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Abstract 40 

 Attention is a critical cognitive function, allowing humans to select, enhance, and sustain 41 

focus on information of behavioral relevance. Attention contains dissociable neural and 42 

psychological components. Nevertheless, some brain networks support multiple attentional 43 

functions. Connectome-based Predictive Models (CPM), which associate individual differences 44 

in task performance with functional connectivity patterns, provide a compelling example. A 45 

sustained attention network model (saCPM) successfully predicted performance for selective 46 

attention, inhibitory control, and reading recall tasks. Here we constructed a visual attentional 47 

blink (VAB) model (vabCPM), comparing its performance predictions and network edges 48 

associated with successful and unsuccessful behavior to the saCPM’s. In the VAB, attention 49 

devoted to a target often causes a subsequent item to be missed. Although frequently attributed to 50 

attentional limitations, VAB deficits may attenuate when participants are distracted or deploy 51 

attention diffusely. Participants (n=73; 24 males) underwent fMRI while performing the VAB 52 

task and while resting. Outside the scanner, they completed other cognitive tasks over several 53 

days. A vabCPM constructed from these data successfully predicted VAB performance. 54 

Strikingly, the network edges that predicted better VAB performance (positive edges) predicted 55 

worse selective and sustained attention performance, and vice versa. Predictions from the saCPM 56 

mirrored these results, with the network’s negative edges predicting better VAB performance. 57 

Furthermore, the vabCPM’s positive edges significantly overlapped with the saCPM’s negative 58 

edges, and vice versa. We conclude that these partially overlapping networks each have general 59 

attentional functions. They may indicate an individual’s propensity to diffusely deploy attention, 60 

predicting better performance for some tasks and worse for others. 61 

 62 
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Significance statement 63 

 A longstanding question in psychology and neuroscience is whether we have general 64 

capacities or domain-specific ones. For such general capacities, what is the common function? 65 

Here we addressed these questions using the attentional blink (AB) task and neuroimaging. 66 

Individuals searched for two items in a stream of distracting items; the second item was often 67 

missed when it closely followed the first. How often the second item was missed varied across 68 

individuals, which was reflected in attention networks. Curiously, the networks’ pattern of 69 

function that was good for the AB was bad for other tasks, and vice versa. We propose that these 70 

networks may represent not a general attentional ability, but rather the tendency to attend in a 71 

less focused manner.  72 
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Introduction 73 

 Attention is a critical cognitive function, allowing humans to select, enhance, and sustain 74 

focus on information of behavioral relevance. Visual attention plays numerous roles in different 75 

contexts, and it has been fractionated both behaviorally and neurally (Chun, Golomb, & Turk-76 

Browne, 2011; Desimone & Duncan, 1995; Egeth & Yantis, 1997). In addition to such separable 77 

components, however, some brain networks support attentional processing across multiple 78 

domains (Asplund, Todd, Snyder, & Marois, 2010; Corbetta & Shulman, 2002; Duncan, 2010; 79 

Tamber-Rosenau, Dux, Tombu, Asplund, & Marois, 2013; Yeo, Krienen, et al., 2015). Recent 80 

studies using Connectome-based Predictive Models (CPM) support this idea. In a CPM 81 

approach, individual differences in behavioral performance are accounted for as a function of 82 

whole-brain functional connectivity patterns, after which performance for novel individuals can 83 

be predicted from fMRI data (Shen et al., 2017). Such predictions also apply across tasks. A 84 

sustained attention network model (saCPM) (Rosenberg, Finn, et al., 2016) could predict 85 

individual differences in performance for selective attention (Rosenberg, Hsu, Scheinost, 86 

Constable, & Chun, 2018), inhibitory control (Fountain-Zaragoza, Samimy, Rosenberg, & 87 

Prakash, 2019), and reading recall (Jangraw et al., 2018). 88 

 Here we constructed a CPM for the visual attentional blink (VAB), aiming to test 89 

whether that model could predict performance on a variety of tasks and to compare its 90 

predictions and network features to the saCPM’s. In a VAB paradigm, participants search for 91 

two items in a stream of distractors; they often fail to perceive the second item, but only when it 92 

closely follows the first (200-500 ms) (Raymond, Shapiro, & Arnell, 1992). The VAB is 93 

critically dependent on attention, as no deficit occurs when the first item is ignored. Individuals 94 

differ in their VAB severity (rate of second item detection failures), and these differences are 95 
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typically large and stable (Dale, Dux, & Arnell, 2013). It is unclear, however, which cognitive 96 

and neural factors underlie them. Numerous theoretical explanations have been proposed for the 97 

VAB, including a temporary loss of control (Di Lollo, Kawahara, Shahab Ghorashi, & Enns, 98 

2005) or bottleneck-like processing limitations (Chun & Potter, 1995). VAB magnitude also 99 

correlates only weakly with most other attention tasks (Skogsberg et al., 2015). 100 

 Intriguingly, VAB performance sometimes improves when attention to its primary 101 

detection task is reduced. Such reductions can be due to manipulation (Olivers & Nieuwenhuis, 102 

2005, 2006) or dispositional factors (Dale & Arnell, 2010, 2015; Thomson, Ralph, Besner, & 103 

Smilek, 2015), and are thought to cause more diffuse attentional deployment. In particular, mind-104 

wandering is associated with better VAB performance, though it has the opposite association for 105 

many other attention tasks (Gonçalves et al., 2017; Hu, He, & Xu, 2012; Robertson, Manly, 106 

Andrade, Baddeley, & Yiend, 1997; Smilek, Carriere, & Cheyne, 2010). 107 

 The VAB likely involves many factors (Dux & Marois, 2009), but which are reflected in 108 

individual differences of brain network function? To address this question using a CPM 109 

approach, we scanned 73 individuals while they performed the VAB task and while they rested. 110 

Resting state data allowed us to assess whether any predictive functional architecture persisted 111 

when participants were not engaged in attention-demanding tasks (Finn et al., 2015; Rosenberg, 112 

Finn, et al., 2016; Yoo et al., 2017). Outside the scanner, the same individuals completed 113 

cognitive tasks assessing sustained attention, selective attention, and fluid intelligence. We 114 

constructed a visual attentional blink CPM (vabCPM), from which we could make and assess 115 

predictions about the tasks. If attentional capacity predicts VAB performance, we would expect 116 

positive associations between vabCPM predictions for behavior and observed performance in 117 

other attention tasks. Conversely, if diffuse attentional tendencies predict VAB performance, we 118 
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might find significant negative associations between predicted and observed behavior for other 119 

attention tasks. For external validation, we made and assessed predictions about our tasks, 120 

including the VAB, using a sustained attention CPM (Rosenberg, Finn, et al., 2016). We then 121 

investigated and compared the networks associated with each model to better understand their 122 

relationship and potential psychological functions. 123 

 124 

Materials and Methods 125 

 The present study included numerous tasks, with a primary focus on the visual attentional 126 

blink (VAB). Additional tasks provided critical context and points of comparison for 127 

understanding the individual differences in VAB performance and neural features. These 128 

additional tasks included those related to goal-directed attention and fluid intelligence. Many of 129 

these tasks are conceptually linked to the VAB (Dux & Marois, 2009), and many have also been 130 

studied themselves using Connectome-based Predictive Modeling (Finn et al., 2015; Rosenberg, 131 

Finn, et al., 2016; Rosenberg et al., 2018). To facilitate comparisons across these different tasks, 132 

we re-coded all behavioral performance measures such that positive numbers indicated better 133 

performance (e.g. higher accuracy or faster reaction times; see details below). 134 

Experimental design 135 

 Participants. Eighty-two participants with self-reported normal or corrected-to-normal 136 

vision and normal hearing were recruited from the National University of Singapore (NUS) 137 

community. These individuals began a six-session study that included numerous behavioral and 138 

neuroimaging components, a subset of which are reported and analyzed here. Eight participants 139 

did not continue with the experiment after the first practice session (Session 0) and were 140 

excluded from the following analyses. One participant who did not achieve a target 141 
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discrimination score of 75% in the main VAB task (Session 1) was also excluded. Thus, unless 142 

otherwise stated, the following analyses included data from 73 participants (24 males) between 143 

the ages of 19-30 (M = 22.25, SD = 1.84). All participants provided written informed consent in 144 

accordance with a protocol approved by the NUS Institutional Review Board and received 145 

monetary compensation. 146 

 Stimulus presentation. All sessions took place either inside the MR scanner or in the 147 

laboratory over a span of 3 weeks (see Table 1-1 of Extended Data for complete and detailed 148 

experimental protocol). Inside the scanner, stimuli were presented at a viewing distance of 91 cm 149 

on a 32-inch LCD monitor (NordicNeuroLab, Bergen, Norway) with a screen refresh rate of 60 150 

Hz, connected to a MacBook Air (OS 10.12.1) running PyschoPy (Peirce, 2007). Participants 151 

made responses using an MR-compatible button box. In the laboratory, stimuli were presented at 152 

a distance of 57 cm on a 22-inch LCD monitor (Samsung SyncMaster 2233) with a screen 153 

refresh rate of 60 Hz using an NVIDIA Quadro FX 3450/4000 SD graphics card on Windows 7. 154 

Participants’ responses were captured on a standard computer keyboard. Auditory stimuli were 155 

presented using PyschoPy (Peirce, 2007) binaurally through Creative headphones. 156 

 Overview of task domains and specific tasks. The tasks in this study all investigated 157 

cognitive processing, primarily different forms of attention (Table 1). Each task is detailed 158 

below, organized by task domain. The task domains included the Attentional Blink, Sustained 159 

Attention, Selective Attention, and Fluid Intelligence.  160 

 161 

Table 1. Schedule of tasks and data used in analysis. Participants were encouraged to take breaks 162 

between the tasks to prevent fatigue. With the exception of the Raven’s Progressive Matrices 163 

test, each task was performed twice on non-successive days. Task domains and tasks were as 164 
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follows. Attentional Blink: Visual Attentional Blink (VAB) and Auditory Attentional Blink 165 

(AAB). Sustained Attention: Visual Sustained Attention to Response Task (VSART), Auditory 166 

Sustained Attention to Response Task (ASART), and Gradual-onset Continuous Performance 167 

Task (GradCPT). Selective Attention: Attentional Network Task (ANT). Fluid Intelligence: 168 

Raven’s Progressive Matrices test (Raven’s).  169 

Session 
Days after 

previous session 
Task Data used in analysis 

0  0 VAB (practice) Behavior 

1 3 to 14 

Resting state FMRI 

VAB (in scanner) FMRI, Behavior  

ANT, VSART Behavior 

2 1 AAB, GradCPT, ASART  Behavior 

3 1 ANT, VSART, Raven’s Behavior 

4 1 AAB, GradCPT, ASART  Behavior 

5 1 to 10 VAB (in scanner) Behavior 

 170 

 171 

 Attentional Blink. Participants completed a visual attentional blink (VAB) and an 172 

auditory attentional blink (AAB) task. They were designed to be generally similar (Figure 1). 173 

Both versions were built around target discrimination and a probe detection, with each item 174 

embedded within a stream of distractors. Our main task of interest is the VAB, for which 175 

neuroimaging data was collected concurrently. For the AAB and all other tasks, only behavioral 176 

data were collected. 177 
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 178 

 179 

Figure 1. Experimental paradigm for the visual attentional blink (VAB) task. Participants 180 

identified a target and then detected a probe within a stream of distractors, responding when 181 

prompted at the conclusion of the stream. The target was a red letter, the probe was a white letter 182 

X, and distractors were other white letters. The auditory attentional blink (AAB) task was 183 

similar, save targets were complex tones, the probe was a high-pitched pure tone, and distractors 184 

were other pure tones. SOA = stimulus onset asynchrony. 185 

 186 

 For the VAB, stimuli consisted of upper-case letters presented in Courier New Font on a 187 

dark gray background (Figure 1). Targets were red letters D or F, whereas the probe was a white 188 

letter X. Distractors were white letters save D, F, X, I, L, O, and Q. Targets and probes were 189 

embedded within a rapid serial presentation stream, with no items repeated during each trial. The 190 

stimulus onset asynchrony (SOA) between successive items in the 16-stimulus stream was 117 191 

ms (no gap). A target appeared during every trial at serial position 3, 4, or 5, whereas the probe 192 

appeared during 75% of trials. When present, the probe appeared at lags 1, 2, 3, 5, 7, or 9 relative 193 
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to the target, with the same number of trials per lag condition in each block. The first three lags 194 

were expected to be within the AB window, whereas the last three were expected to be outside it. 195 

