-- SUPPLEMENTARY DATA --

GLOBAL ANALYSIS OF HUMAN MRNA FOLDING DISRUPTIONS IN SYNONYMOUS VARIANTS Demonstrates Significant Population Constraint

Jeffrey B.S. Gaither, Grant E. Lammi, James L. Li, David M. Gordon, Harkness C. Kuck, Benjamin J. Kelly, James R. Fitch and Peter White^{#*}

Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital,

Columbus, Ohio, USA

[#] Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA

* Corresponding author

Mailing address:

The Institute for Genomic Medicine

Nationwide Children's Hospital

575 Children's Crossroad

Columbus, OH 43215. USA

Phone: (614) 355-2671; Fax: (614) 355-6833

E-mail: peter.white@nationwidechildrens.org

Keywords: synonymous mutation, mRNA stability, RNA folding, RNA secondary structure, genetic disease, Spark, gnomAD, transcriptomics

TABLE OF CONTENTS

Table of Contents	2
Supplementary Data Table 1	3
Supplementary Data Table 2	4
Supplementary Data Table 3	5
Supplementary Data Table 4	6
Supplementary Data Figure 1 - Distribution of Structural Metrics	.7
Supplementary Data Figure 2 - Calculation of Edit Distance	8
Supplementary Data Figure 3 - Global plots of structural metrics vs. Y	9
Supplementary Data Figure 4 - Structural metric plots in contexts constrained against destabilization 1	.0
Supplementary Data Figure 5 - Structural metric plots in contexts constrained against over-stabilization	
Supplementary Data Figure 6 – Sequence Context and SPI1	

Vienna metric	Vienna metric abbreviation	Description					
Stability Metrics							
dMFE	delta Minimum Free Energy	Change in stability of optimal mRNA structure					
dCFE	delta Centroid Free Energy	Change in stability of centroid mRNA structure					
dMEAFE	delta Maximum Expected Accuracy Free Energy	Change in stability of maximum expected accuracy mRNA structure					
dEFE	delta Ensemble Free Energy	Expected change in stability over all structures					
	Edge distance metrics						
MFEED	Minimum Free Energy Edit Distance	Edge-changes in optimal structures					
CFEED	Centroid Free Energy Edit Distance	Edge-changes in centroid structures					
MEAED	Maximum Expected Accuracy Edit Distance	Edge-changes in maximum expected accuracy structures					
EFEED	Ensemble Free Energy Edit Distance	Expected edge-changes over all structures					
Diversity metrics							
dCD	delta Centroid Distance	Change in average distance of structural ensemble from centroid structure					
dEND	delta Ensemble Diversity	Change in ensemble diversity					

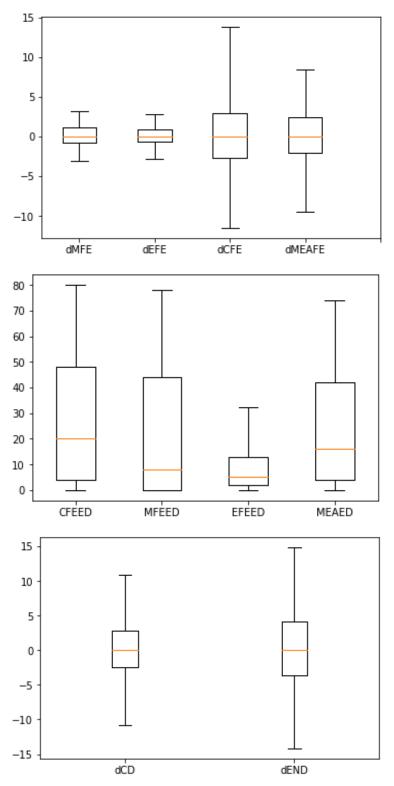
Supplementary Data Table 1. Description of the ten Vienna RNA metrics calculated through the Spark RNA stability pipeline. These metrics are divided into three classes: stability, edge distance and diversity.

