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Abstract

Transient oscillations in the network activity upon sensory stimulation have been
reported in different sensory areas. These evoked oscillations are the generic response of
networks of excitatory and inhibitory neurons (EI -networks) to a transient external
input. Recently, it has been shown that this resonance property of EI -networks can be
exploited for communication in modular neuronal networks by enabling the transmission
of sequences of synchronous spike volleys (‘pulse packets’), despite the sparse and weak
connectivity between the modules. The condition for successful transmission is that the
pulse packet (PP) intervals match the period of the modules’ resonance frequency.
Hence, the mechanism was termed communication through resonance (CTR). This
mechanism has three sever constraints, though. First, it needs periodic trains of PPs,
whereas single PPs fail to propagate. Second, the inter-PP interval needs to match the
network resonance. Third, transmission is very slow, because in each module, the
network resonance needs to build-up over multiple oscillation cycles. Here, we show
that, by adding appropriate feedback connections to the network, the CTR mechanism
can be improved and the aforementioned constraints relaxed. Specifically, we show that
adding feedback connections between two upstream modules, called the resonance pair,
in an otherwise feedforward modular network can support successful propagation of a
single PP throughout the entire network. The key condition for successful transmission
is that the sum of the forward and backward delays in the resonance pair matches the
resonance frequency of the network modules. The transmission is much faster, by more
than a factor of two, than in the original CTR mechanism. Moreover, it distinctly
lowers the threshold for successful communication by synchronous spiking in modular
networks of weakly coupled networks. Thus, our results suggest a new functional role of
bidirectional connectivity for the communication in cortical area networks.

Author summary

The cortex is organized as a modular system, with the modules (cortical areas)
communicating via weak long-range connections. It has been suggested that the
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intrinsic resonance properties of population activities in these areas might contribute to
enabling successful communication. A module’s intrinsic resonance appears in the
damped oscillatory response to an incoming spike volley, enabling successful
communication during the peaks of the oscillation. Such communication can be
exploited in feedforward networks, provided the participating networks have similar
resonance frequencies. This, however, is not necessarily true for cortical networks.
Moreover, the communication is slow, as it takes several oscillation cycles to build up
the response in the downstream network. Also, only periodic trains of spikes volleys
(and not single volleys) with matching intervals can propagate. Here, we present a novel
mechanism that alleviates these shortcomings and enables propagation of synchronous
spiking across weakly connected networks with not necessarily identical resonance
frequencies. In this framework, an individual spike volley can propagate by local
amplification through reverberation in a loop between two successive networks,
connected by feedforward and feedback connections: the resonance pair. This overcomes
the need for activity build-up in downstream networks, causing the volley to propagate
distinctly faster and more reliably.

Introduction 1

Anatomical differences and functional specialization of different brain regions suggest 2

that the brain is organized as a highly modular system. This modularity can be 3

observed in the neocortex at multiple spatial scales, ranging from inter-areal 4

connectivity [1] to inter- and intra-layer connectivity within a single cortical 5

column [2–5]. A modular design indeed provides numerous benefits, not only making 6

the system scalable, but also rendering it with robustness to structural perturbations [6]. 7

To exploit the modularity of the brain, it is however, necessary that neuronal spiking 8

activity from one specialized network can be reliably transmitted to another network 9

and that the downstream network is able to read the incoming activity [7, 8]. Therefore, 10

understanding how spiking activity is reliably propagated from one brain region to 11

another is crucial for understanding the functional organization and information 12

processing in the brain. 13

Different brain modules, irrespective of their spatial scale (inter-areal or inter-layer), 14

are interconnected by convergent-divergent connections. Typically, the connectivity 15

between any two modular networks is sparse, and synapses are weak. Over the last 16

decade, the problem of reliably transmitting spiking activity via weak and sparse 17

connections has attracted much attention from experimentalists and theoreticians 18

alike [7, 9–16]. If the inter-module networks under study exclusively include feedforward 19

connections, the only way to overcome the problem of transmission with weak synapses 20

is to provide more efficient signals by synchronizing the spike signals to be 21

transmitted [17–19]. Neuronal signals in this case are considered as volleys of spikes 22

(pulse packets) which can be quantified by the number of spikes in the volley 23

(α = 50 − 100 spikes) and their temporal dispersion (σ ≈ 1 − 10 ms), measuring the 24

degree of synchronization of the spiking activity in the volley [18,20]. Several studies 25

have demonstrated that the downstream effect of a pulse packet depends both on α and 26

σ (see [7] for a review). Note that a pulse packet by itself does not carry any 27

information; rather, the information resides in the combination of neurons participating 28

in the spike volley, both in the sender and receiver networks [21]. 29

Convergent-divergent connectivity is a very potent connectivity motif that can 30

generate and amplify spiking synchrony by virtue of shared inputs [17–19,21]. When 31

inputs are sufficiently synchronous, the transmission speed is very high and governed 32

only by synaptic delays. However, it has been shown that this mechanism requires 33

relatively dense connectivity and/or highly synchronous inputs [7]. These two 34
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requirements are inconsistent with available experimental data on both the neuronal 35

connectivity and activity across cortical areas. 36

But cortical networks are not strictly feedforward, and recurrent and feedback 37

connections are prevalent in the central nervous system [3,4]. Network activity dynamics 38

determined by recurrent connectivity have a strong effect on neuronal response 39

properties. For instance, network oscillations modulate the neurons’ spiking threshold in 40

a periodic fashion. If two networks oscillate at the same frequency and phase (coherent 41

oscillations), the transient decrease in the effective spiking threshold of neurons in the 42

downstream network coincides with the transient increase of the spiking activity of the 43

sending network, facilitating the transmission of spiking activity [8–10,12,15, 16]. Thus, 44

communication through coherence (CTC ) not only provides the means to communicate 45

from one network to another, but it also provides the means to control the 46

communication, because only networks with an appropriate phase synchrony with the 47

sender network can tune in to the spiking activity they receive. However, there are two 48

clear limitations to this mechanism: (1) Experimentally observed oscillations are not 49

stable over long enough times to support their role in communicating spiking 50

activity [22], and (2) The mechanisms by which two networks can generate coherent 51

oscillations have so far remained quite obscure (however, see [23,24]). 52

Recently, Hahn and colleagues proposed another mechanism that does not require 53

coherent spontaneous oscillations in the sender and receiver networks [15]. For a wide 54

range of biologically plausible neuron and network parameters, excitatory-inhibitory 55

networks (EI -networks) show features of network resonance. In this regime, the baseline 56

activity of the network itself is not oscillatory, but when perturbed with a transient 57

input, the network responds with a damped oscillation. When stimulated with a 58

periodic external input with the appropriate frequency, within a few oscillation cycles 59

the network starts to oscillate at its intrinsic oscillation frequency. 60

Thus, even a weak periodic input, provided it has the right frequency, exposes the 61

network resonance and creates oscillations in the receiver network which would not 62

exhibit oscillations otherwise. Network oscillations created through this resonance 63

phenomenon periodically lower the spike threshold of neurons in the receiver network, 64

allowing for a gradual build-up, over several oscillation cycles, for enabling the 65

transmission of the incoming activity. Therefore, this mechanism was termed 66

communication through resonance (CTR) [15]. Because oscillations only arise upon 67

appropriate stimulation of the downstream network, the oscillations in the sender and 68

receiver networks are automatically phase synchronized and, hence, facilitate the 69

transmission of the spiking activity involved in the stimulation. Thus, the CTR 70