In a small percentage of trials (14%), an irrelevant surprise stimulus (randomly selected from a 196 

set of 24 grayscale male faces and 24 colorful objects) was presented at lags 2 or 6 relative to the 197 

target. These surprise stimuli are not relevant to this current study; trials containing surprises 198 

were excluded from the following analyses and are not reported further.  199 

 Each 6.25-second trial began with the presentation of a white fixation cross (0.8° x 0.8°) 200 

for 500 ms, which became larger (1.0° x 1.0°) and turned yellow to signify that the rapid serial 201 

visual presentation (RSVP) stream would begin in 750 ms. Participants searched this RSVP 202 

stream (1867 ms) for the target and probe, which they then indicated by button box press after a 203 

blank gap (233 ms) at the trial’s conclusion. A maximum of 2.9 s was given for participants to 204 

respond to both the target and probe response prompts. After this period, no further responses 205 

were recorded and the white fixation cross returned until the start of the next trial. Failure to 206 

respond was rare: No session had more than 0.16% no-target response trials or 0.64% no-probe 207 

response trials averaged across participants, and no participant had more than 3.57% (target) or 208 

4.17% (probe) no-response trials in any given session. The timing between each trial was 209 

optimized for functional Magnetic Resonance Imaging (fMRI). As such, it followed an 210 

exponential distribution with a range of 1.25-10 s and mean of 3.75 s. Each session contained six 211 

blocks of 28 trials each, with the trials presented in a pseudorandom order. The 168 trials took 212 

approximately 40 minutes to complete, including breaks. Before the main experimental blocks in 213 

each session, each participant completed 3 practice blocks of 8 trials each. The first block 214 

contained targets but no probes; the second block contained probes but no targets; and the third 215 

block contained both.  216 
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 For the AAB, targets were low-pitched or high-pitched complex tones comprised of five 217 

log-related frequencies (794 to 1260 Hz, or 1349 to 2142 Hz), whereas the probe was a 4000 Hz 218 

pure tone. Distractors were 19 pure tones of log-related frequencies ranging from 697 to 2911 219 

Hz. Sound stimuli were adjusted to have equal mean absolute amplitudes, after which the probe 220 

and distractor intensities were set to 45% and 30% of the target intensity (~70 dB). These values 221 

were based on performance in Obana, Lim, & Asplund (under review) and additional pilot tests. 222 

As in the visual task, a small percentage of auditory trials (14%) contained an irrelevant surprise 223 

stimulus, randomly selected from a set of 24 sounds (including an alarm, a cough, and spoken 224 

letters), presented at lags 2 or 6 relative to the target. Again, surprise trials were not analyzed 225 

here. With the exception of a change in stimuli, trial structure was identical to the VAB.  226 

 Each 6.25-second trial began with a reminder of the target and probe sounds, which were 227 

played for 110 ms each with a gap of 85 ms. After 750 ms, the rapid auditory stream (RAP) 228 

began, through which participants searched for the target and probe. Similar to the visual task, 229 

the identity of the target and the presence of the probe were indicated by keypress after a blank 230 

gap (233 ms). Response prompts for the target and probe then appeared, with a maximum 231 

allowed time of 2.9 s for both responses. The timing between each trial was fixed at 0.75 s. 232 

Except for the blank gap and the response prompts, a white fixation cross (0.8° x 0.8°) was 233 

shown on the screen throughout the block. Each session contained three blocks of 56 trials each, 234 

with the trials presented in a pseudorandom order. The 168 trials took approximately 25 minutes 235 

to complete, including breaks. Before the main experimental blocks in each session, each 236 

participant completed 3 practice blocks of 8 trials each. The first block contained targets but no 237 

probes; the second block contained probes but no targets; and the third block contained both. 238 
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Before beginning each practice and task block of the auditory task, participants could play the 239 

target and probe sounds as many times as desired. 240 

 Sustained attention. To better understand VAB performance in relation to other forms of 241 

attention and their neural underpinnings, we also ran three sustained attention tasks. These 242 

paradigms included the visual and auditory versions of the Sustained Attention to Response Task 243 

(SART; Robertson, Manly, Andrade, Baddeley, & Yiend, 1997), which we adapted from Seli, 244 

Cheyne, Barton, & Smilek (2012), and the Gradual-Onset Continuous Performance Task 245 

(GradCPT; Esterman, Noonan, Rosenberg, & DeGutis, 2013; Rosenberg, Noonan, DeGutis, & 246 

Esterman, 2013). The SART has been frequently used to examine moment-to-moment 247 

fluctuations of sustained attention, requiring participants to make continuous responses to most 248 

stimuli but withhold responses to a few. However, due to its trial-based structure, which may 249 

provide a short ‘break’ between trials and not tax attention sufficiently, the GradCPT was later 250 

designed to present images that gradually transition from one to the next using a linear pixel-by-251 

pixel interpolation. The GradCPT has been shown to show reliable and large interindividual 252 

variability amongst high-functioning young adults, such as those in our sample (Rosenberg, 253 

Finn, et al., 2016; Rosenberg et al., 2013). 254 

 In the VSART, participants were presented single digits, one after another, in the center 255 

of the display screen. They were asked to press the spacebar if they saw a number from 1 to 9, 256 

but withhold their response if they saw the number 3. Each digit was presented for 250 ms, 257 

followed by an encircled “x” mask for 900 ms. Digits were presented in Symbol font in white, 258 

against a black background, at sizes 0.57o, 1.03o, 1.43o, 1.89o, 2.35o of visual angle. The order of 259 

the digits and their sizes were randomized. Participants completed 675 trials (~ 13.5 mins) in 260 

each session. 261 
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 For the ASART, stimuli consisted of spoken single numbers. As in the visual task, 262 

participants were asked to press the spacebar when they heard the numbers 1 to 9, but to 263 

withhold their response if they heard the number 3.  The numbers were presented in random 264 

order, each for 250 ms, following by a pink noise mask of 900 ms. Throughout the experiment, 265 

participants maintained fixation on a cross in the middle of the display. Each session consisted of 266 

675 trials (~13.5 mins). 267 

 The GradCPT (Rosenberg et al., 2013) consisted of images that gradually transitioned 268 

from one to the next using a linear pixel-by-pixel interpolation (ISI = 800 ms). Images consisted 269 

of 10 mountain and 10 city scenes, randomly presented with 10% and 90% probability, 270 

respectively, without repeats in consecutive images. Participants were instructed to press the 271 

spacebar when a city scene was presented, but to withhold their response when a mountain scene 272 

was presented. To tax sustained attention sufficiently, the GradCPT was performed in a single 273 

block over a relatively long duration (15 min). 274 

 Selective attention. To understand the AB’s relationship to other selective attention tasks 275 

and their neural underpinnings, we also employed the Attentional Network Task (ANT), by Fan, 276 

McCandliss, Sommer, Raz, & Posner (2002). This paradigm was designed to test three separable 277 

components of selective attention: alerting, orienting and executive control (Posner & Petersen, 278 

1990) within a single experimental session. Stimuli consisted of 5 black lines (some with 279 

arrowheads) arranged horizontally in a row, against a grey background. The target, always an 280 

arrow in the center, was flanked on each side by (i) two arrows pointing in the same direction as 281 

the target (congruent condition), (ii) two arrows pointing in the opposite direction from the target 282 

(incongruent condition), or (iii) two black lines without arrowheads (neutral condition). Each line 283 

or arrow measured 0.55° horizontally, and the space between two adjacent objects measured 284 
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0.06°. To trigger attention orienting, all stimuli were presented either 1.06° above or below a 285 

central fixation cross. Participants were asked to keep their eyes fixated on the fixation cross and 286 

respond whether the target was pointing right or left. 287 

 Each trial started with a central fixation cross (400 – 1600 ms), followed by a warning 288 

cue (100 ms), a second central fixation cross (400 ms), and finally, the stimuli consisting of 289 

target and flankers presented either above or below a central fixation cross. Target and flankers 290 

were presented for 1700 ms, or until a response was made, whichever was shorter. A fixation 291 

cross was then presented until the end of trial (4000 ms after the first fixation period). For the 292 

warning cue, four types of cues were presented: (i) no cue (a central fixation cross, similar to that 293 

presented during the first and second fixation period, was presented), (ii) a center cue (an asterisk 294 

was presented in the center, thus alerting the participant to the impending stimuli presentation), 295 

(iii) double cue (two asterisks were presented above and below a central fixation cross, at both 296 

possible locations of the target), and (iv) a spatial cue (an asterisk was presented at the 297 

impending location of the target). Participants completed 3 blocks of 96 trials (4 cue conditions x 298 

2 target locations x 2 target directions x 2 repetitions), with trials presented in random order. The 299 

entire task lasted about 30 min. 300 

 Fluid intelligence. As a final comparison domain for understanding VAB performance 301 

and the associated neural underpinnings, we measured fluid intelligence. Participants completed 302 

a shortened, nine-item version (Form A; Bilker et al., 2012) of the original 60-item Raven’s 303 

Standard Progressive Matrices (Raven, Raven, & Court, 1998). The task was completed on a 304 

laboratory computer, and there were no response time limits. The task consists of pattern 305 

matching questions designed to measure abstract reasoning skills, and it has been typically used 306 

in clinical settings as a non-verbal test of fluid intelligence. 307 
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Statistical analyses for behavioral data 308 

 Participants had to meet a minimum target discrimination (letter D or F?) score of 75% 309 

for the VAB and 60% for the AAB to be included in the final sample. As a result, 73 sets of data 310 

were available for all tasks, with the exception of the AAB task (n=71). For the AAB, two 311 

additional participants were excluded because their target discrimination performance did not 312 

meet the minimum threshold in each session. For all behavioral comparisons, p-values were 313 

based on two-tailed comparisons. We also did not correct any behavioral comparisons for 314 

multiple corrections, as we wanted to find any normality violations and used the task correlations 315 

to identify any relationships that might affect our CPM results. 316 

 The computation of each behavioral measure is detailed in the following sections, again 317 

organized by task domain. To obtain stable behavioral metrics, we computed a ‘best score’ for 318 

each task metric. When data was available across two different sessions, the final score was 319 

averaged across both sessions. (When data was available only from a single session, the final 320 

score set to that session’s.) We assessed whether the distribution of ‘best scores’ for each metric 321 

departed from normality using Jarque-Bera tests. As many normality violations were found, we 322 

used Spearman correlations of the ‘best scores’ to compare each pair of tasks. For tasks with two 323 

sessions, we also calculated test-retest reliability. Due to the aforementioned normality 324 

violations, Spearman correlations were again used.  325 

 Attentional blink. The VAB and AAB deficits were calculated in the same way. For each 326 

participant, we first computed the mean probe detection accuracy for each lag condition, 327 

contingent upon correct identification of the target. Probe detection accuracy scores were then 328 

averaged across short-lag (lags 1, 2, or 3) and long-lag (lags 5, 7, 9) conditions. The former 329 

condition was expected to be within the attentional blink window, whereas the latter condition 330 
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was expected to be outside it. The AB deficit was computed by regressing out the long-lag scores 331 

from the short-lag scores of each participant (short-lag scores ~ long-lag scores), and then saving 332 

the residuals (MacLean & Arnell, 2012). Larger and positive values indicated smaller attentional 333 

deficits, and thus better task performance. Note that simply subtracting the short-lag from the 334 

long-lag scores yielded highly similar VAB deficit scores (r(71) = .955). Visual AB scores 335 

(VABresid) were obtained from sessions 1 and 5, and the auditory AB scores (AABresid) were 336 

obtained from sessions 2 and 4.  337 

 Sustained attention. D-prime values were computed for the VSART, ASART and 338 

GradCPT, with larger values indicative of better performance in sustained attention. VSART 339 

scores (VSARTdprime) were obtained from sessions 1 and 3, ASART scores (ASARTdprime) 340 

were obtained from sessions 2 and 4, and GradCPT scores (GradCPTdprime) were obtained from 341 

sessions 2 and 4. 342 

 Selective attention. To measure overall task performance in the ANT task, we computed 343 

the mean error rate (ANTerr) across all trials and the intra-individual variability of RTs 344 

(ANTrtvar) for each participant. Intra-individual RT variability was computed as the standard 345 

deviation divided by mean of correct-trial RTs. Arguably, this metric is a more sensitive measure 346 

of task performance than mean error rate (Rosenberg et al., 2018; Wojtowicz, Berrigan, & Fisk, 347 

2012), with higher RT variability being linked to lower accuracy in ANT tasks (Adolfsdottir, 348 

Sorensen, & Lundervold, 2008; Lundervold et al., 2011). 349 

 We also calculated metrics for each attentional network in the ANT, which putatively 350 

reflect their efficiencies. To do so, we compared the RTs between different trial conditions for 351 

each participant (Fan et al., 2002; Rosenberg et al., 2018). For the alerting network, efficiency 352 

was computed by subtracting the mean RT of double-cue condition from the mean RT of the no-353 
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cue condition (ANTaert). Larger values would indicate faster responses due to the cue and thus 354 

better task performance. For the orienting network, efficiency was computed by subtracting the 355 

mean RT of spatial-cue condition from the mean RT of the center-cue condition (ANToert), thus 356 

larger positive values would also imply faster responses due to the cue and better task 357 

performance. For the executive control network, efficiency was computed by subtracting the 358 

mean RT of the congruent condition from the mean RT of the incongruent condition (ANTcert). 359 

In this case, smaller values would imply less interference by the flanker arrows and better task 360 

performance. For all computations of efficiency with RTs, only trials with correct responses 361 

were included. 362 

 For easier comparisons with the other behavioral measures, we re-coded the raw values 363 

of mean error (ANTerr), RT variability (ANTrtvar), and executive control efficiency (ANTcert), 364 

multiplying them by -1 such that larger values would also imply better task performance. ANT 365 

scores were obtained from sessions 1 and 3.  366 

 Fluid intelligence. Accuracy scores for the nine-item Raven’s test (RavensAcc) were 367 

computed for each participant, with higher scores implying better performance. 368 

 369 

Table 2. Summary of behavioral metrics, including their task domain and a description of their 370 

calculation. Raw values for ANTerr, ANTrtvar and ANTcert were re-coded such that larger 371 

values indicated better task performance. 372 

Task domain Metric Description 

Attentional Blink 
VABresid 

Residuals from regressing out long-lag scores from short-lag scores. 
AABresid 

Sustained Attention VSARTdprime Dprime scores. 
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ASARTdprime 

GradCPTdprime 

Selective Attention 

ANTerr Mean error across all trials. 

