exon affected (deletions: beta = -26.925, p = 3.2.x10-159; duplications: beta 

= 21.834, p = 2x10-105). Expression was significantly and positively correlated with the proportion of a promoter 

that was affected by CNVs with deletions leading to lower expression (beta = -3.093, p = 2x10-3) and duplications 

leading to higher expression (beta = 11.324, p = 1x10-29). Further, expression was significantly correlated with 

the cumulative sum of enhancer sequence that was affected by an SV only in duplications, but both deletions and 
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duplications led to decreased expression (deletions: beta = -1.825, p = 0.068; duplications: beta = -5.913, p = 

3.4x10-9). The presence of the SV and the gene within the same TAD contributed significantly and directionally 

to expression (deletions: beta = -2.694, p = 7.1x10-3; duplications: beta = 4.114, p = 3.9x10-5). The effects of these 

variables on expression were consistent across cohort (Table 3) and while exon proportion provided the strongest 

contributor, the effects of cis-regulatory elements remained significant in duplications after excluding all genic 

SVs (Supplementary Table 2). 

 

Integrating transcriptional consequences and measures of gene intolerance 

To better understand the relationship between our variant annotations in the context of the genes affected, we 

incorporated two distinct measures of genic intolerance to variation: (1) CNV intolerance defined empirically 

from exome-sequencing in nearly 60,000 individuals66, and (2) a measure of gene intolerance to loss-of-function 

(LoF) variation generated from a sample of ~141,000 individuals24. SVs affecting genes that are more intolerant 

to variation had smaller expression effects on average (Figure 3). Multiple factors contributed to this pattern. 

These genes were significantly less likely to have a genic SV (pLoF= 1.01x10-53, pCNV = 6.8x10-39, Wilcoxon 

test of gene metric by whether SV is exonic or not) and when they do, they were also significantly likely to alter 

a smaller proportion of the exonic sequence (pLoF = 1.05x10-53, pCNV = 1.28x10-38, Spearman correlation test). 

Notably, these results were driven by CNVs with more significant effects of deletions when using LoF and 

duplications when using CNV intolerance (Figure 3). Restricting to SVs that only alter regulatory elements and 

not coding sequence, we identified a significant decrease in the number of enhancers affected by SVs in genes 

with higher intolerance, although this is only observed for the CNV intolerance metric (pLoF = 0.19, p CNV = 

7.7x10-13). We did not find any effects from promoter SVs in either metric (pLoF = 0.36, pCNV = 0.09). 

Combined with the differences seen by CNV type these results may indicate unique properties of these metrics 

and what they reflect (e.g. haploinsufficiency vs dosage sensitivity). In general, as with single nucleotide 

variation, genic measures of intolerance should help functionally annotate SVs. 

 

Building a model to annotate SVs from predicted dosage and gene intolerance 
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Having demonstrated a significant role for SVs in altering expression, we sought to test whether this model could 

be used to predict expression effects of SVs in independent samples. We split our DLPFC sample by cohort (CMC 

and CMC_HBCC, see Methods) and constructed the linear model described previously in each subset and then 

applied that model to SVs in the other set to infer expression effects. We identified significant correlation between 

the true expression value and the predicted value across all 4 pairwise comparisons (R2 CMC_HBCC®CMC = 0.4, R2 

CMC®CMC_HBCC = 0.21, R2 CMC®CMC = 0.41, R2 CMC_HBCC®CMC_HBCC = 0.22 Figure 4) with deletions (particularly 

when tested in CMC) consistently performing better.  

Leveraging this model and the previously used measure of genic intolerance to loss-of-function variation, we built 

an aggregate regulatory disruption score that was the sum of the predicted expression z-scores for each gene 

weighted by the gene’s intolerance metric (normalized between 0 and 1 with 1 being most intolerant) to annotate 

SVs. We then applied our model to annotate 98,336 variants in the gnomAD SV dataset9 after restricting to CNVs 

that were below 1% frequency and above 1 kb in length. Of those, 21,476 (21.8%) were predicted to alter the 

expression of at least one protein-coding gene where we had an intolerance metric and 11,803 of these variants 

were deletions. We considered deletions in gnomAD as pathogenic if they overlapped at least 50% of any of the 

3,455 deletions labeled pathogenic for neurodevelopmental disorders (developmental delay, intellectual 

disability, or autism) in ClinGen (downloaded from UCSC Genome Browser June 2019). There were 84 variants 

that met this criterion (39 variants overlapped 100%, as gnomAD includes some individuals with neuropsychiatric 

disorders). This set of pathogenic deletions had significantly more negative regulatory disruption scores than the 

rest of the SVs representing a more severe reduction in expression among intolerant genes due to these deletions 

(p = 3.14x10-18, mean score in pathogenic deletions = -5.15, mean score in nonpathogenic deletions = -0.30, 

Wilcoxon test). Despite ascertainment bias leading to longer deletions being more likely to overlap pathogenic 

variants, prioritizing variants by regulatory disruption would identify more pathogenic variants than prioritizing 

by length, with 4 of the top 10 variants being pathogenic if ranked by length (2 complete overlaps) and 6 by 

regulatory disruption (5 complete overlaps). The regulatory disruption score also better prioritized pathogenic 

variants than number of genes affected and minor allele frequency, which has limited utility since most deletions 

(55% or 6,515) have the same frequency, as singletons. (Figure 5, Supplementary Table 3). Overall, regulatory 
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disruption is significantly correlated with whether a deletion is pathogenic (R2 = 0.097, p = 1.25x10-262). These 

results indicate the potential of this metric to contribute to improved prioritization of disease causing CNVs. 