$SUPPLEMENTARY\,DATA\,TABLE\,2$

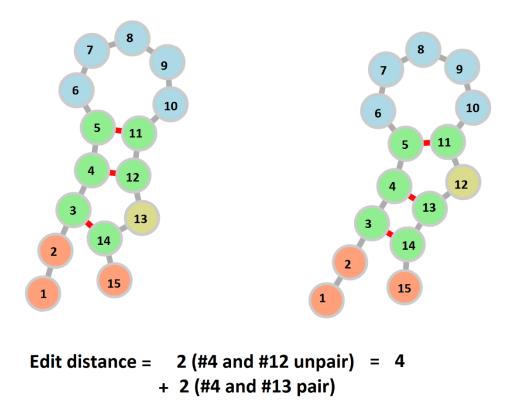
Variant type	Total # SNVs, counted by transcript position	Total # SNVs, counted by chromosomal position	# SNVs successfully lifted to hg19	# SNVs passing gnomAD filter	# SNVs not implicated in splicing	# SNVs with adequate gnomAD coverage	Final # SNVs
all	469,071,297	203,647,788	203,430,738	201,889,552	200,292,238	185,372,924	181,809,836
5' utr	33,684,299	15,242,049	15,226,793	15,191,485	15,038,625	15,242,049	14,988,664
3' utr	208,223,247	85,572,534	85,522,731	85,365,605	85,387,182	85,572,534	85,180,818
missense	161,898,807	72,878,682	72,772,402	71,904,594	70,700,280	59,831,999	57,738,594
stopgain	9,288,276	4,155,868	4,150,780	4,113,672	4,016,853	3,465,335	3,338,052
stoploss	349,722	177,085	176,929	175,711	170,495	122,062	117,943
startgain	4,491,945	2,475,690	2,473,076	2,467,518	2,475,690	2,475,690	2,467,518
startloss	407,050	226,666	226,450	222,459	218,757	127,608	121,970
synonymous	50,727,951	22,919,214	22,881,577	22,448,508	22,284,356	18,535,647	17,856,277

Supplementary Data Table 2 summarizes data pre-processing steps. Vienna metrics were calculated for a total of 469,071,297 SNVs in all known transcripts. As multiple transcripts share the same exonic genomic coordinates, we first collapsed the data to 203,647,788 unique chromosome positions, letting assigning each variant the most damaging variant-type represented at a position (the majority of duplicate positions represented only one variant-type). We then filtered out variants that could not be lifted from GRCh38 to matching hg19 (GRCh37) coordinates; that were flagged by gnomAD as having an unreliable population frequency; that lacked adequate gnomAD coverage; and that were predicted by SnpEff predicted to play a role in splicing. Finally, variants marked as "synonymous" (meaning they were synonymous in some transcript, and either synonymous or UTR in every transcripts) were extracted, giving us a core data set of 17,856,277 sSNVs.

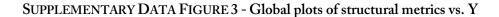
SUPPLEMENTARY DATA TABLE 3

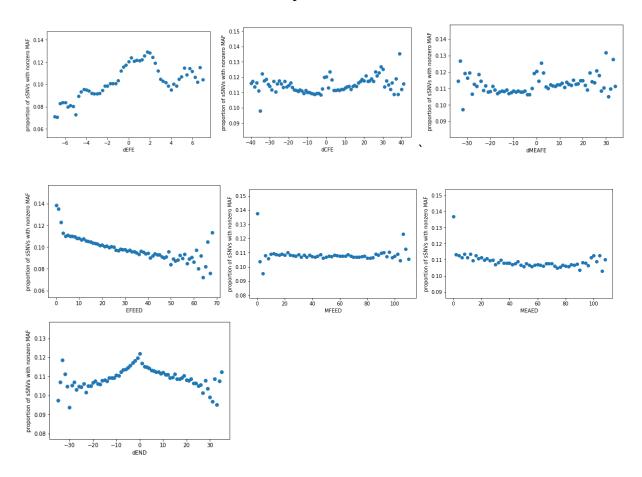

mRNA REF allele	mRNA ALT allele	Transition (Ti) / Transversion (Tv)	# potential synonymous variants	P(MAF>0): + strand	P(MAF>0): - strand		
A	G	Ti	1,754,361	0.137	0.135		
A	С	Tv	1,212,199	0.040	0.040		
A	Т	Τv	986,499	0.031	0.032		
C	Т	Ti	2,650,886	0.173	0.172		
C	G	Tv	1,277,107	0.074	0.073		
C	А	Tv	1,607,564	0.055	0.055		
G	A	Ti	1,983,179	0.159	0.161		
G	Т	Tv	985,565	0.066	0.064		
G	С	Tv	998,787	0.062	0.062		
Т	С	Ti	2,311,979	0.115	0.116		
Т	G	Τv	980,595	0.037	0.038		
Т	Α	Τv	1,138,567	0.026	0.026		
CpG Sequence Context							
C	Т	Ti	283,968	0.825	0.831		
G	A	Ti	172,742	0.801	0.806		

Supplementary Data Table 3 gives number of potential and actual synonymous variants in each context. In each mRNA context we give the total number of potential synonymous variants in the human genome (subject to the filters imposed in Supplementary Data Table 2) as well as the proportion of these potential sSNVs that appear in gnomAD (i.e. MAF >0). We compute separate proportion over positive-sense and negative-sense home transcripts. The close agreement of the values of P(MAF>0) between positive- and negative-sense strands justifies our decision to classify by RNA rather than DNA context.