ANTrtvar SD/M of correct-trial RTs. 

ANTaert Alerting network efficiency. No-cue RT minus double-cue RT. 

ANToert Orienting network efficiency. Center-cue RT minus spatial-cue RT. 

ANTcert 
Executive control network efficiency. Incongruent RT minus 

congruent RT. 

Fluid Intelligence RavensAcc Mean accuracy.  

 373 

 374 

MRI data collection and initial processing 375 

 Acquisition. MRI data were acquired at the Clinical Imaging Research Centre (Singapore) 376 

on a Siemens 3T MAGNETOM Prisma MRI scanner (Siemens, Erlangen, Germany) with a 32-377 

channel head coil. Scanning parameters were adapted from the Human Connectome Project 378 

(HCP), and were chosen to ensure that full-brain coverage, including the cerebellum, was 379 

achieved for each participant. MRI data were acquired in Sessions 1 and 5 of the study, with the 380 

first session’s data analyzed here. Each fMRI session started with a 5-min anatomical localizer 381 

scan, followed by four 8-min resting-state scans, six 5.25-min task-based (VAB task) scans, and 382 

a 5-min anatomical scan. During the resting-state runs, participants were asked to maintain 383 

fixation at a cross displayed in the center of the screen. 384 

 Imaging parameters. A 3D high-resolution (1 mm x 1 mm x 1 mm) T1-weighted 385 

MPRAGE pulse sequence was used to obtain whole-brain anatomical images for each 386 

participant, allowing for subsequent normalization to standard space. For each participant, 128 1-387 
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mm thick contiguous sagittal slices (0.5 mm skip; 1 x 1 mm in-plane resolution) were acquired. 388 

Other scanning parameters included a repetition time (TR) of 2300 ms, an effective echo time 389 

(TE) of 2.22 ms, a flip angle of 8o and 260 mm field of view. 390 

 Functional MRI data were acquired with a multiband echoplanar imaging (MB-EPI; 391 

CMRR release R2015; Feinberg et al., 2010; Moeller et al., 2010; Xu et al., 2013) sequence with 392 

a MB acceleration factor of 8. 768 whole-brain images were obtained for each resting-state run 393 

while 504 images were acquired for each task-based run. T2*-weighted images were acquired 394 

using a TR of 625 ms, a TE of 33.2 ms and FA of 50o. Interleaved slices (imaging matrix = 64 x 395 

64) were collected using a 220 mm field of view, with slice thickness at 2.50 mm (no gap). The 396 

effective voxel size was thus 2.5 x 2.5 x 2.5 mm3. 397 

 Preprocessing. Both task and localizer data were pre-processed using a previously 398 

published pipeline for functional connectivity analyses (Fong et al., 2019; Kong et al., 2019) 399 

publicly available at 400 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/CBIG_fMRI401 

_Preproc2016. Pre-processing steps across resting-state and task-based runs were the same, 402 

except when mentioned otherwise. First, the initial four frames from each run were removed to 403 

aid with BOLD signal stabilisation. Motion correction using FSL’s MCFLIRT was then applied 404 

such that runs with more than 50% of the frames exceeding a motion threshold were discarded to 405 

ameliorate any contributions of head motion. The motion threshold was defined as frame 406 

displacement (FD) > 75 and frame-to-frame intensity (DVARS) > 0.2 (Power, Barnes, Snyder, 407 

Schlaggar, & Petersen, 2012). From this step, one task-based run (and no resting-state runs) was 408 

removed from our data. FSL’s bbregister function was used for intrasubject registration of the T1 409 

anatomical images to the T2*-weighted images. The best run for each subject was used as the 410 
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registration file across all functional runs. Subsequently, motion parameters and their derivatives, 411 

the global whole brain signal, the white matter signal, the cerebral spinal fluid signal and linear 412 

trends were regressed out. Additionally, for task-based runs, we regressed out the haemodynamic 413 

response signal aligned to trial onset times. Frames with excessive motion, identified earlier on, 414 

were interpolated over (Power et al., 2014), and a temporal filter was applied to retain 415 

frequencies between 0.009 and 0.08 Hz. The resulting BOLD signal was projected to fsaverage6 416 

surface space and spatially smoothed with an isotropic Gaussian kernel of 6 mm (FWHM). 417 

 Functional connectivity. Functional connectivity was evaluated in fsaverage6 surface 418 

space for 400 cortical regions (Schaefer et al., 2017) and in MNI152 volumetric space for 19 419 

subcortical regions (including the brain stem, and the left and right hemispheres of the 420 

accumbens area, amygdala, caudate, cerebellum, ventral diencephalon, hippocampus, pallidum, 421 

putamen, and thalamus), with a total of 419 parcellations. For each run, the mean time course of 422 

all the parcellations were correlated using Pearson’s product moment correlation, resulting in a 423 

419 (rows) x 419 (columns) correlation matrix, with (419 x 419 – 419) / 2 = 87,571 unique 424 

values. Each cell in the correlation matrix represents a functional connection (edge) between a 425 

pair of parcellations. Fisher r-to-z transformation was applied to increase normality (Van Dijk et 426 

al., 2010). For each participant, Fisher-transformed matrices for all four resting-state scans and 427 

all six task-based scans were averaged separately, forming two functional connectivity (FC) 428 

matrices: resting-state FC (RSFC) and Visual Attentional Blink task FC (VABFC).  429 

 Motion control. To reduce the effects of motion on functional connectivity, we adapted 430 

motion control procedures from Rosenberg et al. (2018) to remove edges that were correlated 431 

with motion. For each participant, we measured the following five motion parameters from their 432 

resting-state and task-based scans: (i) maximum displacement, (ii) maximum rotation, (iii) mean 433 
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frame-to-frame displacement, (iv) mean frame displacement (FD), and (v) mean frame-to-frame 434 

intensity (DVARS). Spearman’s rank correlation was computed across participants between each 435 

edge in the FC matrix and each motion parameter. To be comparable with Rosenberg et al. 436 

(2018), in which 72.7% of edges remained after controlling for motion, we removed edges where 437 

r > .275 (two-tailed p < .02), leaving 69,617 edges, or 79.50% of the initial 87,571 edges. Edges 438 

were removed from both VABFC and RSFC if they met the criteria for removal in either FC 439 

matrix.  440 

General approach for Connectome-based Predictive Models (CPM) 441 

 We adapted the Connectome-based Predictive Model (CPM) approach (Finn et al., 2015; 442 

Rosenberg, Finn, et al., 2016; Rosenberg et al., 2018; Shen et al., 2017) to predict individual 443 

differences in behavior from functional connectivity information (Figure 2). In the following 444 

section, we first describe our CPM procedure and then summarize our different models. Data 445 

from all 73 participants were included in these analyses (71 for models involving the AAB score, 446 

AABresid). 447 

 448 
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 449 

Figure 2. Procedure for Connectome-based Predictive Model (CPM) construction in the current 450 

study (adapted from Shen et al., 2017). CPMs predict individual differences in behavior from 451 

functional connectivity information. (a) Functional connectivity matrices and a behavioral score 452 

of interest for each participant were calculated. One pair was held out of model construction for 453 

each round of leave-one-out cross-validation (LOOCV) (Webb et al., 2011). (b) Functional 454 

connectivity edges were correlated with behavior across participants. (c) Edges that correlated 455 

most strongly, either positively or negatively, were selected. (d) Values from selected edges were 456 

summed separately for positive and negative network edges, yielding two network strengths for 457 

each participant. (e) A linear regression model relating (rank) network strengths to (rank) 458 

behavioral scores was computed. (f) The model was tested on a novel, out-of-sample participant 459 

(the individual left out in step (a)). After repeating steps a-f for each participant, the model was 460 

evaluated by correlating the predicted behavioral scores with the actual scores. 461 
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 462 

 Model training. We first selected an FC matrix (i.e., VABFC or RSFC) and a behavioral 463 

score (e.g., VABresid). As part of the leave-one-out cross-validation procedure (Figure 2a), we 464 

then set aside the data for one participant as test data and proceeded to train the model on the 465 

remaining data (n = 72). To identify edges that most strongly correlated with behavior, we 466 

computed Spearman’s rank correlations between each unique edge in the FC matrix and the 467 

behavioral score across 72 participants (Figure 2b), yielding 69,617 Spearman’s rho values (rs). 468 

Edges positively related to behavior (positive network edges) were identified as those whose rs 469 

was greater than a pre-defined threshold, rthreshold, and edges negatively related to behavior 470 

(negative network edges) were defined as those whose rs was less than -rthreshold (Figure 2c). 471 

Next, we computed network strengths (NS) for each participant by summing up values in their 472 

individual FC matrices across all positively and negatively correlated edges (Figure 2d), 473 

resulting in 72 sets of positive NS and negative NS values. Subsequently, we converted the 474 

positive NS, negative NS, and behavioral scores to rank space by ordering them according to 475 

participants’ values. Finally, we formulated a multiple linear regression model (Figure 2e) with 476 

positive NS rank and negative NS rank as independent variables and behavioral rank as the 477 

dependent variable i.e., Behavior (rank) ~ NSpositive (rank) + NSnegative (rank).  478 

 Model test. We proceeded to predict the behavioral score (in rank space) of the test 479 

participant (Figure 2f) by applying the training model to his/her FC matrix. Using the same 480 

positive and negatively correlated edges identified from training, positive NS and negative NS 481 

were first computed by summing up values in the FC matrix across the respective edges. 482 

Following this step, positive and negative NS values of the test participant were ranked against 483 
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the relevant NS values of the training participants, and entered into the multiple linear regression 484 

model to predict a behavioral rank.  485 

 Model evaluation. As part of the leave-one-out cross-validation procedure, the above 486 

training and prediction steps were repeated on all participants (N = 73) such that each participant 487 

was left out of training once, resulting in 73 sets of predicted behavioral ranks. To measure the 488 

predictive power of the model, we obtained correlations between the predicted and observed 489 

values, controlling for motion (Rosenberg et al., 2018). To this end, partial Spearman’s rank 490 

correlation was computed between predicted and observed behavioral ranks, with the motion 491 

parameters (see section on Motion control) included as covariates. Where FC matrices were 492 

different for training and test, motion parameters from both the resting-state and task-based scans 493 

were included (i.e., ten covariates); where the same FC matrix was used, only motion parameters 494 

from the relevant scan were included (i.e., five covariates). P-values for model evaluation were 495 

left uncorrected, as most of the comparisons represented planned replications of previous work, 496 

and the pattern of predictions across tasks was more informative than single model predictions. 497 

For other neuroimaging-based statistical tests, we corrected for multiple comparisons, as detailed 498 

in the respective Results sections (Functional connectivity and Network overlap). 499 