mechanism resolves a fundamental problem of the CTC hypothesis: how to obtain and, 71

even more so, maintain phase synchrony between the network oscillations. Yet, at the 72

same time it creates new problems: First, it precludes the transmission of individual 73

pulse packets and, second, because the periodic stimulation activity needs to be 74

amplified by build-up over multiple oscillation cycles, communication through resonance 75

is prohibitively slow. Finally, it is not known how the inter-pulse interval of the external 76

signal can be matched the period of the evoked oscillations of the modules. 77

Here, we report the results of an investigation how the transmission of spiking 78

activity in a feedforward network (FFN), based on the CTR mechanism, can be 79

improved by adding appropriate feedback connections. To this end, we studied the 80

possibility of transmitting a single pulse packet in an FFN of EI -networks in which the 81

first two layers of EI -networks were bidirectionally connected via weak and sparse 82

excitatory synapses. We refer to these two bidirectionally coupled EI -networks as the 83

resonance pair. We found that adding such a resonance pair to an otherwise feedforward 84

modular network enabled fast transmission (in only two oscillation cycles) of a single 85

pulse packet through a built-in CTR mechanism, provided the sum of the feedforward 86
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and feedback delays between the resonance pair matches the period of the resonance of 87

the EI -networks. In the FFN with a resonance pair, the incoming single pulse packet 88

initiated a periodic pulse packet train with appropriate timing (determined by the 89

resonance frequency of the EI -networks), which was reliably transmitted through the 90

remainder of the layered network of EI -networks. We found that the build-up of the 91

network resonance was much faster in networks with a resonance pair: embedding a 92

single resonance pair in a feedforward network increased the speed of CTR-based 93

transmission by a factor of 2. Using numerical simulations, we identified conditions 94

(strength, number and delay of the bidirectional connections) that ensured a stable 95

transmission of the activity, without destabilizing the activity dynamics within the 96

individual EI -networks in the layered network. We hypothesize that, since bidirectional 97

connections between cortical areas are quite ubiquitous (e.g. [25–30]), such 98

bidirectionally connected areas may provide good broadcasters of information in the 99

brain at intermediate and large scales. 100

Methods 101

Neuron and synapse model 102

Neurons were modeled as leaky integrate-and-fire (LIF) neurons. The sub-threshold 103

dynamics of the neuron’s membrane potential were described by: 104

CmV̇m = −Gleak[Vm(t)− Vreset] + Isyn(t) (1)

where Vm denotes the membrane potential, Cm the membrane capacitance, Gleak the 105

membrane leak conductance, and Isyn the total synaptic input current. When the 106

membrane voltage reached the threshold of Vth = −54 ms, a spike was emitted and the 107

potential was reset and clamped to Vreset = −70 mV for a refractory period 108

(tref = 2 ms). To avoid a transient network synchrony at the beginning of the simulation, 109

the initial membrane voltage of neurons was drawn from a normal distribution (mean: 110

−70; standard deviation: 3 mV). The neuron model parameters are listed in Table 1. 111

Synaptic inputs were introduced by a transient change in the synaptic conductance 112

Gsyn: 113

Isyn(t) = Gsyn(t)[Vm(t)− Esyn] (2)

in which Esyn denotes the synaptic reversal potential. Conductance changes were 114

modeled as alpha functions: 115

Gsyn(t) =
t

τsyn
exp(− t

τsyn
) (3)

where τsyn is the synaptic time constant. The synapse model parameters are listed in 116

Table 2. Synaptic transmission delays were set to 1.5 ms for within-layer connections; 117

whereas inter-layer transmission delays were systematically varied as one of the key 118

parameters in our study (as mentioned in the corresponding Figure captions). 119

Network connectivity 120

The network consisted of 10 layers, each one comprising 200 excitatory and 50 121

inhibitory neurons in the form of an EI -network (Figure 1). The connectivity within 122

the layers (EI -networks) was chosen to be random with a fixed connection probability 123

of 0.2 for all types of connections. For the inter-layer connectivity, we assumed that only 124

the excitatory neurons from one layer EI -network projected to the excitatory neurons in 125
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the following layer EI -network. From each layer, 70 randomly selected neurons 126

projected to the next layer with connection probability of = 0.2. Thus, each neuron in a 127

layer received on average 40 excitatory inputs from neurons within the layer network 128

and 14 excitatory inputs from neurons in the preceding layer network. Synapses from a 129

neuron onto itself were excluded, but multiple synapses between neurons were allowed. 130

Inter-layer excitatory connections were set to be as strong as within-layer excitatory to 131

excitatory connections. Further details of the model network parameters are listed in 132

Table 3. 133

Fig 1. Schematic representation of a feedforward network with a resonance
pair. 200 excitatory neurons in each layer (E), including 70 projecting neurons (P), and
50 inhibitory neurons (I) have random homogeneous sparse recurrent connections. Ten
layers are connected sparsely through EE connections, indicated by blue arrows, in a
feedforward manner. The red arrow from layer 2 to 1 indicates sparse random feedback
connections from the second to the first layer EI -network, for which we used the term
resonance pair.

External input 134

Each excitatory neuron in each layer EI -network was driven by 8, 000 independent 135

Poisson excitatory spike trains, each with a mean rate of 1 spike/s. Each inhibitory 136

neuron in each layer EI -network was driven by 6, 300 independent Poisson excitatory 137

spike trains, at the same mean rate. In Figures 7a,b, the rate of the Poisson input to 138

the E -neuron population was systematically varied, and for the I -neuron population the 139

rate was adjusted accordingly, to keep the difference between the mean input rates to E - 140

and I -neurons, 1, 700 spikes/s, constant. 141

The synchronous input stimulus was a single pulse packet, injected into the 142

projecting neurons in the first layer network. It consisted of a fixed number of spikes 143

(α), distributed randomly around the packet’s arrival time (tn). The time of individual 144

spikes were drawn independently from a Gaussian distribution centered around tn, with 145

a standard deviation of σ = 2 ms. In Figure 6, the external input for the FFN was a 146

periodic train of pulse packets with inter-packet intervals of 25 ms. In Figure 6c, α was 147

a control parameter and was varied systematically. In all remaining cases we used 148

α = 20. 149
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Data analysis 150

Pairwise correlations 151

To estimate pairwise correlations, we divided the time into bins of size ∆t = 5 ms, and 152

transformed population spike trains to spike count vectors yi(t), using a rectangular 153

kernel. The pairwise Pearson correlation coefficients were calculated as: 154

rij =
E[(yi(t)− ȳi(t))(yj(t)− ȳj(t))]

σiσj
(4)

where E denotes the expectation value, σ the standard deviation, and barred values 155

denote the means of variables. We averaged the rij over all pairs within a layer network 156

to obtain the average synchrony within the layer. Correlation coefficients were 157

computed from simulations with a duration of 20 sec and were averaged over 20 trials. 158

Population Fano Factor 159

To classify the population activity based on synchrony in the background activity, we 160

measured the population Fano factor (pFF ). To this end, we used spike count vectors 161

(y(t)) of all excitatory neurons in a layer network and defined the pFF as: 162

pFF =
V AR[y(t)]

MEAN [y(t)]
(5)

Network Frequency and Spectral Entropy 163

The network frequency is defined as the peak frequency of the Fourier transform of the 164

spike count vectors Y (f). To differentiate between asynchronous, aperiodic and 165

oscillatory states of the two resonance pair networks, we measured the spectral entropy 166

of one of the two EI -networks involved. We first calculated the power spectrum 167