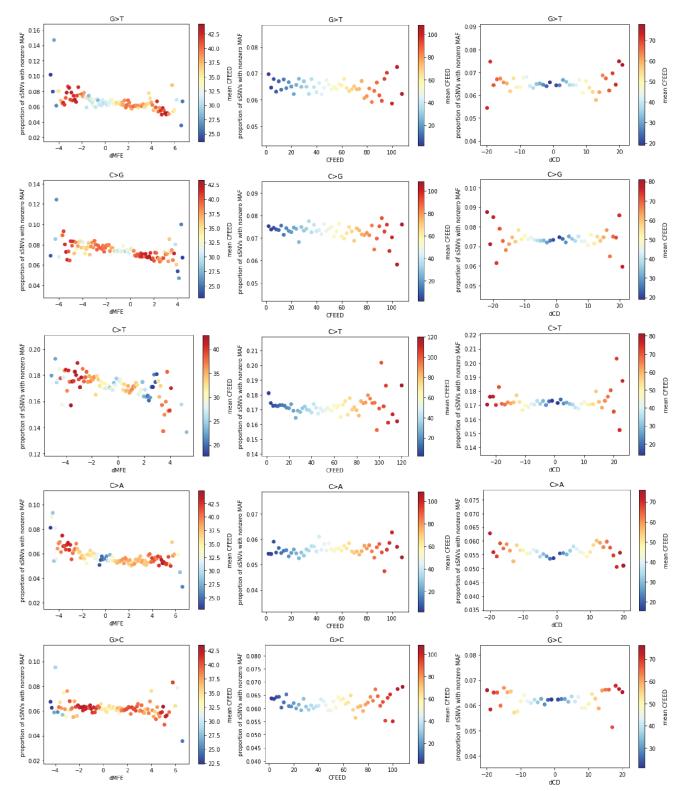

SUPPLEMENTARY DATA TABLE 4

	GLM AUC	GLM AUC	XGB AUC	XGB AUC	RF AUC	RF AUC
Context	Training	Testing	Training	Testing	Training	Testing
	Dataset	Dataset	Dataset	Dataset	Dataset	Dataset
A>C	0.521	0.516	0.499	0.491	0.775	0.513
A>G	0.539	0.539	0.515	0.512	0.847	0.545
A>T	0.512	0.505	0.495	0.484	0.714	0.514
C>A	0.550	0.548	0.505	0.501	0.758	0.536
C>G	0.513	0.509	0.519	0.526	0.776	0.540
C>T	0.506	0.506	0.509	0.510	0.870	0.511
CpG>TpG	0.656	0.656	0.509	0.510	0.902	0.614
G>A	0.522	0.524	0.514	0.513	0.869	0.511
CpG>CpA	0.616	0.618	0.513	0.514	0.896	0.621
G>C	0.536	0.538	0.524	0.526	0.772	0.540
G>T	0.534	0.532	0.531	0.536	0.701	0.548
T>A	0.540	0.532	0.495	0.484	0.581	0.502
T>C	0.565	0.564	0.507	0.507	0.844	0.544
T>G	0.529	0.522	0.498	0.483	0.787	0.507

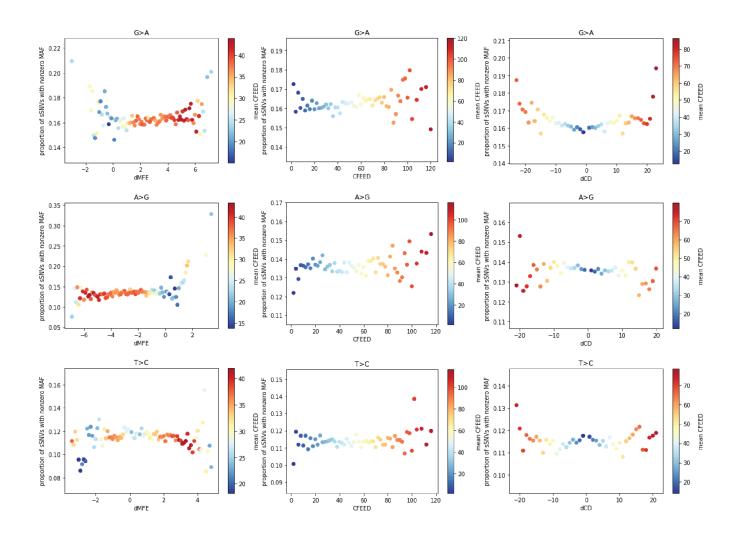

Supplementary Data Table 4 gives performance of SPI score under different model frameworks. In each context we test the power of an SPI score built under one of three different schemes (general logistic, random forest, and gradient-boosted trees) in predicting whether a sSNV has MAF>0. Metric AUC measures the area under the receiver operating characteristic curve, averaged over a 5-fold cross validation. We ultimately use the general logistic mode (glm), since the gradient-boosted trees model (xgb) is not as powerful and the random-forest model (rf) is prone to overfitting (with the training AUCs being much greater than the testing AUCs).