CPM model specification for data from the current study 500 

 For each of the eleven behavioral scores (e.g., VABresid, AABresid, VSARTdprime, 501 

etc.), we repeated the CPM procedure to train and test four different types of models. Two model 502 

types (vabCPM model variants) were trained using FC information and behavioral responses 503 

acquired from the main VAB task (i.e., VABFC and VABresid), and used to predict behavioral 504 

performance of novel participants using either their VAB task (VABFC; Model type A), or their 505 

rest (RSFC; Model type B) FC information. With these models, we sought to identify attentional 506 
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networks that were predictive of good VAB performance (positive network) and poor VAB 507 

performance (negative network), and then to determine whether these networks generalized to 508 

make similar predictions about other tasks. Two other model types (task-specific model variants) 509 

were trained using task-specific behavioral data and either VAB task (VABFC; Model type C) or 510 

rest (RSFC; Model type D) information. Behavioral performance was then predicted from the 511 

same type of FC data that was used during training. With these models, we tested whether 512 

predictive networks for each task could be predicted from FC data that was unrelated to that task; 513 

any such predictive networks would be useful for identifying and comparing the edges that are 514 

predictive of performance on a given task.   515 

 Model type A (train on VABFC and behavioral data, predict with VABFC data). For 516 

training, the functional connectivity matrix VABFC and behavioral score VABresid were used to 517 

select edges and form the linear model. For test, the training model was applied to the VABFC 518 

matrix of the left-out participant. For evaluation, the predicted behavior from the leave-one-out 519 

procedure was correlated with the behavioral score from a selected task. 520 

 Model type B (train on VABFC and behavioral data, predict with RSFC data). As in the 521 

previous model, VABFC and VABresid were used for training, but for test, the training model 522 

was applied to the RSFC matrix of the left-out participant. For evaluation, the predicted behavior 523 

was correlated with the behavioral score from a selected task. 524 

 Model type C (train and test on VABFC data). During training, VABFC and the 525 

behavioral score from a selected task were used to form the model. During test, the training 526 

model was applied to VABFC of the left-out participant. For evaluation, the predicted behavior 527 

was correlated with the observed score of the selected task. 528 
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 Model type D (train and test on RSFC data). For training, the functional connectivity 529 

matrix RSFC and the behavioral score from a selected task were used to form the model. For 530 

test, the training model was applied to the RSFC of the left-out participant. During evaluation, 531 

the predicted behavior was correlated with the observed score of the selected task. 532 

 Controls. For the primary analyses in the study, we implemented the CPM procedure 533 

using edge selection cutoffs (rthreshold = .232, p = .05) previously used in Rosenberg et al. (2018). 534 

As an exploratory control, we also investigated whether our predictions were reasonably stable 535 

across edge selection cutoff values. To do so, we repeated the leave-one-out cross-validation 536 

procedure with rthreshold ranging from .005 to .5, in steps of .005. Thus, in total, the CPM 537 

procedure was repeated (11 behavior x 4 models x 101 edge selection thresholds) 4,444 times. 538 

 As p-values from LOOCV procedures can be biased, we verified the significance of our 539 

models using permutation testing (Shen et al., 2017). A null distribution with 1000 iterations was 540 

generated for each rthreshold. For each iteration, we randomly shuffled participants’ behavioral 541 

scores and repeated the prediction steps above. P-values (uncorrected for this exploratory 542 

analysis) were computed as the proportion of permutation rs with values greater than the 543 

observed rs.  544 

Sustained Attention CPM from Rosenberg et al. (2016) 545 

 To compare our predictions and networks with another attention-related model, we 546 

applied the Sustained Attention CPM (saCPM) (Rosenberg, Finn, et al., 2016) to our FC data. 547 

The saCPM was constructed using FC data computed with 268 parcellations (Shen, Tokoglu, 548 

Papademetris, & Constable, 2013). As our FC data was computed with 419 parcellations 549 

(Schaefer et al., 2017), we transformed the Shen parcellations to Schaefer parcellations in 550 

MNI152 space (91x109x91, 2mm voxels). For each Shen parcellation, we located the 551 
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corresponding Schaefer parcellation at a corresponding spatial location, excluding those that 552 

accounted for less than 10% of the voxels in the Shen parcellation. Next, we mapped the saCPM 553 

edges in the following way: if Shen parcellation A mapped to Schaefer parcellations 1, 2, and 3 554 

and Shen parcellation C mapped to Schaefer parcellations 7 and 8, a functional connection 555 

(edge) between Shen parcellations A and C would be mapped to Schaefer edges 1-7, 2-7, 3-7, 1-556 

8, 2-8, and 3-8. As before, edges that were removed previously due to motion were also removed 557 

in the mapped saCPM edges.  558 

 We computed network strengths by taking the dot product between the saCPM edges and 559 

our FC matrix (VABFC or RSFC), and entered the result into a linear model: Behavior ~ 560 

NSpositive  + NSnegative. Note that these were motion-controlled FCs (69,617 edges), but during 561 

evaluation, we did not implement partial correlation with motion parameters as co-variates, 562 

following Rosenberg, Finn, et al. (2016). As the saCPM model was trained using FC data and 563 

dprime scores acquired during the GradCPT task, predicted scores from the model were also 564 

dprime scores. We evaluated the result of applying the saCPM to our FC data by computing 565 

Spearman’s rank correlation between the predicted scores and the scores from each of our 566 

behavioral tasks. 567 

Network overlaps and edge locations 568 

Degree of overlap. To better understand the relationships across CPMs, we calculated the 569 

percentage of network overlap for model pairs. First, for each model, we identified edges that 570 

were common across all iterations of the leave-one-out procedure; we reasoned that these edges 571 

were most representative of the model. For each pair of models, we expressed the number of 572 

edges in common percentages of the number of edges in each model, and we then computed the 573 
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average of the two percentages. These percentages were calculated separately for positive-574 

positive, negative-negative, positive-negative, and negative-positive network overlaps.  575 

To statistically assess whether the edges for each pair of models significantly overlapped, 576 

we used the hypergeometric cumulative density function to determine the probability of drawing 577 

up to x out of K possible items with n drawings without replacement, from a population of size M 578 

(Rosenberg, Zhang, et al., 2016). The procedure was implemented with the hygecdf function in 579 

(MATLAB, 2014), as p = 1 – hygecdf(x, M, K, n), with x as the number of overlapping edges, M 580 

as the total number of edges, K as the number of edges from one model, and n as the number of 581 

edges from the other model. To control for multiple comparisons, FDR correction was applied 582 

across the complete set of tests (Benjamini & Hochberg, 1995). 583 

 Anatomical location of networks and overlaps. To determine the anatomical locations of 584 

network edges and the overlaps between the vabCPM and saCPM networks, we first grouped the 585 

419 parcellations into network groups. The parcellations were matched to 17 network labels 586 

(Yeo et al., 2011), from which they were aggregated into eight cortical groups (Yeo, Tandi, & 587 

Chee, 2015) and a subcortical group. For each pair of network groups (e.g. Visual and Salience / 588 

Ventral Attention), we computed the number of connections (network edges) between them. We 589 

then reported this value as a percentage of the total number of possible connections between that 590 

pair of network groups. 591 

 592 

Results 593 

 In the sections below, we first report the behavioral results and the functional 594 

connectivity matrices. We then present the behavioral predictions based on models derived from 595 

the present dataset, followed by the behavioral predictions based on an external model (the 596 
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saCPM; Rosenberg et al., 2016). After comparing the pattern of predictions, we compare the 597 

degree of overlap across the predictive networks. Finally, we examine the anatomical locations 598 

of the overlaps between the vabCPM and saCPM networks. 599 

Behavioral performance  600 

 We found a robust visual attentional blink (VAB) in each session, with substantially 601 

impaired probe detection performance for the shorter lags (1, 2, 3) but not the longer lags (5, 7, 602 

9) (Figure 3). For subsequent individual differences analyses, the VAB deficit was defined as 603 

short-lag performance when controlling for long-lag performance (see Methods), a definition the 604 

results supported. An AAB was also evidenced, though it was both smaller and less robust across 605 

sessions. 606 

 607 

 608 

Figure 3. Accuracy scores (probe hit rates) for the VAB and AAB. Note the substantial 609 

impairment for the short target-probe lags (1, 2, and 3) in each session, especially for the VAB. 610 

Error bars represent standard error of the mean (SEM). 611 

 612 

 Test-retest reliability was high for most metrics, and their ranges were reasonable ( 613 
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Table 3). Jarque-Bera tests of normality revealed that several behavioral scores were not 614 

normally-distributed (see relevant plots in Figure 4). Hence we adopted non-parametric 615 

approaches in our subsequent analyses and models. 616 

 617 

Table 3. Summary of behavioral data. Test-retest reliability (Spearman correlations across 618 

sessions) was high for most metrics and significant for all (ps < .002). Jarque-Bera tests indicated 619 

some significant departures from normality. Metrics are presented before re-coding. Metrics that 620 

were subsequently reversed so that larger values would indicate better task performance are 621 

marked with an asterisk (*). N = 73 for all metrics except AABresid (N = 71). 622 

Task domain Metric Mean SD Range 
Reliability 

(rs) 

Jarque-

Bera (p) 

Attentional 

Blink 

VABresid 0.003 0.213 [-0.577, 0.356] 0.75 .126 

AABresid 0.001 0.118 [-0.412, 0.274] 0.38 .002 

Sustained 

Attention 

VSARTdprime 3.469 0.77 [1.016, 5.256] 0.54 .077 

ASARTdprime 3.187 0.795 [0.364, 5.127] 0.62 .004 

GradCPTdprime 2.844 0.655 [1.607, 4.359] 0.65 .144 

Selective 

Attention 

*ANTerr 

(% incorrect) 
2.463 2.222 [0, 11.111] 0.66 .001 

*ANTrtvar (s) 0.147 0.035 [0.088, 0.24] 0.65 .058 

ANTaert (s) 0.074 0.022 [0.02, 0.138] 0.42 .447 

ANToert (s) 0.04 0.017 [0, 0.085] 0.36 .500 

*ANTcert (s) 0.129 0.03 [0.078, 0.207] 0.74 .100 

Fluid 

Intelligence 

RavensAcc 

(% correct) 
82.5 15.15 [22.22, 100] - .001 

 623 
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 To examine how behavioral performance was related across the various tasks, we 624 

computed Spearman’s rank correlations between each pair of behavioral scores (Figure 4). 625 

Significant correlations were primarily found within a given attentional domain. The three 626 

measures of Sustained Attention (VSARTdprime, ASARTdprime and GradCPTdprime) were 627 

significantly correlated, as were the primary measures of Selective Attention (ANTerr and 628 

ANTrtvar) and some of their component measures. Many of these metrics were significantly 629 

correlated, positively and negatively, across the Sustained and Selective Attention task domains 630 

as well. The negative correlations with the alerting (ANTaert) and orienting (ANToert) metrics 631 

may be due to their reflecting stimulus-driven attentional control, as opposed to the goal-directed 632 

control required for many other metrics. Attentional Blink (VABresid and AABresid) and Fluid 633 

Intelligence (RavensAcc) metrics generally were not significantly correlated with other metrics. 634 

 635 
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 636 

Figure 4. Behavioral score distributions and correlations. (Above diagonal) Spearman correlation 637 

coefficients for pairs of behavioral metrics. Most significant correlations were found within task 638 

domains, but some metrics correlated across the Sustained and Selective Attention domains. In 639 

contrast, Attentional Blink and Fluid Intelligence metrics largely did not correlate with other 640 
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metrics. Since the purpose of this analysis was to identify any behavioral relationships that might 641 

explain subsequent CPM results, no correction for multiple comparisons was applied. *p < .05, 642 

**p < .01. Red and blue shading indicates positive and negative relationships, respectively. 643 

(Diagonal) Histograms of behavioral data. The behavioral data had been re-coded so that larger 644 

values indicate better task performance for each measure. (Below diagonal) Scatterplots for each 645 

pair of behavioral metrics.  646 

 647 

Functional connectivity matrices  648 

 To assess and compare network connectivity during the VAB task and during rest, we 649 

plotted group-averaged functional connectivity (FC) matrices (Figure 5). The 419 parcellations 650 

from the FC matrices were matched to 17 network labels (Yeo et al., 2011), from which they 651 

were aggregated into eight cortical groups (Yeo, Tandi, et al., 2015) and a subcortical group. FC 652 

data from both the VAB task (VABFC; Figure 5a) and resting state (RSFC; Figure 5b) showed 653 

similar connectivity patterns, with largely positive within-network correlations and mixed 654 

directions for between-network correlations. The network correlation patterns were generally 655 

similar to those observed in other data sets (Yeo et al., 2011; Yeo, Tandi, et al., 2015). Using 656 

Network-based statistics to correct for multiple comparisons (Zalesky, Fornito, & Bullmore, 657 

2010), we observed small differences between the two FC matrices, with many connections 658 

linking the Salience/Ventral attention and the Dorsal attention networks (Figure 5c).  Such 659 

differences are consistent with the reported neural correlates of the attentional blink, which are in 660 

frontal and parietal areas associated with the ventral and dorsal attention networks (Marois, 661 

Chun, & Gore, 2000; Marois & Ivanoff, 2005). 662 
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663 
Figure 5. Functional connectivity (FC) matrices. Each edge was Fisher-transformed, and the 664 

resulting z-scores were averaged across participants. Edges found to correlate with motion were 665 

set to zero. (a) VAB task FC matrix (VABFC). (b) Resting-state FC matrix (RSFC). VABFC and 666 