S(f) = | Y (f) |2 and defined: 168

P (f) =
S(f)∑
m S(m)

, (6)

Because P (f) has unit area, we treated it as if it were a probability density and 169

estimated its entropy. Our reasoning was that if a signal is periodic, all its power will be 170

concentrated in a single frequency, resulting in a zero entropy. By contrast, when the 171

signal power is uniformly distributed over all frequencies, the entropy will assume a 172

maximal value. Given that we estimated the spectrum for a fixed number of frequency 173

data points, we needed to normalize the entropy according to the number of frequency 174

bins. Because here we took the normalized power spectrum as a proxy for the 175

probability density, we refer to this measure as spectral entropy. The normalized 176

spectral entropy is then defined as: 177

H = −

N∑
f=1

P (f) log2 P (f)

log2N
, (7)

where N is the number of frequency data points. The denominator, log2N is the 178

maximal spectral entropy, that is, the spectral entropy of white noise. Low entropy 179

indicates temporal order of the population activity, i.e., an oscillatory state, whereas 180

large values of H indicate an asynchronous state. 181
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Signal-to-Noise Ratio 182

To distinguish successful propagations of single pulse packets from failed propagations, 183

we estimated the Signal-to-Noise Ratio (SNR), measuring the ratio of the variance of 184

the averaged membrane potential of neurons in the tenth (final) layer network upon 185

pulse packet injection into the first layer network, normalized by its variance during 186

ongoing network activity: 187

SNR =
V AR[ystim(t)]

V AR[yongoing(t)]
(8)

Simulation tools 188

Network simulations were performed using the simulation tool NEST 189

(http://www.nest-initiative.org) [31,32], interfaced with PyNest. The differential 190

equations were integrated using fourth-order Runga-Kutta with a time step of 0.1 ms. 191

Results 192

We studied the effect of adding feedback connections between the first two layers in an 193

otherwise feedforward modular network of EI -networks on the propagation of 194

synchronous spiking activity along the network. Specifically, we compared the response 195

of a purely feedforward network (FFN) with the response of a resonance pair network 196

(RPN) to a variety of input stimulus conditions. To construct the RPN, we added 197

feedback connections between the first two layers of the original FFN. The FFN 198

consisted of 10 layers, each one consisting of a recurrent EI -network comprising 200 199

excitatory and 50 inhibitory neurons (Figure 1, see Methods). The external input 200

and the excitation-inhibition ratio in the EI -networks were adjusted to set the baseline 201

activity of the networks in an asynchronous-irregular state [33,34], characterized by 202

highly irregular inter-spike intervals, low pairwise correlations, and weak network 203

synchrony (as depicted in Supplementary Figure S1, see also Methods). 204

Pulse packet propagation 205

We first tested the propagation of synchronous spiking activity by stimulating the FFN 206

with a single pulse packet (α = 20 spikes, σ = 2 ms). This mimicked earlier simulation 207

experiments [15,18, 35], but with different FFN parameters. Given the weak projecting 208

synapses and sparse inter-layer connectivity, this weak pulse packet failed to propagate 209

along the feedforward network (Figure 2a-c). The injection of a pulse packet into the 210

first layer network resulted in a clear but weak spike response in that layer, a much 211

weaker response in the second layer (Figure 2b), and no tangible response in any of 212

the subsequent layer networks. This failure to propagate was confirmed by the low 213

signal-to-noise ratio in the 10th layer network (SNR < 4). Consistent with the weak 214

spiking responses, there was no visible trace of the pulse packet in the subthreshold 215

membrane potentials beyond the second layer (Figure 2c). 216

Next, we tested the propagation of a periodic train of pulse packets, each with the 217

same characteristics as the single pulse packet described above. Consistent with 218

previous results [15], such a periodic input successfully propagated along the feedforward 219

network using the network resonance mechanism (Figure 2e,f, 10th layer SNR = 4.5). 220

However, while the periodic pulse packet train did indeed successfully propagate to the 221

last layer, this propagation was very slow. Thus, a distinct pulse packet response was 222

observed there only after some 15 input cycles (Figure 2f), highlighting once more the 223
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a d g

b e h

c f i

Fig 2. Comparison of the propagation of synchronous spiking in a
feedforward network (FFN) and in a resonance pair network (RPN). The
FFN failed to propagate a single pulse packet (a-c), whereas it did propagate a periodic
train of pulse packets with the appropriate time interval between successive pulse
packets (d-f). By contrast, the RPN, when stimulated with a single pulse packet, was
able to propagate it successfully, provided that the inter-layer delay of the resonance
pair matched the resonance period of the EI -networks involved (g-i). In the simulation
experiment shown in panels (h) and (i), the loop transmission delay, defined as the sum
of the forward and feedback transmission delays, was equal to the period of the pulse
packet train in (e) and (f). The network structure for each column is plotted
schematically in panels (a, d, g), the corresponding raster plots are shown in panels (b,
e, h) for each stimulus condition. The average membrane potentials of the first two and
last two layers in each of three simulation experiments are shown in panels (c, f, i),
marked with layer numbers in each window, with the injected pulse packet shown in the
bottom trace. Red color is used for the RPN, and blue for the FFN. Inter-pulse interval
in panels (d-f) was 25 ms and the forward and backward delays in panels (g-i) were
equal to 12.5 ms

.

key problem associated with the CTR mechanism. The reason for this is that each layer 224

takes 2 − 3 cycles to build up strong enough oscillations of the membrane potentials in 225

the next layer neurons to generate a reliable spike response. 226

To facilitate the propagation of a single pulse packet and to increase the speed of the 227

resonance build-up in a layer of the FFN, we tested the idea of connecting the first and 228

second layers in a bidirectional manner. To implement such a connectivity, we randomly 229

selected 70 excitatory neurons from the second layer and projected them back to 70 230

randomly selected excitatory neurons in the first layer (Figure 2g). We made sure that 231

the 70 neurons that projected back to the first layer were different from those that 232

projected forward to the third layer. The synaptic strength, transmission delay, and 233

connection probability of the feedback projections were all identical to those of the 234

forward projections unless otherwise is mentioned in each Figure caption. We refer to 235
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the two bidirectionally connected layer networks as the resonance pair. Interestingly, 236

the injection of a single pulse packet into the resonance pair network (RPN) was 237

sufficient to initiate transient oscillations in the first and second layer networks. The 238

bidirectional excitatory connectivity between the two layers rapidly amplified these 239

oscillations which, once sufficiently amplified, successfully propagated to all subsequent 240

layer networks (Figure 2h,i, 10th layer SNR = 6.5)). 241

The EI balance in each layer of the network prevented it from developing sustained 242

oscillations. The oscillation duration across trials followed a gamma distribution, 243

showing that most of the oscillations survived for only some 8 − 10 cycles (Figure 3). 244

These results show that only a small change in the overall network architecture can 245

enable propagation of a single pulse packet using CTR, without driving the system into 246

sustained oscillations. 247

Fig 3. Distribution of the durations of oscillatory activity in the RPN
upon injection of a single pulse packet. The RPN, when operating in a successful
propagation mode, was able to quench the stimulus-induced oscillations after several
oscillation cycles. The distribution of oscillation durations (shown in units of oscillation
cycle) followed a Gamma distribution (fitted curve in gray). These data were collected
from 350 trials with SNR ≥ 4.0, i.e., for successful pulse packet propagations.