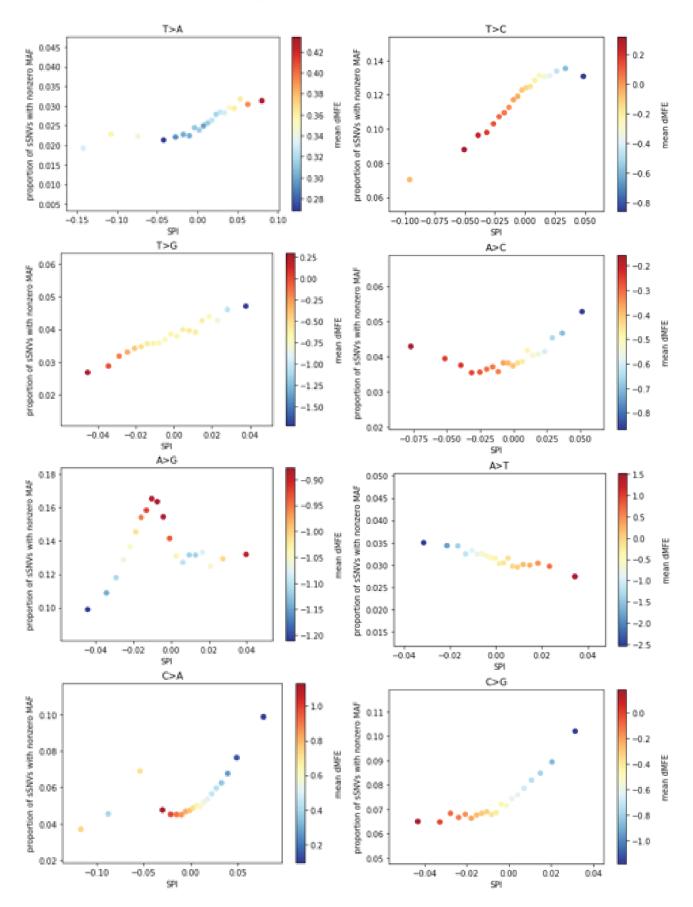
Supplementary Data Figure 1. Global distribution of structural metrics using box-and-whisker plots. We show the distribution of each metric our filtered database of possible sSNVs. Orange line shows median and box encloses central 75% of data. Whiskers enclose central 90%.



Supplementary Data Figure 2. Calculation of edit distance. The "edit distance" between two mRNA secondary structures with the same primary structure is the number of "edits" needed to transform one structure into another. Creation and removal of base pairs (the only possible changes) each count for two edits.



Supplementary Data Figure 3. Vienna metrics vs. Y. For seven Vienna metrics not featured in main results, we plot P(Y=1) vs. metric value. We rounded dCFE, dMEAFE, EFEED and dEND to the nearest integer, and dEFE to the nearest 0.25, prior to plotting. Values with fewer than 50 sSNVs in gnomAD have been removed. Descriptions of metrics are given in **Supplementary Data Table 1**.


SUPPLEMENTARY DATA FIGURE 4 - Structural metric plots in contexts constrained against destabilization

Supplementary Figure 4. Primary Vienna metrics in contexts constrained against de-stabilization. For every non-CpG-transitional context shown in Table 1A with a negative normalized slope (i.e. constraint against de-stabilization), we plot P(Y=1) vs. our three main Vienna metrics (dMFE, CFEED, dCD). Values of dCD were founded to the nearest integer prior to computing P(Y=1). Metric-values with fewer than 50 sSNVs in gnomAD are not shown.

Supplementary Data Figure 5. Primary Vienna metrics in contexts constrained against overstabilization. For every non-CpG-transitional context shown in Table 1A with a positive normalized slope (i.e. constraint against over-stabilization), we plot P(Y=1) vs. our three main Vienna metrics (dMFE, CFEED, dCD). Values of dCD were founded to the nearest integer prior to computing P(Y=1). Metricvalues with fewer than 50 sSNVs in gnomAD are not shown.

Supplementary Data Figure 6. SPI score vs. p(Y=1). In each of the 14 contexts from Table 1, we divide the set of sSNVs into 20 bins based on SPI score and then plot P(Y=1) vs. mean SPI score over each bin, coloring by dMFE.