RSFC patterns were similar to one another and to other data sets (Yeo et al., 2011; Yeo, Tandi, et 667 

al., 2015). (c) Difference FC matrix (VABFC - RSFC), showing edges that were significant at p 668 

= .05, corrected for multiple comparisons using network-based statistics. Differences between 669 

FC matrices were small, though they notably included connections linking the Salience/Ventral 670 

attention and the Dorsal attention networks. The 419 parcellations from the FC matrices were 671 

matched to 17 network labels (Yeo et al., 2011) (green labels), from which they were aggregated 672 

into eight cortical groups (Yeo, Tandi, et al., 2015) and a subcortical group (blue labels, spelled 673 

out in full in (a)). Subcortical regions include the brain stem, accumbens area, amygdala, 674 

caudate, cerebellum, ventral diencephalon, hippocampus, pallidum, putamen, and thalamus. For 675 

the green labels, letters represent the networks within the corresponding group, e.g., a(Default 676 

A), b(Default B), c(Default C), tp(TempPar), t(temporal pole in limbic region), o(orbital frontal 677 

cortex in limbic region), p(peripheral visual area), c(central visual area), and sc(subcortical). 678 

 679 
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Behavioral predictions from CPMs constructed using the present dataset  680 

 Models constructed from VAB functional connectivity and behavioral data (vabCPMs) 681 

positively predicted VAB performance from task data (VABFC; Model type A) but not from 682 

resting state data (RSFC; Model type B) (Figure 6a; corresponding values are tabulated in Figure 683 

6-1 in the Extended Data). Task predictions were made in relative performance ranks (Spearman 684 

correlations), so these predictions readily applied to other rank-order behavioral scores. When so 685 

applied, we found that Fluid Intelligence performance could be positively predicted from both 686 

task and rest FC data. Critically, the correlations between predicted and actual performance for 687 

Sustained Attention metrics were negative, as were these correlations for Sustained Attention 688 

tasks, albeit less consistently. Such results are counterintuitive, as all behavioral scores were re-689 

coded so that larger values indicated better performance. Furthermore, one might expect that 690 

individuals whose network data predicted better performance on the VAB and Fluid Intelligence 691 

tasks would perform worse on Sustained Attention and Selective Attention tasks. In reality, 692 

however, VAB performance correlated insignificantly or weakly positively with other task 693 

metrics, whereas Fluid Intelligence performance was not significantly correlated with any other 694 

tasks. We return to this intriguing result in the Discussion. 695 

 696 
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697 
Figure 6. Behavioral predictions from CPMs. Each point represents a pair of Spearman’s rank 698 

correlation coefficients (rs) computed between observed and predicted behavioral scores for a 699 

given model type. (a) Predictions from vabCPMs, which were trained with VABFC and 700 

VABresid. Note the successful positive predictions for the VAB and Fluid Intelligence, but 701 

successful negative predictions for some Selective and Sustained Attention metrics. (b) 702 

Predictions from task-specific models. Many models could successfully predict behavioral 703 

performance, though results often varied greatly across the FC source. For both panels, the dark 704 

gray region indicates where rs values are significant at the p = .01 level, and the lighter gray 705 

region indicates where rs values are significant at the p = .05 level (uncorrected, with d.f. = 71). 706 

The rs values and corresponding p-values are tabulated in Figure 6-1 in Extended Data. A 707 

standard edge selection threshold (rthreshold = .232, p = .05) was used for all models, though 708 

results were similar across a wide range of threshold values (Figure 6-2 and Figure 6-3 in 709 

Extended Data). Finally, as p-values from LOOCV procedures can be biased, we verified our 710 

results for the VAB using permutation testing; significance from this method and parametric 711 

approaches was consistent across edge selection thresholds (Figure 6-4 in in Extended Data). 712 

 713 
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 Models built from task-specific behavioral data significantly predicted performance for 714 

each of the task metrics predicted from the vabCPMs, although the results were less consistent 715 

between VABFC-based (Model type C) and RSFC-based (Model type D) predictions (Figure 6b; 716 

corresponding values are tabulated in Figure 6-1 in the Extended Data). Although it is possible 717 

that the different predictions reflect different information in the two FC data sources (Figure 3), 718 

it is unclear whether the differences are stable or simply reflect difficulty in building models 719 

from fMRI data for which the behavioral data were collected separately. Indeed, CPMs 720 

constructed from fMRI data collected during task performance and that task’s behavioral scores 721 

tend to be more robust (Rosenberg, Finn, et al., 2016; Rosenberg et al., 2018; Yoo et al., 2017). 722 

Regardless, due to the same FC-behavior pair being used during both training and test, 723 

significant negative predictions from the vabCPMs became positive, as expected (e.g., 724 

VSARTdprime, ANTerr, ANTrtvat and ANTcert). 725 

 To examine whether model predictions were sensitive to the number of edges selected 726 

during CPM training, we explored how rs changes as a function of edge selection thresholds. Rs 727 

values were observed to be reasonably stable across edge selection thresholds, though more 728 

variation was observed in task-specific models (Model types C and D) than in vabCPMs (Model 729 

types A and B) (Figure 6-2 and Figure 6-3 in Extended Data). Additionally, as p-values from 730 

LOOCV procedures can be biased, we verified our results for the VAB using permutation 731 

testing; significance from this method and parametric approaches was consistent across edge 732 

selection thresholds (Figure 6-4 in in Extended Data). Each of these issues may have contributed 733 

to the unexpected negative predictions for the GradCPTdprime metric, an aspect of the results to 734 

which we return below. 735 

Behavioral predictions from an external CPM (saCPM; Rosenberg et al., 2016). 736 
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 For external validation of our model predictions, we applied the Sustained Attention 737 

CPM (saCPM) to our data. The saCPM was trained on fMRI and behavioral data from the 738 

GradCPT, a sustained attention task (Rosenberg, Finn, et al., 2016). When applied to our data, 739 

the saCPM predictions were virtually mirror images of our vabCPM predictions (Figure 7). 740 

Specifically, whereas the vabCPM predicted VAB and Fluid Intelligence performance positively 741 

and predicted Sustained Attention and Selective Attention performance negatively, the saCPM 742 

predicted VAB and Fluid Intelligence performance negatively and predicted Sustained Attention 743 

and Selective Attention performance positively. 744 

 With these findings, we also replicated the results from Rosenberg et al. (2018). 745 

Specifically, the saCPM was able to predict the error rates (ANTerr), reaction time variability 746 

(ANTrtvar), and conflict (ANTcert) metrics for novel individuals in the ANT task. Conversely, 747 

we failed to replicate the significant predictions for GradCPTdprime in our data, contrary to 748 

expectations. This replication failure is puzzling because the GradCPT behavioral data showed a 749 

reasonable spread of scores and good test-retest reliability (Table 3), and the saCPM and 750 

vabCPM did make significant predictions on other Sustained Attention metrics in our data set. 751 

We are currently exploring our GradCPT task and results further in our laboratory. 752 

 753 
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 754 

Figure 7. Comparison of predictions from the vabCPM and saCPM. Each point represents a pair 755 

of Spearman’s rank correlation coefficients (rs) computed between observed and predicted 756 

behavioral scores for a given model type. (a) Predictions from VABFC data. Note the saCPM’s 757 

successful positive predictions for some Selective and Sustained Attention metrics, with a 758 

successful negative prediction for the VAB. As noted above, the prediction directions were 759 

reversed for the vabCPM; indeed, the prediction points fall close to the diagonal. (b) Predictions 760 

from RSFC data. The vabCPM and saCPM predictions went in opposite directions, and were 761 

generally similar to the predictions from the VABFC. For both panels, the dark gray region 762 

indicates where rs values are significant at the p = .01 level, and the lighter gray region indicates 763 

where rs values are significant at the p = .05 level (uncorrected, with d.f. = 71). The edge 764 

selection threshold (rthreshold) corresponded to p = .05 for all models. The rs values and 765 

corresponding p-values for the saCPM are tabulated in Figure 7-1 in the Extended Data. (See 766 

Figure 6 for additional vabCPM details.) 767 

 768 

Degree of overlap between predictive network pairs 769 
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 To better understand how the underlying functional connectivity networks contributed to 770 

the model predictions, we analyzed the extent to which edges were shared between pairs of 771 

CPMs. For each pair, we calculated overlaps between positive network edges (those that 772 

predicted better behavioral performance for the model’s task), between negative network edges, 773 

and across positive and negative network edges (Figure 8). The networks derived from the 774 

vabCPM (VAB network) and saCPM (SA network) did not significantly overlap at similar 775 

network edges (e.g. positive-positive; Figure 8a and 8b). Instead, they significantly overlapped 776 

only at opposing network edges, the positive edges from one model and the negative edges from 777 

the other (Figure 8c and 8d).  778 

 The overlaps between the VAB network and SA network accorded with their overlaps 779 

with networks derived from other task-specific CPMs. VAB network edges tended to overlap 780 

more with the opposing network edges of the Sustained and Selective Attention models (Figure 781 

8c and 8d) as compared to their similar network edges (Figure 8a and 8b). In contrast, SA 782 

network edges overlapped significantly with similar edges from each of the Sustained and 783 

Selective Attention models, but with none of their opposing edges. Finally, although VAB and 784 

Fluid Intelligence networks overlapped significantly only at similar network edges, SA network 785 

edges did not significantly overlap with either similar or opposing Fluid Intelligence network 786 

edges. 787 

 Taken together, the pattern of edge overlaps accords with the pattern of behavioral 788 

predictions. The VAB and SA networks overlapped at opposing edges, and their predictions 789 

were also negatively related (Figure 7). Predictions for individual metrics also aligned with 790 

model overlaps. In general, when a metric’s observed scores positively correlated with scores 791 
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predicted from the vabCPM or saCPM, that metric’s CPM-derived network tended to overlap 792 

with the VAB or SA network at similar network edges. 793 

 794 

795 
Figure 8. Percentage of edge overlap between networks from selected pairs of CPMs. Each task-796 

specific model was based on VABFC data (Model type C). Model pairs with statistically 797 

significant overlap (p < .05, FDR corrected) are indicated in bold. Positive network edges 798 

predicted better behavioral performance for their associated metric, whereas negative network 799 
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edges predicted worse behavioral performance. Overlap between similar network edges, (a) 800 

positive-positive and (b) negative-negative. Sustained Attention (including the saCPM) and 801 

Selective Attention models overlap primarily on similar edges, as do Fluid Intelligence and the 802 

vabCPM. Overlap between opposing network edges, (c) negative-positive and (d) positive-803 

negative. The vabCPM network primarily overlaps with Sustained Attention (including the 804 

saCPM) and Selective Attention on their opposing edges. Only task metrics that were 805 

significantly predicted by vabCPMs using VABFC information are shown. The full set of 806 

overlaps for all CPMs can be found in the Extended Data (Figure 8-1, 8-2, 8-3, and 8-4). Note 807 

that the highest overlap value for any pairwise comparison, including each task metric predicted 808 

from VABFC and RSFC, was 26.5%. 809 

 810 

 We also observed significant overlaps between similar network edges from Sustained and 811 

Selective Attention models (Figure 8a and 8b). Similarly, Rosenberg and colleagues observed 812 

substantial overlaps between a high attention (positive) network from the GradCPT task and 813 

networks predicting high accuracy and low RT variability (better performance) in the ANT 814 

(Rosenberg et al., 2018). Taken together, these results suggest that sustained and selective 815 

attention share similar functional networks, at least in part. Such results also justify labels such 816 

as the “successful attention network” (Rosenberg et al., 2018). Importantly, these network 817 

overlaps are consistent with both the CPM predictions and the behavioral relationships (Figure 818 

4). Significant network overlaps involving the VAB network, however, were not accompanied 819 

by significant behavioral relationships. We return to this observation in the Discussion. 820 

Anatomical locations of network edges 821 
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 To better understand the networks that contribute to the successful behavioral predictions 822 

from the vabCPM and the saCPM, we investigated the anatomy of their underlying network 823 

edges. Briefly, for each pair of network groups (e.g. Visual and Salience / Ventral Attention), we 824 

expressed the number of shared connections (network edges) as a percentage of the number of 825 

possible connections between that pair (Figure 9). Edges that positively predicted VAB 826 

performance occurred primarily between the Default network and several other networks, 827 

including the Salience/Ventral attention, Dorsal attention, and Somatomotor networks (Figure 828 

9a). For negative network edges, the most frequent connections occurred between the 829 

Salience/Ventral attention network and several other networks, including the Dorsal attention, 830 

Somatomotor, and Visual networks (Figure 9b). Note that such connections were also enhanced 831 

in VABFC compared to RSFC (Figure 5c), and that the connections across attention networks 832 

are consistent with the neural correlates of the attentional blink (Marois et al., 2000; Marois & 833 

Ivanoff, 2005). Negative network edges were also frequently found in Somatomotor network 834 

connections to the Dorsal attention network and to itself (within-network connections). 835 