Inter-layer delays and connection strengths 248

The loop transmission delay and the inter-layer connection strength are two important 249

structural parameters of the resonance pair. Together, they determine whether a single 250

pulse packet can create transient oscillations and propagate the activity along the RPN. 251

To characterize the effect of these two parameters, we systematically varied each of 252

them and measured the resulting SNR in the tenth layer of the RPN (Figure 4). First, 253

we varied both the delay and the synaptic strength of the connections between the 254

layers (Figure 4a). Here, we set both the delay and strength of the feedback 255

projections to be identical to those of the feedforward projections. We found that the 256

input pulse packets propagated most successfully when the inter-layer delay was about 257
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a b

Fig 4. Signal-to-noise ratio (SNR) for 10th layer in the RPN depends on
inter-layer delays and connection strengths of the resonance pair. (a) Delays
for feedforward and feedback connections were set equal to each other and were
systematically varied along the X-axis. Note that the most successful propagation was
observed for a total loop delay (forward plus feedback delay) of 25 ms, matching the
period of the intrinsic resonance oscillation of each individual layer EI -network
(resonance frequency of 40 Hz). The range of inter-layer delays for which propagation
was successful expanded as the inter-layer connections were strengthened. However, the
SNR was still considerable for weaker ones. (b) Delays for feedforward connections
were fixed to 5 ms, and for feedback connections were systematically varied along the
X-axis. Again, the most successful propagation was observed for a total loop delay of
25 ms, matching each individual layer EI -network’s resonance frequency of 40 Hz. In the
schematic representations of the network structure (top panels), the length of the
arrows indicate the duration of inter-layer delays. The dashed and dotted horizontal
lines in (a) and (b) indicate the value of Jee used to represent successful propagations
in other figures.

12.5 ms. As the inter-layer connection strength was increased, the range of inter-layer 258

delays for which the input pulse could propagate also increased (Figure 4a). With 259

12.5 ms inter-layer delay, the total loop delay for the resonance pair was 25 ms. Not 260

surprisingly, this loop delay matched the period of the intrinsic network oscillations 261

(corresponding to the resonance frequency of 40 Hz) of each individual layer EI -network. 262

Next, we fixed the feedforward delays at 5 ms and varied the delays of the feedback 263

projections from layer 2 to layer 1. We found that in this case the feedback delay should 264

be ≈ 20 ms to enable most successful propagation (Figure 4b). That is, most 265

successful propagation again occurred when the loop delay (forward plus feedback delay) 266

was 25 ms, again matching the resonance frequency (40 Hz) of the individual layer 267

EI -networks. 268

To find the range of feedback and feedforward delays for which inputs could 269

propagate, we varied each of these two delays independently, while keeping the 270

inter-layer connection strength as (Jee = 0.33 nS, Figure 5). We found that 271

propagation was successful for a wide range of individual feedforward and feedback 272

delays. Once again, it was most successful if the sum of the two delays (the loop delay) 273

matched the period of the intrinsic network oscillations (here: 25 ms) of the individual 274

layer EI -networks. These results confirm that successful signal propagation primarily 275
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depends on the resonance pair’s loop delay, i.e., the sum of the forward and feedback 276

transmission delays. 277

Fig 5. Signal-to-noise ratio (SNR) for 10th layer in the RPN for
independently varied feedforward and feedback delays. The sum of the
feedforward and feedback delays is the key parameter to enable signal propagation.
When the inter-layer connection strength, Jee, was fixed at 0.33 nS, most successful
propagation was obtained for the condition that the sum of forward and feedback
delays, rather than any of their individual values, matched the resonance period of the
individual layer EI -network’s resonance frequency of 40 Hz. In the schematic
representations of the networks, only the first four layers are depicted, with the length
of the arrows representing the delays between the resonance pair layer networks.

Resonance pair improves both the threshold and 278

speed of propagation of synchronous spiking activity 279

Next, we addressed the question to what extent the inclusion of feedback EE 280

connections between the first two layer networks of the FFN affects the threshold and 281

speed of propagation of pulse packets in the network. To this end, we compared both 282

the speed and SNR of the pulse packet response in the FFN and the RPN. For this 283

comparison, we stimulated the RPN with a single pulse packet, whereas the FFN was 284

stimulated with a periodic train of pulse packets (Figures 6a,b). The loop delay of the 285

resonance pair in the RPN and the inter-pulse intervals in the periodic stimulation of 286

the FFN were matched the resonance period of the EI -networks in the resonance pair, 287

layers 1 and 2. We found that introducing feedback projections substantially increased 288

the SNR of the pulse packet response in the RPN as compared to that in the FFN 289
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(Figure 6c). This meant that much weaker pulse packets could propagate in the RPN 290

than in the FFN. Thus, adding sparse EE feedback connections between only the first 291

two layers of the FFN significantly reduced the threshold (minimum value of pulse 292

packet strength α) for successful propagation throughout the entire FFN. 293

c d

ba

Fig 6. Introducing a resonance pair improves both the threshold and speed
of propagation of synchronous spiking. (a) Averaged membrane potential of E
neurons in the 10th layer in response to a single pulse packet (depicted in bottom trace)
in the RPN, in the presence of feedback projections from layer 2 to layer 1. (b)
Averaged membrane potential of E neurons in the 10th layer in response to a periodic
pulse packet (depicted in bottom trace) in the FFN, in the absence of feedback
projections. (c) SNR in the 10th layer of the RPN (red curve) and FFN (blue curve)
as a function of strength, α, of the input pulse packet. Increasing α increased the SNR
for both RPN and FFN. However, the red curve crosses the green dashed line (as an
arbitrary threshold for successful propagation) at a clearly smaller value of α than the
blue curve, implying clearly lower threshold of synchrony propagation in the RPN. (d)
On average, synchronous activity propagates much faster in the RPN, by at least a
factor of two, than in the FFN.

Next, we compared the propagation velocities in the RPN and the FFN. For a fair 294

comparison of propagation speed in these two networks, we set the forward transmission 295

delays to 5 ms in both networks. Therefore, to meet the condition that the loop delay in 296

the resonance pair should match the intrinsic resonance in the participating 297

EI -networks, the feedback delay was set to 20 ms in the RPN. In the FFN, as noted 298

before, the pulse packet needed to be recreated by gradual build-up in each layer 299

successively. Hence, it took on average between 2 − 4 oscillation cycles in each layer, 300

before the pulse packet successfully reached the next layer. As shown in Figure 6d, the 301

bidirectional projections between the first two layers in the RPN sufficed to rapidly 302

amplify the network response, and, hence, there was no need to gradually build-up and 303

recreate the pulse packet in each individual layer. As a result, the transmission in the 304

RPN was much faster, by at least a factor of two, than in the FFN. These results 305

demonstrate that introducing sparse feedback projections from layer 2 to layer 1 in an 306

FFN with weak and sparse connections substantially accelerates the propagation of 307

synchronous spiking in such network, thereby alleviating a significant problem 308

associated with the mechanism of communication through resonance. 309
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Network background activity 310

For stable propagation of synchronous spiking activity, it is important that the ongoing 311

activity of the network remains stable and exhibits an asynchronous-irregular state 312

without population activity oscillations [35]. In principle, the feedback projections in 313

the resonance pair could destabilize the asynchronous-irregular activity state, induce 314

spontaneous oscillations, and lead to the propagation of random fluctuations in the 315

network activity. Therefore, we measured the effect of the feedback and feedforward 316

projections on the network background activity. The strengths of feedforward and 317

feedback connections in the RPN were set to be identical. First, we systematically 318

varied the inter-layer connection strength and the rate of external (excitatory) input, 319

and measured the population activity synchrony (population Fano factor, pFF ) for the 320