 

Discussion 

The integration of genome and transcriptome data on post-mortem brains from the CMC has provided one of the 

first opportunities for large-scale characterization of the impact of rare SVs on expression in the brain. Here we 

demonstrate evidence of selection on rare regulatory SVs, particularly those that alter CTCF binding sites. We 

found a clear and predictable role for genic and regulatory SVs in altering expression, and we showed that the 

degree of expression influence is shaped by the intolerance of a gene to deleterious variation. These results suggest 

the potential to functionally predict and annotate the consequences of SVs on expression.  Illustrating this 

potential, we derived a model to infer expression effects of SVs in independent samples, and applied it to the 

largest SV resource currently available. This provided evidence that annotating SVs by their regulatory burden 

could aid in prioritizing disease relevant variants. 

Selection maintains deleterious variation at lower allele frequencies, enabling the use of frequency as a 

proxy for implicating variant classes that may contribute to phenotypes negatively affecting fitness. Here, we 

showed that SVs overlapping brain regulatory elements including enhancers and CTCF sites were seen at 

significantly lower frequencies than SVs that were intronic or intergenic. This result remained true even after 

accounting for SV length and could also be shown in an independent and substantially larger dataset (gnomAD). 

Regulatory variants, particularly SVs, have the potential to alter the expression of many genes and previous work 

has already implicated de novo variants in fetal enhancers in risk for neurodevelopmental disorders67. As an 

example, a deletion of a CTCF site could enable enhancer activity of nearby genes, a mechanism known as 

“enhancer hijacking” that is particularly common in cancer68. From our data and replication in gnomAD, it 

appears that SVs altering CTCF sites are as infrequent as genic SVs; this suggests that a substantial proportion 

may be deleterious and being actively removed from the population by selection. Previous work has directly 

tested this hypothesis using very different data and approaches and found similar results64. With the growing 
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amount of functional and genomic data, assessing the role of SVs on regulatory elements, particularly CTCF sites, 

in disease will further assess the validity and importance of this finding. 

Rare SVs show substantial but variable effects on expression that can be quantified. While identifying 

potential carriers of rare functional SVs using expression outliers is a practical and valid approach, in our data 

using this definition would result in the identification of only a small proportion of all genic SVs (including 

missing most full gene CNVs) and a substantially smaller proportion of regulatory SVs. The approach taken here 

requires genomic annotations to implicate regulatory effects and an assumption that the annotated elements are 

functional. Despite these limitations, it is clear that both genic and regulatory SVs have significant effects on 

dosage that can be quantified and used to infer expression effects of SVs in independent datasets. These effects 

are strongest when altering coding sequence, but are significant when altering promoter and enhancer sequence 

as well. In all cases the effect is proportional to the amount of functional sequence affected.  

We specifically required that regulatory element annotation be gene-specific to facilitate prediction of 

enhancer-gene associations. In other words, we showed that we can quantify the effect of a CNV on a specific 

gene. As ongoing efforts to understand the gene-specific functions of enhancers improve regulatory annotations, 

so too will the approaches in this paper be improved in accuracy and expanded beyond the roughly 30% of genes 

we were able to include. Better enhancer-gene target annotations would increase the number of CNVs that could 

be predicted and the performance of those predictions. We identified a significant negative effect of duplications 

altering enhancers. This result presents a potentially intriguing implication regarding the direction of regulatory 

effect of enhancer duplications which may be counter intuitive. One potential concern is that this effect is seen 

substantially more strongly in one of our two cohorts suggesting a heterogenous or batch effect. Further work is 

required to better understand the role of enhancer duplications on expression. We did not include CTCF sites in 

the prediction model as it was not clear how to directly link them to individual genes, however, based on the 

likely deleteriousness of CTCF SVs, we anticipate effects on potentially many genes and quantifying those effects 

is an area of future work. We did include TAD annotations as a surrogate for potential contribution to the 

expression consequence of an SV, and we identify a significant magnification in effect on expression when the 

SV and gene were within the same TAD, pointing to the importance of TADs in the regulatory landscape. We 
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present a simple linear model that can meaningfully predict expression effects of rare SVs and anticipate that 

improvements in regulatory annotation and more sophisticated modeling will further the ability to make these 

predictions. 