 The SA network’s positive edges primarily included connections that involved the Visual 836 

and Subcortical network groups (Figure 9d). This pattern represents the remapping of the 837 

connections between the cerebellum and the occipital lobe of the “high attention” network 838 

(Rosenberg, Finn, et al., 2016) from the Shen-268 parcellation (Shen et al., 2013) to the 839 

Schaefer-419 one (Schaefer et al., 2017). Negative network edges included within-group 840 

connections in the TempPar and Subcortical networks (Figure 9c), which accord well with the 841 

intra-temporal, intra-cerebellar, and temporo-parietal connections in the “low attention” network 842 

(Rosenberg, Finn, et al., 2016). We observed additional negative edges within the Visual 843 

network and from the TempPar network to various other networks.  844 
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Figure 9. Anatomical locations of predictive attentional network edges. Each cell represents the 846 

number of shared connections between a pair of network groups, expressed as a percentage of 847 

the number of possible connections between that pair. For details about network groups, see 848 

Figure 5. (a) Positive and (b) negative VAB network edges. (c) Negative and (d) positive SA 849 

network edges. The panel order has been reversed for easier comparison with the opposing edges 850 

from the VAB network. (e) Positive VAB network edges and negative SA network edges (i.e. 851 

overlaps between (a) and (c)). (f) Negative VAB network edges and positive SA network edges 852 

(i.e. overlaps between (b) and (d)). Overlap percentages were numerically small, but included 853 

key network groups, particularly Default and Salience / Ventral Attention (Sal/VentAttn). 854 

  855 

 Although the VAB and SA networks involved largely dissociable sets of edges, some 856 

critical edges appeared to be shared (Figure 9e and 9f). Note that these overlaps were at opposing 857 

edges (Figure 8). Although overlap percentages were numerically small, they included key 858 

network groups. In particular, multiple identified connections involved the Default, 859 

Salience/Ventral attention, or TempPar networks. 860 

 861 

Discussion 862 

Predictive attentional networks 863 

 We used Connectome-based Predictive Modeling (CPM), a machine learning-based 864 

technique that associates task performance with functional connectivity measures, to construct a 865 

predictive model of Visual Attentional Blink (VAB) performance. Our model (vabCPM) 866 

successfully predicted VAB performance in novel individuals from fMRI data. The model’s 867 

predictions generalized to other task domains, including fluid intelligence (Finn et al., 2015). 868 
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Critically, vabCPM predictions for many sustained and selective attention task scores correlated 869 

negatively with the actual scores. As such, these significant predictions represent both model 870 

generalization and an extension of previous CPM results (Rosenberg, Finn, et al., 2016; 871 

Rosenberg et al., 2018; Yoo et al., 2017), but with new insights into attentional function owing to 872 

the divergent predictions. 873 

 For external validation of these results, we applied the Sustained Attention CPM 874 

(saCPM) (Rosenberg, Finn, et al., 2016), to our data. Previously, the saCPM successfully 875 

predicted task performance for sustained attention (GradCPT) (Rosenberg, Finn, et al., 2016) and 876 

selective attention (Attention Network Task, ANT) (Rosenberg et al., 2018). Here we broadly 877 

replicated these results: The saCPM successfully predicted sustained and selective attention task 878 

performance when applied to our participants’ data. In the sustained attention domain, however, 879 

significant predictions were found only for visual and auditory SART (Sustained Attention to 880 

Response Task) scores, but curiously not for GradCPT scores. In results that mirrored the 881 

vabCPM predictions, the saCPM predictions for VAB scores were negatively correlated with the 882 

observed scores. 883 

 This pattern of divergent predictions was also reflected in network overlaps. For the 884 

networks derived from the vabCPM and the saCPM, opposing network edges (i.e. positive from 885 

one, negative from the other) overlapped significantly, whereas similar network edges did not. 886 

Models constructed from each behavioral task and our fMRI data corroborated these results. As 887 

all behavioral data had been coded such that larger values indicated better performance, these 888 

divergent predictions indicate that “good” or “bad” network function was contingent on the task 889 

and its cognitive underpinnings. Moreover, the tasks were performed over several days, 890 
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suggesting that the individual differences were stable and trait-like, not due to session-specific 891 

state effects. 892 

Implications for Cognitive Mechanisms 893 

 Although the observed pattern of CPM predictions may seem counterintuitive, it is 894 

consistent with both empirical evidence and theoretical positions. Foremost, our study’s attention 895 

tasks represent different ways of deploying voluntary attention. The VAB task requires rapid 896 

attentional engagement, disengagement, and re-engagement; sustained attention tasks require 897 

engagement over a prolonged period of time; the attention network task (ANT) requires the 898 

direction of attention to relevant spatial information. Skogsberg et al. (2015) proposed that the 899 

VAB and sustained attention tasks lie at opposite ends of a transient-sustained attention 900 

continuum. Rensink suggested that the VAB and ANT involve different core attentional 901 

functions: In the VAB, ‘attentional holding’ of one visual object leads to the failure to create a 902 

second visual object, whereas in the ANT, ‘attentional filtering’ selects spatial information 903 

(Rensink, 2013, 2015). 904 

 Empirical findings support the relative uniqueness of the VAB, while also suggesting that 905 

the ANT and sustained attention are more closely related. In our data, we found a general lack of 906 

behavioral correlations between the VAB and other attention task measures, consistent with 907 

previous studies of individual differences (Dale et al., 2013; Skogsberg et al., 2015). Conversely, 908 

we found moderately strong correlations between sustained attention tasks and the ANT. These 909 

tasks have been found to share similar functional networks (Rosenberg et al., 2018), a result we 910 

also replicated. 911 

 Nevertheless, the conceptual separation of the VAB from other attention tasks does not 912 

explain the opposing pattern of predictions from the same networks (saCPM and vabCPM), and 913 
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the significant overlaps between their opposing network edges. Two observations provide 914 

important context for this finding. First, the VAB has spawned a variety of theoretical accounts 915 

(Dux & Marois, 2009), and its magnitude is sensitive to numerous disparate manipulations, 916 

ranging from requiring online responses (Jolicoeur, 1998) to concurrently listening to music 917 

(Olivers & Nieuwenhuis, 2005). As such, the VAB may have multiple causes. Second, our VAB 918 

predictions were generally moderate (r = .31 for vabCPM and r = .24 for saCPM; 5-10% of the 919 

variance), far smaller than the observed degree of stable individual differences (test-retest: r = 920 

.71; 50% of the variance). It is possible that the CPMs capture the variance associated with few, 921 

or even one, of the factors that affect VAB magnitude. If so, what could that factor be? 922 

 One plausible explanation is that our predictions reflect an individual’s propensity to 923 

maintain a more diffuse state of attention. This idea is consistent with the overinvestment 924 

hypothesis, in which the VAB results from too much attention being allocated to the first target; 925 

consequently, reducing attention on the RSVP stream improves performance (Dale & Arnell, 926 

2010, 2015; Olivers & Nieuwenhuis, 2006). Similarly, task-concurrent mind-wandering, such as 927 

listening to music or thinking about a vacation, reduces the VAB deficit (Olivers & 928 

Nieuwenhuis, 2005, 2006). Similar effects are found in studies of disposition: Individuals with a 929 

greater propensity for mind-wandering tend to perform better in the VAB task (Thomson et al., 930 

2015). Furthermore, mind-wandering has been linked to higher fluid intelligence and better 931 

problem-solving abilities (Baird, Smallwood, & Schooler, 2011; Godwin et al., 2017; Unsworth 932 

& McMillan, 2014), consistent with our CPM findings. 933 

 Diffuse attentional states, however, are associated with lower performance on tasks 934 

requiring more focused cognition. For example, in sustained attention tasks, individuals more 935 

prone to lapses in attention perform more poorly on the SART (Manly, 1999; Robertson et al., 936 
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1997; Smilek et al., 2010). Within individuals, distractive thoughts are associated with lower 937 

SART accuracy, prolonged and more variable RTs, and poorer response inhibition (Kam & 938 

Handy, 2014; Leszczynski et al., 2017; Stawarczyk, Majerus, Maj, Van der Linden, & 939 

D’Argembeau, 2011). In selective attention tasks, individuals more prone to mind-wandering 940 

performed worse on the ANT task (Gonçalves et al., 2017), and showed impaired exogeneous 941 

orienting of attention (Hu et al., 2012).  942 

 Both mind-wandering states and traits are also reflected in patterns of brain activity. 943 

Activity in the Default network and frontoparietal control regions increases during mind-944 

wandering (Fox, Spreng, Ellamil, Andrews-Hanna, & Christoff, 2015). Similarly, individuals 945 

more prone to mind-wander had increased connectivity both within the Default network and 946 

between the Default network and frontoparietal control regions (Godwin et al., 2017). Such 947 

results are partially consistent with our findings. Edges between the Default and attentional 948 

networks (not the Control network) were related to positive VAB network edges and negative 949 

SA network edges. 950 

 On the weight of the available evidence, we propose that our vabCPM reflects 951 

individuals’ propensity towards diffuse attentional deployment. That propensity could indicate 952 

an individual’s ability to diffusely attend, their tendency to be in that state or mode, or both. We 953 

also suggest that other CPMs, including the saCPM, could reflect the complementary propensity 954 

towards more focused attentional deployment. 955 

Predictions from “Resting State” 956 

 Neuroimaging studies using ‘resting state’ data, in which subjects are scanned while not 957 

engaged in any particular task, have become increasingly popular. Initially used to identify 958 

functional architecture (Biswal, Yetkin, Haughton, & Hyde, 1995; Schaefer et al., 2017; Yeo et 959 
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al., 2011), resting state data have recently been used to test whether functional architecture 960 

persists even when an individual is not engaged in a task that requires a given neurocognitive 961 

network (Finn et al., 2015; Jangraw et al., 2018; Lin et al., 2018; Rosenberg, Finn, et al., 2016; 962 

Yoo et al., 2017). Resting state studies also have many logistical advantages, including relatively 963 

easy standardization across multiple test sites and the potential for numerous applications from a 964 

single data set. In the current study, resting state CPMs (Model type D) replicated previous 965 

studies by successfully predicting sustained attention (Yoo et al., 2017), selective attention (Yoo 966 

et al., 2017) and fluid intelligence (Finn et al., 2015) task performance. We also replicated the 967 

result that models trained with task-concurrent FC data generally predict task performance better 968 

than models trained from resting state data (Yoo et al., 2017). Finally, when applying our trained 969 

vabCPM model to novel participants, predictions from task FC data were superior to predictions 970 

from resting-state FC data (Finn et al., 2017; Greene, Gao, Scheinost, & Constable, 2018; 971 

Rosenberg, Finn, et al., 2016; Rosenberg et al., 2018). This result might be due to amplification 972 

of behaviorally relevant individual differences in network patterns while performing a task 973 

(Greene et al., 2018). 974 

Methodological Considerations 975 

 Although we followed the guidelines in Shen et al. (2017) when developing our CPMs, 976 

there are two notable methodological differences. First, previous studies used the volumetric 977 

Shen-268 parcellation (Shen et al., 2013), but we used the surface-based Schaefer-419 978 

parcellation (Schaefer et al., 2017). Second, previous studies have constructed linear models for 979 

associating network strength and behavioral scores, with predictions assessed using Spearman 980 

correlations (Fountain-Zaragoza et al., 2019; Lin et al., 2018; Rosenberg, Finn, et al., 2016; 981 

Rosenberg et al., 2018). We instead formed linear models from the ranks directly. Despite these 982 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/713339doi: bioRxiv preprint 

https://doi.org/10.1101/713339
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 

differences, we still observed prediction patterns that were largely consistent and comparable to 983 

previous studies, providing evidence that CPMs are reasonably robust across such variations. 984 

  985 
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Legends 1231 

Table 1. Schedule of tasks and data used in analysis. Participants were encouraged to take breaks 1232 

between the tasks to prevent fatigue. With the exception of the Raven’s Progressive Matrices 1233 

test, each task was performed twice on non-successive days. Task domains and tasks were as 1234 

follows. Attentional Blink: Visual Attentional Blink (VAB) and Auditory Attentional Blink 1235 

(AAB). Sustained Attention: Visual Sustained Attention to Response Task (VSART), Auditory 1236 

Sustained Attention to Response Task (ASART), and Gradual-onset Continuous Performance 1237 

Task (GradCPT). Selective Attention: Attentional Network Task (ANT). Fluid Intelligence: 1238 

Raven’s Progressive Matrices test (Raven’s).  1239 

 1240 

Figure 1. Experimental paradigm for the visual attentional blink (VAB) task. Participants 1241 

identified a target and then detected a probe within a stream of distractors, responding when 1242 

prompted at the conclusion of the stream. The target was a red letter, the probe was a white letter 1243 