10th layer of both the RPN and the FFN (Figure 7a,b). We also compared the firing 321

rates, the irregularity of spike timing (CV ) and the pairwise correlations for three 322

different choices of these two parameters(Supplementary Figure S1). 323

We found that for weak external inputs, the background network activity remained 324

in an asynchronous-irregular regime in both the RPN and FFN for a wide range of 325

inter-layer connection strengths (Figures 7a,b). Likewise, for weaker inter-layer 326

connections, the background network activity of both the RPN and FFN remained in an 327

asynchronous-irregular regime. However, when both external input and inter-layer 328

connections were strong, large fluctuations induced by the external input could 329

propagate to downstream layers. Propagation of such spurious fluctuations resulted in 330

synchronous-irregular activity in the downstream networks (Figures 7a,b, and 331

Supplementary Figure S1; raster plots are also depicted in Supplementary 332

Figure S2). Such undesirable emergence of synchrony in the background network 333

activity because of stronger inter-layer connections and stronger external input was 334

observed in both the RPN and FFN. However, in the RPN this transition to 335

synchronous-irregular background activity occurred at clearly lower values of external 336

inputs and inter-layer connection strengths than in the FFN (compare Figures 7a,b). 337

That is, while the resonance pair reduced the threshold for propagation and accelerated 338

the pulse packet propagation, it also constrained the range of network and input 339

parameters for which stable propagation could be observed. 340

To determine the degree of synchrony in the background network activity for 341

different inter-layer connection strengths and delays, we measured the population Fano 342

factor (cf. Methods) for both the RPN and FFN networks, with the input rate set to 343

8 kHz (Figures 7c,d). These results demonstrate that the inter-layer delay plays no 344

role in inducing synchrony in the FFN background network activity (Figure 7d). 345

However, it does render a regime for eliciting synchronous background activity in an 346

RPN (Figure 7c). This regime existed for the range of delays that matched the 347

resonance period of the EI -networks involved, and for stronger inter-layer connections it 348

increased significantly. Therefore, the parameter values causing this synchronous regime 349

in the RPN background activity should be carefully avoided, because this regime 350

prohibits reliable signal propagation. 351

Conditions for resonance in the resonance pair 352

The connectivity between the layers of the resonance pair could affect the propagation 353

of synchronous spiking in the RPN in different ways. It could prohibit the propagation 354

of pulse packets by enabling spurious network fluctuations to propagate, or by altering 355

the resonance properties of the two layer networks involved. Whereas weak connectivity 356

may not allow the resonance to occur, strong connectivity could induce spontaneous 357

network oscillations, precluding the resonance-based mechanism from supporting the 358

propagation of pulse packets. Therefore, we systematically varied both the forward and 359
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a b

c d

Fig 7. Different background activity regimes in the RPN (a, c) and FFN
(b, d) networks. The population Fano factor in the 10th layer of the RPN (a) and
FFN (b), is shown as a measure of synchrony in the background network activity for
different strengths of inter-layer connections (X-axis) and input rate (Y-axis). The cyan
area, indicated by an asterisk, denotes a synchronous irregular regime, whereas the vast,
blue area denotes the asynchronous irregular regime, with a long-tailed distribution of
CVISI and low average correlation coefficients (Supplementary Figure S1). Both
network types transit to the synchronous irregular regime, indicated by a black square,
with increasing input rate and inter-layer connection strength. However, the RPN
reaches the synchronous irregular state much earlier than the FFN. The population
Fano factor in the 10th layer of the RPN (c) and FFN (d), is shown for different
inter-layer connection delay (X-axis) and strength (Y-axis). The input rate was set to
8 kHz for both network types. For strong enough inter-layer connections, provided their
loop delay matched the resonance period of the network, sustained background activity
oscillations might develop in the network and propagate to the downstream layers.
Black circles in all four panels indicate the parameter settings used to investigate the
pulse packet propagation in Figures 2, 3 and 6. In panels (a) and (b), the
feedforward and feedback delays were set to 5 ms, respectively.

feedback connectivity between the two layers and determined the regime most suitable 360

for communication through resonance (Figure 8). We found that an increase in either 361

the connection probabilities (Figure 8a,b) or connection strengths (Figure 8c,d) 362

increased the network’s propensity to oscillate. Strong feedback connections and high 363

connection probabilities induced spontaneous oscillations in both layer networks. The 364

diagonal symmetry of Figure 8a,b (and to a lesser extent in Figure 8c,d) shows that 365

the feedback connections can compensate for a lack of feedforward connections (as in 366
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Figure 8a,b), or their weakness (as in Figure 8c,d). For moderate values of the 367

feedback connection probability and connection strength, there is a region in the 368

parameter space for which single pulse packets can be propagated by exploiting the 369

network resonance property, without destabilizing the network activity dynamics into 370

sustained network oscillations. This region is distinguished by a pFF of about 1, the 371

blue area in Figure 8a,b, and an example of it is marked with a black circle in all four 372

panels of Figure 8. 373

a b

c d

Fig 8. Conditions for resonance in a bidirectionally connected two-layer
network. Network resonance frequency and spectral entropy were calculated as a
function of the feedback and feedforward connection probability (a, b), and as a
function of the feedback connection probability and strength (c, d). Both an increase
in the feedback connection probability and strength increased the propensity of the
network to exhibit resonance. However, when the feedback connections were too
numerous or too strong, the network exhibited sustained oscillations as the network
dynamics bifurcated to the synchronous irregular state. This state, represented by lower
values of spectral entropy in (b) and (d), started with a population oscillation
frequency of around 40 Hz, which gradually increased to 43 Hz (a, c). Note that at
higher values of spectral entropy, the frequency of the oscillations was not well-defined
and did not have a consistent value. Black circles in all four panels indicate the
parameter set used in Figures 2, 3 and 6 for investigating the pulse packet
propagation in the absence of sustained oscillations.
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Discussion 374

Neuronal networks in the brain show a modular structure at multiple spatial scales. 375

Computation in the nervous system is carried by the flow of signals through a hierarchy 376

of such modules via convergent-divergent feedforward projections. Such connectivity 377

provides the network with a rich computational repertoire and forms the basis of models 378

of sensory processing systems [36–38] and deep neural network models [39]. 379

But brain networks are not purely feedforward structures. Neurons within the 380

modules are interconnected by recurrent connections and there is also an abundance of 381

feedback projections between the various modules (e.g. [25, 29]). Each module in the 382

neocortex consists of a complex network of excitatory and inhibitory neurons, giving rise 383

to rich internal network dynamics which may affect the transmission of signals between 384

the modules. Depending on a variety of internal and external parameters [33,34], 385

EI -networks may show oscillatory collective dynamics, either spontaneously or in 386

response to external transient stimuli. Such oscillatory network dynamics modulate the 387

excitability of the module over time, thereby providing windows of high excitability 388

during which incoming signals have a higher chance of eliciting a spiking response in the 389

target module and, hence, to be transmitted along the modular hierarchy [8, 10,15]. 390