Improvements in annotation have enabled better prioritization of variants that may cause or increase risk 

of disease. One avenue to improved annotation has been leveraging large numbers of sequenced individuals in 

order to quantify the intolerance of each gene to deleterious variation. Here, we show that gene level intolerance 

metrics also inform regulatory effects of SVs. SVs in intolerant genes have reduced effects on expression, because 

they are less likely to occur, and when they do occur they alter a smaller proportion of the gene. Combining our 

SV expression predictions and previously generated gene intolerance measures allowed us to annotate the overall 

regulatory disruption of an SV by weighting the predicted expression consequences by the relative deleteriousness 

of the gene affected. For example, a full deletion of a gene where loss-of-function variants are rarely or never 

seen will be weighted higher than that of a gene that is frequently knocked out in the population. To demonstrate 

the potential utility of this regulatory disruption score, we annotated all deletions in the gnomAD SV dataset and 

showed that our annotations were correlated with variants substantially overlapping those that have previously 

been classified as pathogenic. Further, rank ordering variants by the most extreme regulatory disruption scores 

enriched for pathogenic variants that would have not been identified by length or frequency. Potential exists for 

annotation of regulatory disruption to improve prioritization of disease causing or risk increasing SVs; however, 

further work with clinical or disease samples will be required to fully assess the added value of this approach.  

Our work has several limitations, including an assumption that effects of SVs on expression are largely 

products of proportional alterations on genic and regulatory genomic content. Our predictions demonstrate that 

this assumption holds on average; however, we anticipate gene and regulatory element specific effects to exist. 

This assumption was necessary because, in the case of rare SVs, estimating individual variant effects is 

underpowered. We also leverage assumptions about the direction of effect for large CNVs, and show that this 

direction of effect extends to smaller variants. We largely focus on CNVs given the expected directional effects 

as well as the predominance of these variants among our confident calls, which better powers these analyses. We 

can show expression effects of inversions; however, these effects are substantially smaller and not in a specific 
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direction. We also see very similar patterns of deleteriousness, through lower frequencies, in other classes of SVs 

that alter regulatory elements and genes. SVs that are not CNVs are still a challenge to call accurately and harder 

to validate given the smaller set of previously identified variants of high confidence. We anticipate improvements 

in calling these variants to lead to the ability to better define their functional role in the near future.  

This effort was entirely focused on the brain: the expression data were from brain tissues and all of the 

regulatory elements included were identified in the brain. Some findings, such as the deleteriousness of CTCF 

sites and the basic prediction model, likely hold true across other tissues as the assumptions are not tissue specific 

and CTCF sites are relatively shared across tissues. For other results, such as the expression consequences of 

enhancer SVs or the regulatory disruption scores, it is unclear how well they will generalize given the tissue 

specific nature of enhancers and the fact that brain expressed genes are among the most conserved and intolerant 

to variation. It is, therefore, advisable to develop these models in a tissue-specific manner wherever possible. 

In conclusion, genome-sequencing and RNA-sequencing when combined in the same samples can be used 

to interpret the transcriptional consequences of SVs for improved annotation of a variant class that, despite its 

clear importance, remains difficult to quantify its functional effect and contribution to disease. 
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Figures 

 

Figure 1.  Characterization of high confidence (>1 kb) and rare (<1%) SV dataset stratified by a) type of SV, b) 

minor allele frequency and c) length (log10-scaled) colored by type of SV. SV Types include complex (CPX), 

deletion (DEL), duplication (DUP), insertion (INS), inversion (INV), long interspersed nuclear element-1 

(LINE1), combined set of mobile elements (SVA) including short interspersed nuclear elements, variable number 

tandem repeat and Alu. 
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Figure 2. Expression presented as a z-score for a) all CNV that overlap any proportion of the exonic sequence of 

a gene, b) CNV that delete or duplicate 100% of the exonic sequence of a gene and c) all inversions with any gene 

overlap (green) compared to all other SV (grey). Deletions are red, duplications are blue. The dashed lines are 

located at z-score of 2 and -2. 
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Figure 3. Expression effects of SVs as a product of affected gene intolerance to deleterious variation. Each plot 

stratifies genes using either the LoF intolerance metric or the CNV intolerance metric into quintiles (20% bins) 

ordered left to right from least to most intolerant genes and by deletion (red) and duplication (blue). The plots 

show the effect of this stratification on a) overall expression (z-score) of genic CNV showing mean and standard 

deviation, b) the proportion of the exonic sequence that is affected showing mean and standard deviation, c) the 

deviation from the expected 20% of CNV that alter exonic sequence, d) the deviation from expected for non-

exonic CNV that alter promoters and e) the deviation from expected for non-exonic CNV that alter enhancers. 
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Figure 4. SV expression prediction performance and associated R2 building the same linear model using different 

training and test datasets a) CMC into CMC_HBCC, b) CMC_HBCC into CMC, c) CMC into CMC and d) 

CMC_HBCC into CMC_HBCC. The best fit line with confidence interval was produced using generalized 

additive mode smoothing. 
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Figure 5. Number of pathogenic variants identified based on rank ordering by length (green), number of genes 
deleted (blue), minor allele frequency (red) and regulatory disruption (purple). Where multiple variants had the 
same value, the order was random. Fifty-five percent of deletions (n=6,515) had the lowest frequency (singletons). 
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