X, and distractors were other white letters. The auditory attentional blink (AAB) task was 1244 

similar, save targets were complex tones, the probe was a high-pitched pure tone, and distractors 1245 

were other pure tones. SOA = stimulus onset asynchrony. 1246 

 1247 

Table 2. Summary of behavioral metrics, including their task domain and a description of their 1248 

calculation. Raw values for ANTerr, ANTrtvar and ANTcert were re-coded such that larger 1249 

values indicated better task performance. 1250 

 1251 

Figure 2. Procedure for Connectome-based Predictive Model (CPM) construction in the current 1252 

study (adapted from Shen et al., 2017). CPMs predict individual differences in behavior from 1253 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/713339doi: bioRxiv preprint 

https://doi.org/10.1101/713339
http://creativecommons.org/licenses/by-nc-nd/4.0/


65 

functional connectivity information. (a) Functional connectivity matrices and a behavioral score 1254 

of interest for each participant were calculated. One pair was held out of model construction for 1255 

each round of leave-one-out cross-validation (LOOCV) (Webb et al., 2011). (b) Functional 1256 

connectivity edges were correlated with behavior across participants. (c) Edges that correlated 1257 

most strongly, either positively or negatively, were selected. (d) Values from selected edges were 1258 

summed separately for positive and negative network edges, yielding two network strengths for 1259 

each participant. (e) A linear regression model relating (rank) network strengths to (rank) 1260 

behavioral scores was computed. (f) The model was tested on a novel, out-of-sample participant 1261 

(the individual left out in step (a)). After repeating steps a-f for each participant, the model was 1262 

evaluated by correlating the predicted behavioral scores with the actual scores. 1263 

 1264 

Figure 3. Accuracy scores (probe hit rates) for the VAB and AAB. Note the substantial 1265 

impairment for the short target-probe lags (1, 2, and 3) in each session, especially for the VAB. 1266 

Error bars represent standard error of the mean (SEM). 1267 

 1268 

Table 3. Summary of behavioral data. Test-retest reliability (Spearman correlations across 1269 

sessions) was high for most metrics and significant for all (ps < .002). Jarque-Bera tests indicated 1270 

some significant departures from normality. Metrics are presented before re-coding. Metrics that 1271 

were subsequently reversed so that larger values would indicate better task performance are 1272 

marked with an asterisk (*). N = 73 for all metrics except AABresid (N = 71). 1273 

 1274 

Figure 4. Behavioral score distributions and correlations. (Above diagonal) Spearman correlation 1275 

coefficients for pairs of behavioral metrics. Most significant correlations were found within task 1276 
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domains, but some metrics correlated across the Sustained and Selective Attention domains. In 1277 

contrast, Attentional Blink and Fluid Intelligence metrics largely did not correlate with other 1278 

metrics. Since the purpose of this analysis was to identify any behavioral relationships that might 1279 

explain subsequent CPM results, no correction for multiple comparisons was applied. *p < .05, 1280 

**p < .01. Red and blue shading indicates positive and negative relationships, respectively. 1281 

(Diagonal) Histograms of behavioral data. The behavioral data had been re-coded so that larger 1282 

values indicate better task performance for each measure. (Below diagonal) Scatterplots for each 1283 

pair of behavioral metrics.  1284 

 1285 

Figure 5. Functional connectivity (FC) matrices. Each edge was Fisher-transformed, and the 1286 

resulting z-scores were averaged across participants. Edges found to correlate with motion were 1287 

set to zero. (a) VAB task FC matrix (VABFC). (b) Resting-state FC matrix (RSFC). VABFC and 1288 

RSFC patterns were similar to one another and to other data sets (Yeo et al., 2011; Yeo, Tandi, et 1289 

al., 2015). (c) Difference FC matrix (VABFC - RSFC), showing edges that were significant at p 1290 

= .05, corrected for multiple comparisons using network-based statistics. Differences between 1291 

FC matrices were small, though they notably included connections linking the Salience/Ventral 1292 

attention and the Dorsal attention networks. The 419 parcellations from the FC matrices were 1293 

matched to 17 network labels (Yeo et al., 2011) (green labels), from which they were aggregated 1294 

into eight cortical groups (Yeo, Tandi, et al., 2015) and a subcortical group (blue labels, spelled 1295 

out in full in (a)). Subcortical regions include the brain stem, accumbens area, amygdala, 1296 

caudate, cerebellum, ventral diencephalon, hippocampus, pallidum, putamen, and thalamus. For 1297 

the green labels, letters represent the networks within the corresponding group, e.g., a(Default 1298 
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A), b(Default B), c(Default C), tp(TempPar), t(temporal pole in limbic region), o(orbital frontal 1299 

cortex in limbic region), p(peripheral visual area), c(central visual area), and sc(subcortical). 1300 

 1301 

Figure 6. Behavioral predictions from CPMs. Each point represents a pair of Spearman’s rank 1302 

correlation coefficients (rs) computed between observed and predicted behavioral scores for a 1303 

given model type. (a) Predictions from vabCPMs, which were trained with VABFC and 1304 

VABresid. Note the successful positive predictions for the VAB and Fluid Intelligence, but 1305 

successful negative predictions for some Selective and Sustained Attention metrics. (b) 1306 

Predictions from task-specific models. Many models could successfully predict behavioral 1307 

performance, though results often varied greatly across the FC source. For both panels, the dark 1308 

gray region indicates where rs values are significant at the p = .01 level, and the lighter gray 1309 

region indicates where rs values are significant at the p = .05 level (uncorrected, with d.f. = 71). 1310 

The rs values and corresponding p-values are tabulated in Figure 6-1 in Extended Data. A 1311 

standard edge selection threshold (rthreshold = .232, p = .05) was used for all models, though 1312 

results were similar across a wide range of threshold values (Figure 6-2 and Figure 6-3 in 1313 

Extended Data). Finally, as p-values from LOOCV procedures can be biased, we verified our 1314 

results for the VAB using permutation testing; significance from this method and parametric 1315 

approaches was consistent across edge selection thresholds (Figure 6-4 in in Extended Data). 1316 

 1317 

Figure 7. Comparison of predictions from the vabCPM and saCPM. Each point represents a pair 1318 

of Spearman’s rank correlation coefficients (rs) computed between observed and predicted 1319 

behavioral scores for a given model type. (a) Predictions from VABFC data. Note the saCPM’s 1320 

successful positive predictions for some Selective and Sustained Attention metrics, with a 1321 
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successful negative prediction for the VAB. As noted above, the prediction directions were 1322 

reversed for the vabCPM; indeed, the prediction points fall close to the diagonal. (b) Predictions 1323 

from RSFC data. The vabCPM and saCPM predictions went in opposite directions, and were 1324 

generally similar to the predictions from the VABFC. For both panels, the dark gray region 1325 

indicates where rs values are significant at the p = .01 level, and the lighter gray region indicates 1326 

where rs values are significant at the p = .05 level (uncorrected, with d.f. = 71). The edge 1327 

selection threshold (rthreshold) corresponded to p = .05 for all models. The rs values and 1328 

corresponding p-values for the saCPM are tabulated in Figure 7-1 in the Extended Data. (See 1329 

Figure 6 for additional vabCPM details.) 1330 

 1331 

Figure 8. Percentage of edge overlap between networks from selected pairs of CPMs. Each task-1332 

specific model was based on VABFC data (Model type C). Model pairs with statistically 1333 

significant overlap (p < .05, FDR corrected) are indicated in bold. Positive network edges 1334 

predicted better behavioral performance for their associated metric, whereas negative network 1335 

edges predicted worse behavioral performance. Overlap between similar network edges, (a) 1336 

positive-positive and (b) negative-negative. Sustained Attention (including the saCPM) and 1337 

Selective Attention models overlap primarily on similar edges, as do Fluid Intelligence and the 1338 

vabCPM. Overlap between opposing network edges, (c) negative-positive and (d) positive-1339 

negative. The vabCPM network primarily overlaps with Sustained Attention (including the 1340 

saCPM) and Selective Attention on their opposing edges. Only task metrics that were 1341 

significantly predicted by vabCPMs using VABFC information are shown. The full set of 1342 

overlaps for all CPMs can be found in the Extended Data (Figure 8-1, 8-2, 8-3, and 8-4). Note 1343 
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that the highest overlap value for any pairwise comparison, including each task metric predicted 1344 

from VABFC and RSFC, was 26.5%. 1345 

 1346 

Figure 9. Anatomical locations of predictive attentional network edges. Each cell represents the 1347 

number of shared connections between a pair of network groups, expressed as a percentage of 1348 

the number of possible connections between that pair. For details about network groups, see 1349 

Figure 5. (a) Positive and (b) negative VAB network edges. (c) Negative and (d) positive SA 1350 

network edges. The panel order has been reversed for easier comparison with the opposing edges 1351 

from the VAB network. (e) Positive VAB network edges and negative SA network edges (i.e. 1352 

overlaps between (a) and (c)). (f) Negative VAB network edges and positive SA network edges 1353 

(i.e. overlaps between (b) and (d)). Overlap percentages were numerically small, but included 1354 

key network groups, particularly Default and Salience / Ventral Attention (Sal/VentAttn). 1355 

 1356 

Table 1-1. Detailed protocol from the full study from which the present data derives.  1357 

 1358 

Figure 6-1. Behavioral predictions from CPMs. Values indicate rs and uncorrected, two-tailed p-1359 

values from Spearman’s partial rank correlation, computed between predicted and observed 1360 

behavioral scores, controlled for motion. The p-value corresponding to each rs was found by 1361 

transforming the correlation coefficients to Student’s t values by the partialcorr.m function in 1362 

(MATLAB, 2014). Degrees of freedom for these tests were 66 for Models A and C, and 61 for 1363 

Models B and D. (For AABresid, these d.f. values were 2 lower.) Note that all task scores had 1364 

been re-oriented so that larger values indicate better task performance. 1365 

 1366 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/713339doi: bioRxiv preprint 

https://doi.org/10.1101/713339
http://creativecommons.org/licenses/by-nc-nd/4.0/


70 

Figure 6-2. CPM predictions for models trained with VAB functional connectivity and 1367 

behavioral data (Model types A and B) across edge selection thresholds. Within each subplot, the 1368 

y-axis represents Spearman’s rank correlation values, rs, computed between predicted and 1369 

observed task performance, controlled for motion. Horizontal gray lines indicate the 1370 

corresponding p = .01, .05, .10, .10, .05, .01 (top to bottom) uncorrected levels of significance 1371 

from standard r-to-p conversions, d.f. = 71 (69 for AAB). The x-axis represents edge selection 1372 

thresholds, rthreshold. The vertical gray line indicates the rthreshold at the p = .05 level of 1373 

significance, d.f. = 70 (68 for AAB) due to one left-out participant during training. X-axis labels 1374 

at the top of each plot indicate the average number of edges selected across all leave-one-out 1375 

iterations at the corresponding rthreshold on the bottom x-axis. 1376 

 1377 

Figure 6-3. CPM predictions for models trained from task-specific behavioral data (Model types 1378 

C and D) across edge selection thresholds. Within each subplot, the y-axis represents Spearman’s 1379 

rank correlation values, rs, computed between predicted and observed task performance, 1380 

controlled for motion. Horizontal gray lines indicate the corresponding p = .01, .05, .10, .10, .05, 1381 

.01 (top to bottom) uncorrected levels of significance from standard r-to-p conversions, d.f. = 71 1382 

(69 for AAB). The x-axis represents edge selection thresholds, rthreshold. The vertical gray line 1383 

indicates the rthreshold at the p = .05 level of significance, d.f. = 70 (68 for AAB) due to one left-1384 

out participant during training. X-axis labels at the top of each plot indicate the average number 1385 

of edges selected across all leave-one-out iterations at the corresponding rthreshold on the bottom x-1386 

axis. 1387 

 1388 
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Figure 6-4. Permutation results of predicting VABresid data from VAB FC information, using 1389 

the vabCPM (Model type A). The black line indicates Spearman’s rank correlation values (rs) 1390 

computed between predicted and observed task performance, controlled for motion. Horizontal 1391 

gray lines indicate the corresponding p = .01, .05, .10, .10, .05, .01 (top to bottom) uncorrected 1392 

levels of significance from standard r-to-p conversions, based on N = 73. Green sections indicate 1393 

p < .05 level of significance from permutation testing. Magenta sections indicate p ≥	.05 level 1394 

of significance from permutation testing. Our analysis demonstrates a high level of consistency 1395 

in the significance of rs values between using standard r-to-p conversions (black line) and using 1396 

permutation testing (green/magenta line) for the majority of edge selection thresholds. 1397 

 1398 

Figure 7-1. Results of applying the saCPM model to data in the present study. Values indicate rs 1399 

and uncorrected, two-tailed p-values from Spearman’s rank correlation, computed between 1400 

predicted and observed behavioral scores. The p-value corresponding to each rs was found using 1401 

standard r-to-p conversions, with d.f. = 71 (69 for AABresid). All task scores had been re-coded 1402 

so that larger values indicate better task performance.  1403 

 1404 

Figure 8-1. Percentage of edge overlap for positive network edges between each pair of models. 1405 