Feedback projections are quite ubiquitous in the central nervous system [28], and 391

their role in regulating neuronal network activity [40,41], brain activity 392

oscillations [42–44], and high level brain functions such as working memory [45], 393

vision [46,47], attention [48,49], and consciousness [50–52] is widely studied. Here, we 394

studied how feedback connections can help improve the propagation of synchronous 395

spiking activity in feedforward neuronal networks. We showed that including a pair of 396

bidirectionally connected modules into an otherwise feedforward network promotes the 397

propagation of synchronous spike volleys in the network. In our layered network model, 398

each module was a recurrent network of excitatory and inhibitory neurons, tuned to 399

operate in an asynchronous-irregular state [33,34]. Such EI -networks in the AI state 400

have been earlier shown to exhibit a damped oscillatory population activity in response 401

to external transient stimulation [15,53–55]. This property was exploited to support the 402

propagation of synchronous spiking activity in an FFN consisting of modular 403

EI -networks by a mechanism called communication through resonance (CTR) [15]. In 404

this mechanism, a periodic train of pulse packets, the intervals of which matched the 405

period of the damped resonance oscillation of the module networks, could propagate 406

along the feedforward network, whereas a single pulse packet could not. 407

Here, we showed that single pulse packets can propagate in the network by adding 408

feedback projections between the first two layers of the feedforward network. 409

Reverberation of the transient stimulus between the first two layers of the network, the 410

resonance pair, fed the downstream remainder of the network with a temporally 411

coordinated and strong train of pulse packets, with inter-packet intervals determined by 412

the sum of the forward and backward transmission delays of the resonance pair. Hence, 413

matching the two internal time scales of the system, the resonance period of the module 414

networks and the loop transmission delay of the resonance pair, sufficed to help a single 415

pulse packet propagate reliably across the entire network through the built-in CTR 416

mechanism. Indeed, in a series of simulation experiments we could demonstrate that in 417

our network model, the consistency of the two time scales, determined by the lateral 418

(recurrent), feedforward and feedback connections, facilitates the transmission of 419

transient synchronous spiking signals. 420

The possible role of feedback connections in the propagation of synchronous pulse 421

packets through modular networks has been studied before [56]. There, it was shown 422

that feedback connections increased the number of spikes in the synchronous spike 423

volley and, thereby, helped the pulse packet propagate in the feedforward network [56]. 424

That mechanism, however, operates on a much shorter time scale than the one we 425

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/712547doi: bioRxiv preprint 

https://doi.org/10.1101/712547
http://creativecommons.org/licenses/by/4.0/


propose here. In their model [56], propagation was facilitated by feedback delays within 426

the temporal spread of the injected pulse packet, i.e., up to only few milliseconds. The 427

mechanism we propose here is both qualitatively and quantitatively different and is 428

based on the resonance property of the EI -networks involved in the feedforward 429

network. Here, the impact of a pulse packet on the target EI -network provides, thanks 430

to the damped resonance oscillation it evokes, a short range of specific time windows 431

with enhanced excitability and, hence, larger response to the next incoming pulse 432

packet. As a result, the reverberation of the pulse packet between the bidirectionally 433

connected layer networks in the resonance pair builds up even stronger pulse packets for 434

the downstream, feedforward layers of the network. We found that a prerequisite for 435

successful propagation of such synchronous spiking activity was that the loop 436

transmission delay in the resonance pair (forward plus feedback delay) matched the 437

resonance period of the individual layer EI -networks. 438

It has been shown before that spike signals can be transmitted along networks in the 439

brain in the form of spike rate [57] or spike synchrony [58–61]. Computational studies 440

have shown that spike rate transmission requires sparse and strong synaptic connections, 441

whereas spike synchrony transmission favors weak and dense synaptic connections [7]. 442

Both these conditions are unlikely to be fulfilled in biological cortical networks, in which 443

connections are typically weak and sparse [62]. The results of our study show that the 444

presence of only a moderate degree of feedback projections between two cortical areas 445

considerably weakens the conditions for propagating synchronous spiking activity 446

through a much longer sequence of cortical areas. Since the necessary condition for 447

long-range transmission of synchronous spiking signals is the presence of feedback 448

connections only between the first two networks involved, the proposed mechanism 449

needs only low wiring cost [63] and is an economically favorable way for efficiently 450

organizing the communication between neuronal networks in the brain. The ubiquity of 451

feedback connections between cortical areas (e.g. [25–30]) provides a further strong 452

argument in favor of such scheme. In view of this ubiquity, we hypothesize that 453

bidirectionally connected cortical areas may provide good broadcasters of information in 454

the brain at intermediate and larger spatial scales. 455

Recent studies have suggested different functional roles of high and low frequency 456

oscillations in bottom-up and top-down signaling in cortical networks [9,64]. It has been 457

shown that the transmission of information along the feedforward pathway from 458

peripheral sensory areas to higher areas in the cortical hierarchy is mainly carried by 459

gamma range oscillations, whereas feedback signals are mostly conveyed by alpha and/or 460

beta oscillations [9, 65–67]. These results gained support from experimental observation 461

of strongest synchronization in the gamma band in superficial cortical layers, whereas 462

synchronization in the alpha-beta band was found to be strongest in infragranular 463

layers [68]. In our network model, the baseline activity of the layer networks lacked 464

spontaneous oscillations, but they exhibited a resonance property in the low-gamma 465

range. The presence of a single feedback loop with matching loop delay resulted in 466

short-lived gamma oscillations upon transient stimulation of the first layer network, 467

resulting in reliable signal propagation throughout the entire feedforward pathway, 468

consistent with the above-mentioned experimental observations. Incorporating further 469

feedback loops between more downstream layer networks can provide a more complete 470

model for explaining forward and backward signaling in cortical networks of networks. 471
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Baden-Württemberg through bwHPCand the German Research Foundation (DFG) 478

through grant no INST 39/963-1 FUGG (bwForCluster NEMO), and especially to Uwe 479

Grauer and Bernd Wiebelt for helping making these HPC-facilities available to us. 480

References

1. Modha DS, Singh R. Network architecture of the long-distance pathways in the
macaque brain. Proc Nat Acad Sci. 2010;107:13485–13490.

2. Binzegger T, Douglas RJ, Martin KA. A quantitative map of the circuit of cat
primary visual cortex. J Neurosci. 2004;24(39):8441–8453.

3. Xu X, Olivas ND, Ikrar T, Peng T, Holmes TC, Nie Q, et al. Primary visual
cortex shows laminar-specific and balanced circuit organization of excitatory and
inhibitory synaptic connectivity. The J of Physiology. 2016;594(7):1891–1910.

4. Boucsein C, Nawrot M, Schnepel P, Aertsen A. Beyond the cortical column:
abundance and physiology of horizontal connections imply a strong role for inputs
from the surround. Frontiers in neuroscience. 2011;5:32.

5. Schnepel P, Kumar A, Zohar M, Aertsen A, Boucsein C. Physiology and impact
of horizontal connections in rat neocortex. Cerebral Cortex. 2014;25:3818–3835.

6. Meunier D, Lambiotte R, Bullmore ET. Modular and hierarchically modular
organization of brain networks. Front Neurosci. 2010;4(200).

7. Kumar A, Rotter S, Aertsen A. Spiking activity propagation in neuronal
networks: reconciling different perspectives on neural coding. Nat Rev Neurosci.
2010;11:615–627.

8. Hahn G, Ponce-Alvarez A, Deco G, Aertsen A, Kumar A. Portraits of
communication in neuronal networks. Nature Rev Neurosci. 2018;20:117–127.

9. Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in
top-down processing. Nature Rev Neurosci. 2001;2:704–716.

10. P F. A mechanism for cognitive dynamics: neuronal communication through
neuronal coherence. Trends Cogn Sci. 2005;9:474–480.