The value within each cell indicates the percentage of overlap between the pair of models on the 1406 

corresponding x and y axes. Overlaps between the vabCPM (saCPM) with the other models are 1407 

illustrated in the column (row) bounded in the red (black) of each plot. Axes labels also reflect 1408 

the FC-Task pair used for training the task-specific model.  1409 

 1410 
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Figure 8-2. Percentage of edge overlap for negative network edges between each pair of models. 1411 

The value within each cell indicates the percentage of overlap between the pair of models on the 1412 

corresponding x and y axes. Overlaps between the vabCPM (saCPM) with the other models are 1413 

illustrated in the column (row) bounded in the red (black) of each plot. Axes labels also reflect 1414 

the FC-Task pair used for training the task-specific model. 1415 

 1416 

Figure 8-3. Percentage of edge overlap between negative network (y-axis) and positive network 1417 

(x-axis) edges. The value within each cell indicates the percentage of overlap between the pair of 1418 

models on the corresponding x and y axes. Overlaps between the vabCPM (saCPM) with the 1419 

other models are illustrated in the column (row) bounded in the red (black) of each plot. Axes 1420 

labels also reflect the FC-Task pair used for training the task-specific model.  1421 

 1422 

Figure 8-4. Percentage of edge overlap between positive network (y-axis) and negative network 1423 

(x-axis) edges. The value within each cell indicates the percentage of overlap between the pair of 1424 

models on the corresponding x and y axes. Overlaps between the vabCPM (saCPM) with the 1425 

other models are illustrated in the column (row) bounded in the red (black) of each plot. Axes 1426 

labels also reflect the FC-Task pair used for training the task-specific model. 1427 

  1428 
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Extended Data 1429 

Table 1-1. Detailed protocol from the full study from which the present data derives.  1430 

Session Tasks/ Questionnaires Session Description Session 

Dur (hr) 

1 Visual Attentional Blink (VAB) 

task 

Participants were briefed on the study protocol in 

the first session and completed a target-probe 

Attentional Blink (AB) task to obtain a measure of 

baseline performance. Participants were only 

eligible to continue with the subsequent sessions if 

they obtained an average of 75% and above for 

target discrimination accuracy in the first session. 

Participants were not informed about their 

performance until the end of all experimental 

sessions. 

1 

2 Visual AB and surprise-induced 

blindness (SiB) task (in-scanner) 

Participants had to return to the laboratory for the 

second session 3 to 14 days after the first session. 

The second session consisted of a 1.5 hr long fMRI 

scan. Task order was fixed across participants. 

No time limit was imposed on any of the 

questionnaires so participants could complete them 

at their own pace. All questionnaires were 

administered online using Qualtrics (Qualtrics, 

2005). 

2.5 

Short-Sleep Questionnaire 

Visual Sustained Attention to 

Response task  

(12 mins) 

Attentional Network Task  

(30 mins) 

Theories of Intelligence 

Questionnaire 

3 Gradual-onset continuous 

Performance Task  

(15 mins) 

The third session took place the day after the 

second session.  

Task order for the first 3 tasks was counterbalanced 

2 
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Auditory Sustained Attention to 

Response task  

(12 mins) 

across participants. 

Auditory AB and Surprise-

induced deafness (SiD) task 

Visual AB task  

Visual AB task with colour-

salient training 

4 Visual AB and SiB task The fourth session took place the day after the third 

session.  

The Raven’s Progressive Matrices task was an 

adapted version of the actual task that only 

consisted of 9 questions with no time limit given. 

Task order was fixed across participants. 

2 

Visual Sustained Attention to 

Response task  

(12 mins) 

Attentional Network Task  

(30 mins) 

Adult ADHD Self-Report Scale 

Questionnaire 

Online Dimensional Change Card 

Sorting (DCCS) task 

Raven’s Progressive Matrices  

Loss Aversion task 

5 Gradual-onset continuous 

Performance Task  

(15 mins) 

The fifth session took place the day after the fourth 

session.  

Decision-making tasks included a cups task and an 

explore-exploit task. 

Task order for the first three computerized tasks 

and questionnaires were counterbalanced and 

randomized across participants.  

2 

Auditory Sustained Attention to 

Response task  

(12 mins) 

Auditory AB and Surprise-
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induced deafness (SiD) task  

Media-Multitasking Video Game 

Questionnaire 

Personality Inventory for DSM-5 

for adults  

Wender Utah Rating Scale 

Musical background and 

experience questionnaire 

Decision-making tasks 

Demographic Questionnaire 

6 Visual AB and surprise-induced 

blindness (SiB) task (in-scanner) 

Session 6 was held between 5 to 14 days from the 

second session and consisted of a 1.5 hr long fMRI 

scan that used a protocol identical to that of the first 

in-scanner session so as to investigate test-retest 

reliability. Participants were encouraged to take 

breaks between experimental blocks and between 

tasks to alleviate fatigue. 

1.5 

1431 
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Figure 6-1. Behavioral predictions from CPMs. Values indicate rs and uncorrected, two-tailed p-1432 

values from Spearman’s partial rank correlation, computed between predicted and observed 1433 

behavioral scores, controlled for motion. The p-value corresponding to each rs was found by 1434 

transforming the correlation coefficients to Student’s t values by the partialcorr.m function in 1435 

(MATLAB, 2014). Degrees of freedom for these tests were 66 for Models A and C, and 61 for 1436 

Models B and D. (For AABresid, these d.f. values were 2 lower.) Note that all task scores had 1437 

been re-oriented so that larger values indicate better task performance. 1438 

Task 

domain 

  Model A Model B Model C Model D 

Train 
VABFC-

VABresid 

VABFC-

VABresid 
VABFC-Task RSFC-Task 

Test VABFC-Task RSFC-Task VABFC-Task RSFC-Task 

Task rs p rs p rs p rs p 

Attentional 

Blink 

VABresid 0.308 0.011* 0.123 0.338 0.308 0.011* 0.148 0.228 

AABresid 0.04 0.748 -0.107 0.411 0.135 0.279 -0.053 0.672 

Sustained 

Attention 

VSARTdprime -0.268 0.027* -0.19 0.135 0.245 0.044* 0.062 0.617 

ASARTdprime -0.062 0.617 -0.212 0.096 -0.021 0.866 0.201 0.1 

GradCPTdprime 0.058 0.637 -0.097 0.451 -0.265 0.029* 0.226 0.063 

Selective 

Attention 

ANTerr -0.33 0.006* -0.308 0.014* 0.346 0.004* 0.14 0.256 

ANTrtvar -0.36 0.003* -0.414 0.001* 0.24 0.049* 0.232 0.057 

ANTaert 0.051 0.682 0.141 0.269 0.033 0.787 -0.061 0.619 

ANToert 0.063 0.609 0.128 0.318 0.124 0.313 0.032 0.793 

ANTcert -0.252 0.038* -0.333 0.008* 0.032 0.798 0.262 0.031* 

Fluid 

Intelligence 
RavensAcc 0.245 0.044* 0.224 0.077 -0.125 0.31 0.374 0.002* 

 1439 
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 1440 

Figure 6-2. CPM predictions for models trained with VAB functional connectivity and 1441 

behavioral data (Model types A and B) across edge selection thresholds. Within each subplot, the 1442 
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y-axis represents Spearman’s rank correlation values, rs, computed between predicted and 1443 

observed task performance, controlled for motion. Horizontal gray lines indicate the 1444 

corresponding p = .01, .05, .10, .10, .05, .01 (top to bottom) uncorrected levels of significance 1445 

from standard r-to-p conversions, d.f. = 71 (69 for AAB). The x-axis represents edge selection 1446 

thresholds, rthreshold. The vertical gray line indicates the rthreshold at the p = .05 level of 1447 

significance, d.f. = 70 (68 for AAB) due to one left-out participant during training. X-axis labels 1448 

at the top of each plot indicate the average number of edges selected across all leave-one-out 1449 

iterations at the corresponding rthreshold on the bottom x-axis. 1450 
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 1451 

Figure 6-3. CPM predictions for models trained from task-specific behavioral data (Model types 1452 

C and D) across edge selection thresholds. Within each subplot, the y-axis represents Spearman’s 1453 
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rank correlation values, rs, computed between predicted and observed task performance, 1454 

controlled for motion. Horizontal gray lines indicate the corresponding p = .01, .05, .10, .10, .05, 1455 

.01 (top to bottom) uncorrected levels of significance from standard r-to-p conversions, d.f. = 71 1456 

(69 for AAB). The x-axis represents edge selection thresholds, rthreshold. The vertical gray line 1457 

indicates the rthreshold at the p = .05 level of significance, d.f. = 70 (68 for AAB) due to one left-1458 

out participant during training. X-axis labels at the top of each plot indicate the average number 1459 

of edges selected across all leave-one-out iterations at the corresponding rthreshold on the bottom x-1460 

axis. 1461 

 1462 

 1463 

Figure 6-4. Permutation results of predicting VABresid data from VAB FC information, using 1464 

the vabCPM (Model type A). The black line indicates Spearman’s rank correlation values (rs) 1465 

computed between predicted and observed task performance, controlled for motion. Horizontal 1466 

gray lines indicate the corresponding p = .01, .05, .10, .10, .05, .01 (top to bottom) uncorrected 1467 

levels of significance from standard r-to-p conversions, based on N = 73. Green sections indicate 1468 

p < .05 level of significance from permutation testing. Magenta sections indicate p ≥	.05 level 1469 

of significance from permutation testing. Our analysis demonstrates a high level of consistency 1470 
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in the significance of rs values between using standard r-to-p conversions (black line) and using 1471 

permutation testing (green/magenta line) for the majority of edge selection thresholds. 1472 

 1473 

Figure 7-1. Results of applying the saCPM model to data in the present study. Values indicate rs 1474 

and uncorrected, two-tailed p-values from Spearman’s rank correlation, computed between 1475 

predicted and observed behavioral scores. The p-value corresponding to each rs was found using 1476 

standard r-to-p conversions, with d.f. = 71 (69 for AABresid). All task scores had been re-coded 1477 

so that larger values indicate better task performance.  1478 

Task domain Task 
saCPM (VABFC) saCPM (RSFC) 

rs p rs p 

Attention Blink 
VABresid -0.235 0.045* -0.155 0.191 

AABresid 0.049 0.684 -0.132 0.271 

Sustained Attention 

VSARTdprime 0.278 0.018* 0.271 0.021* 

ASARTdprime 0.117 0.323 0.290 0.013* 

GradCPTdprime 0.027 0.822 0.086 0.469 

Selective Attention 

ANTerr 0.322 0.005* 0.156 0.189 

ANTrtvar 0.329 0.005* 0.270 0.021* 

ANTaert -0.057 0.629 -0.099 0.405 

ANToert -0.101 0.397 -0.155 0.190 

ANTcert 0.224 0.057 0.384 0.001* 

Fluid Intelligence RavensAcc -0.059 0.620 -0.229 0.052 
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 1480 

Figure 8-1. Percentage of edge overlap for positive network edges between each pair of models. 1481 

The value within each cell indicates the percentage of overlap between the pair of models on the 1482 

corresponding x and y axes. Overlaps between the vabCPM (saCPM) with the other models are 1483 

illustrated in the column (row) bounded in the red (black) of each plot. Axes labels also reflect 1484 

the FC-Task pair used for training the task-specific model.  1485 

 1486 
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 1487 

Figure 8-2. Percentage of edge overlap for negative network edges between each pair of models. 1488 

The value within each cell indicates the percentage of overlap between the pair of models on the 1489 

corresponding x and y axes. Overlaps between the vabCPM (saCPM) with the other models are 1490 

illustrated in the column (row) bounded in the red (black) of each plot. Axes labels also reflect 1491 

the FC-Task pair used for training the task-specific model. 1492 
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 1494 

Figure 8-3. Percentage of edge overlap between negative network (y-axis) and positive network 1495 

(x-axis) edges. The value within each cell indicates the percentage of overlap between the pair of 1496 

models on the corresponding x and y axes. Overlaps between the vabCPM (saCPM) with the 1497 

other models are illustrated in the column (row) bounded in the red (black) of each plot. Axes 1498 

labels also reflect the FC-Task pair used for training the task-specific model.  1499 
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 1501 

Figure 8-4. Percentage of edge overlap between positive network (y-axis) and negative network 1502 

(x-axis) edges. The value within each cell indicates the percentage of overlap between the pair of 1503 

models on the corresponding x and y axes. Overlaps between the vabCPM (saCPM) with the 1504 

other models are illustrated in the column (row) bounded in the red (black) of each plot. Axes 1505 

labels also reflect the FC-Task pair used for training the task-specific model.  1506 
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