11. Vogels TP, Abbott LF. Gating multiple signals through detailed balance of
excitation and inhibition in spiking networks. Nature Neurosci.
2008;12(4):483–491.

12. P F. Neuronal gamma-band synchronization as a fundamental process in cortical
computation. Annu Rev Neurosci. 2009;32:209–224.

13. Kremkow J, Perrinet LU, Masson GS, Aertsen A. Functional consequences of
correlated excitatory and inhibitory conductances in cortical networks. J Copmut
Neurosci. 2010;28:579–594.

14. Kremkow J, Aertsen A, Kumar A. Gating of signal propagation in spiking
neuronal networks by balanced and correlated excitation and inhibition. J
Neurosci. 2010;30(47):15760–15768.

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/712547doi: bioRxiv preprint 

https://doi.org/10.1101/712547
http://creativecommons.org/licenses/by/4.0/


15. Hahn G, Bujan AF, Fregnac Y, Aertsen A, Kumar A. Communication through
resonance in spiking neuronal networks. PLOS Comput Biol. 2014;10(8).

16. Pariz A, Esfahani ZG, Parsi SS, Valizadeh A, Canals S, Mirasso CR. High
frequency neurons determine effective connectivity in neuronal networks.
NeuroImage. 2018;166:349–359.

17. Abeles M. Role of cortical neuron: integrator or coincidence detector? Isr J Med
Sci. 1982;18:83–92.

18. Diesmann M, Gewaltig M, Aertsen A. Stable propagation of synchronous spiking
in cortical neural networks. Nature. 1999;402:529–533.

19. Gewaltig M, Diesmann M, Aertsen A. Propagation of cortical synfire activity:
survival probability in single trials and stability in the mean. Neural Netw.
2001;14:657–673.

20. Aertsen A, Diesmann M, Gewaltig M. Propagation of synchronous spiking
activity in feedforward neural networks. J Physiol. 1996;90:243–247.

21. Abeles M. Neural Circuits of the Cerebral Cortex. Corticonics. 1991;.

22. Burns SP, Xing D, Shapley RM. Is gamma-band activity in the local field
potential of v1 cortex a ‘clock’ or filtered noise? J Neurosci. 2011;31:9658–9664.

23. Palmigiano A, Geisel T, Wolf F, Battaglia D. Flexible information routing by
transient synchrony. Nature Neurosci. 2017;20(7):1014.

24. Sancristobal B, Vicente R, Garcia-Ojalvo J. Role of frequency mismatch in
neuronal communication through coherence. J Comp Neurosci.
2014;37(2):193–208.

25. Felleman SJ, Essen DC. Distributed hierarchical processing in the primate
cerebral cortex. Cereb Cortex. 1991;1:1–46.

26. Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kotter R. Advanced
database methodology for the Collation of Connectivity data on the Macaque
brain(CoCoMac). Philos Trans R Soc Lond B Biol Sci. 2001;356:1159–1186.

27. Bakker R, Thomas W, Diesmann M. CoCoMac 2.0 and the future of
tract-tracing databases. Front Neuroinformatics. 2012;6(30).

28. Markov NT, Ercsey-Ravasz MMea. A weighted and directed interareal
connectivity matrix for macaque cerebral cortex. Cerebral Cortex.
2014;24(1):17–36.

29. Mejias JF, Murray JD, Kennedy H, Wang XJ. Feedforward and feedback
frequency-dependent interactions in a large-scale laminar network of the primate
cortex. Science Advances. 2016;2(11):e1601335.

30. Schmidt M, Bakker R, Hilgetag CC, Diesmann M, van Albeda SJ. Multi-scale
account of the network structure of macaque visual cortex. Brain Struct Funct.
2018;223:1409–1435.

31. Gewaltig MO, Diesmann M. NEST (NEural Simulation Tool). Scholarpedia.
2007;2(4):1430.

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/712547doi: bioRxiv preprint 

https://doi.org/10.1101/712547
http://creativecommons.org/licenses/by/4.0/


32. Morrison A, Straube S, Plesser HE, Diesmann M. Exact subthreshold integration
with continuous spike times in discrete-time neural network simulations. Neural
Comput. 2007;19:47–79.

33. Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. J Comput Neurosci. 2000;8(3):183–208.

34. Kumar A, Schrader S, Aertsen A, Rotter S. The high-conductance state of
cortical networks. Neural Computation. 2008;20:1–43.

35. Kumar A, Rotter S, Aertsen A. Conditions for propagating synchronous spiking
and asynchronous firing rates in a cortical network model. J Neurosci.
2008;28:5268–5280.

36. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex.
Nat Neurosci. 1999;2:1019–1025.

37. Serre T, Oliva A, Poggio T. A feedforward architecture accounts for rapid
categorization. Proc Natl Acad Sci. 2007;104(15):6424–6429.

38. Dicarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object
recognition? Neuron. 2012;73(3):415–434.

39. LeCun Y, Bengio Y, Hinton G. Deep learning. nature. 2015;521(7553):436.

40. Hauptmann C, Popovych O, Tass PA. Delayed feedback control of
synchronization in locally coupled neuronal networks. Neurocomputing.
2005;65:759–767.

41. Hashemi M, Valizadeh A, Azizi Y. Effect of duration of synaptic activity on spike
rate of a Hodgkin-Huxley neuron with delayed feedback. Physical Review E.
2012;85(2):021917.

42. Contreras D, Destexhe A, Sejnowski TJ, Steriade M. Control of spatiotemporal
coherence of a thalamic oscillation by corticothalamic feedback. Science.
1996;274(5288):771–774.

43. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Model of thalamocortical
slow-wave sleep oscillations and transitions to activated states. J Neurosci.
2008;22(19):8691–8704.

44. Rosenblum M, Pikovsky A. Delayed feedback control of collective synchrony: an
approach to suppression of pathological brain rhythms. Physical review E.
2004;70(4):041904.

45. Tanaka S. A prefronto-parietal network model with feedforward and feedback
connections. Neurocomputing. 2002; p. 943–948.

46. Shou TD. The functional roles of feedback projections in the visual system.
Neurosci Bull. 2010;26:401–410.

47. Kafaligonul H, Breitmeyer BG, Ogmen H. Feedforward and feedback processes in
vision. Frontiers in Psychology. 2015;6.

48. Miconi T, VanRullen R. A feedback model of attention explains the diverse
effects of attention on neural firing rates and receptive field structure. PLOS
Comp Biol. 2016;12(2: e1004770).

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/712547doi: bioRxiv preprint 

https://doi.org/10.1101/712547
http://creativecommons.org/licenses/by/4.0/


49. Macknik SL, Martinez-Conde S. Role of feedback in visual attention and
awareness. Consciousness. 2009; p. 1165–1179.

50. Lamme VAF. Blindsight: the role of feedforward and feedback corticocortical
connections. Acta Psychologica. 2001;107(1):209–228.

51. Bullier J. Feedback connections and conscious vision. Trends in Cognitive
Sciences. 2001;5:369–405.

52. Clavagnier S, Falchier A, Kennedy H. Long-distance feedback projections to area
V1: Implications for multisensory integration, spatial awareness, and visual
consciousness. Cognitive Affective and Behavioral Neuroscience. 2004;4:117–126.

53. Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A. Activity dynamics and
propagation of synchronous spiking in locally connected random networks. Biol
Cybern. 2003;88:395–408.

54. Ledoux E, Brunel N. Dynamics of networks of excitatory and inhibitory neurons
in response to time-dependent inputs. Front Comput Neurosci. 2011;5(25).

55. Shin D, Cho KH. Recurrent connections form a phase-locking neuronal tuner for
frequency-dependent selective communication. Scientific Reports. 2013;3(2519).

56. Moldakarimov S, Bazhenov M, Sejnowski TJ. Feedback stabilizes propagation of
synchronous spiking in cortical neural networks. Proc Natl Acad Sci.
2015;112(8):2545–2550.

57. Vogel A, Ronacher B. Neural correlations increase between consecutive processing
levels in the auditory system of locusts. J Neurophysiol. 2007;97:3376–3385.

58. Doupe AJea. Cellular, circuit, and synaptic mechanisms in song learning. Ann
NY Acad Sci. 2004;1016:495–523.

59. Kao MH, Wright BD, Doupe AJ. Neurons in a forebrain nucleus required for
vocal plasticity rapidly switch between precise firing and variable bursting
depending on social context. J Neurosci. 2008;28:13232–13247.

60. Kimpo RR, Theunissen FE, Doupe AJ. Propagation of correlated activity
through multiple stages of a neural circuit. J Neurosci. 2003;23:5750–5761.

61. Kojima S, Doupe AJ. Activity propagation in an avian basal
ganglia-thalamocortical circuit essential for vocal learning. J Neurosci.
2009;29:4782–4793.

62. Seeman SC, Campagnola L, Davoudian PA, Hoggarth A, Hage TA,
Bosma-Moody A, et al. Sparse recurrent excitatory connectivity in the
microcircuit of the adult mouse and human cortex. Elife. 2018;7:e37349.

63. Sporns O, Tononi G, Kotter R. The human connectome: A structural description
of the human brain. PLoS Comput Biol. 2005;1:245–251.

64. Bonnefond M, Kastner S, Jensen O. Communication between Brain Areas Based
on Nested Oscillations. eNeuro. 2017;4(2):e0153–16.

65. Chalk Mea. Attention reduces stimulus-driven gamma frequency oscillations and
spike field coherence in V1. Neuron. 2010;66:114–125.

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/712547doi: bioRxiv preprint 

https://doi.org/10.1101/712547
http://creativecommons.org/licenses/by/4.0/


66. Sarter M, Hasselmo ME, Bruno JP, Givens B. Unraveling the attentional
functions of cortical cholinergic inputs: Interactions between signal-driven and
cognitive modulation of signal detection. Brain Res Rev. 2005;48:98–111.

67. Yu AJ, Dayan P. Uncertainty, neuromodulation, and attention. Neuron.
2005;46:681–692.

68. Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R. Laminar
differences in gamma and alpha coherence in the ventral stream. Proc Nat Acad
Sci. 2011;108:11262–11267.

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/712547doi: bioRxiv preprint 

https://doi.org/10.1101/712547
http://creativecommons.org/licenses/by/4.0/


Table 1. Neuron parameters

Name Value Description
Cm 250 pF Membrane capacitance
Gleak 16.67 nS Membrane leak conductance
Θ -54 mV Spiking threshold
Vreset -70 mV Reset potential
τref 2 ms Refractory time period

Table 2. Synapse parameters

Name Value Description
τexc 1 ms Rise time of excitatory synaptic conductance
τinh 1 ms Rise time of inhibitory synaptic conductance
Eexc

syn 0 mV Reversal potential of excitatory synapses
Einh

syn -80 mV Reversal potential of inhibitory synapses
Jee 0.33 mV Exc. to exc. synaptic strength measured at -70 mV
Jei 1.5 mV Exc. to inh. synaptic strength measured at -70 mV
Jie -6.2 mV Inh. to exc. synaptic strength measured at -54 mV
Jii -12.0 mV Inh. to inh. synaptic strength measured at -54 mV
Jpe 0.25 mV Synaptic weight. Input Poisson spike train to exc. population
Jpi 0.4 mV Synaptic weight. Input Poisson spike train to inh. population
Jpp 0.33 mV Synaptic strength from pulse packet to P neurons in layer I
dwithin−layer 1.5 ms Transmission delay within layer
dinter−layer 25 - 28 ms Range of total resonance delay between layers

Table 3. Network parameters

Name Value Description
Nexc 200 Size of excitatory population per layer network
Ninh 50 Size of inhibitory population per layer network
Nproj 70 Number of projecting neurons per layer network
εwithin−layer 0.2 Connection probability within-layer network
εinter−layer 0.2 Connection probability between layer networks
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Supporting information

Statistical analysis of three different background activity regimes in
Figure 7.

Distributions of CVISIs, correlation coefficients, and firing rates for three
background activity regimes of the two network structures FFN and RPN are shown in
Supplementary Figure S1. Consistent with previous Figures, red traces represent
the RPN network structure, blue traces the FFN. Increasing Poisson input rate and
inter-layer connection strengths from top to bottom resulted in lower mean values of the
CVISI distributions (left column), indicating more regular spike timing. Moreover, the
CVISI distributions became distinctly narrower, indicating more homogeneity among
the neurons’ background spiking irregularities in both network types. Neurons also
showed higher correlation coefficients as the Poisson input rate and inter-layer
connection strengths increased (middle column), indicating increasing synchrony among
the excitatory neurons in each network type. Moreover, in the top two panels the
correlation coefficient distributions of the two network types more or less overlapped,
but in the bottom panel they became clearly distinct, with considerably higher
background activity correlations in the RPN than in the FFN. Finally, neurons tended
to fire at higher rates when exposed to higher input rates and stronger inter-layer
connections, resulting in an unbalanced state (right column). Also here, the firing rate
distributions of the two network types more or less overlapped in the top two panels,
but in the bottom panel they became clearly distinct, with considerably higher firing
rates in the RPN than in the FFN. Thus, from a spike statistics point of view, the
differences between the background activities of the FFN and RPN became most
obvious in the high-rate spiking regime (bottom row, marked with a square).

Raster plots for the three regimes of background network activity in both network
types are also shown in Supplementary Figure S2, in the same color code (blue for
FFN, red for RPN). As is clearly visible, increasing external Poisson input rate and
inter-layer connection strengths gradually shifted the background network activity from
an asynchronous irregular activity state toward synchronous oscillations.
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Fig S1. Distributions of CVISI , pair-wise correlations, and firing rates of
excitatory neurons in three different background firing regimes of the RPN
and FFN. Distributions of CV of inter-spike intervals (left), pairwise correlations
(middle), and firing rates (right) for three different sets of external input and inter-layer
connection strengths. Red and blue traces denote RPN and FFN network structures,
respectively. Three states are introduced in Figure 7 with corresponding markers. For
weak external inputs and inter-layer connection strengths, the network in both
structures exhibited asynchronous irregular activity. In this state, adding excitatory
feedback connections did not affect the network activity states. However, when the
network was operating in a synchronous irregular activity state (corresponding to the
higher external excitatory input and stronger inter-layer synapses, bottom row,
indicated with a black square) adding feedback connections resulted in increased firing
rates and synchrony indices, even more so in the RPN than in the FFN (compare red
and blue traces in the two right-most panels in the bottom row), while spiking became
distinctly more regular in both network types (left panel).

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/712547doi: bioRxiv preprint 

https://doi.org/10.1101/712547
http://creativecommons.org/licenses/by/4.0/


Fig S2. Raster plots for three different background firing regimes of the
RPN and FFN. Increasing input rate and inter-layer connection strength both
increased the propensity of the RPN and the FFN to synchronize their background
activities. For the regime marked with the black square (rightmost column), both
networks showed network activity oscillations.
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