
A polygenic and phenotypic risk prediction for Polycystic Ovary Syndrome 

evaluated by Phenome-wide association studies  

Short title:  PRS & PheWAS of PCOS in 124,852 adults from electronic health records 

Yoonjung Yoonie Joo1, Ky’Era Actkins2, Jennifer A. Pacheco3, Anna O. Basile4, Robert 

Carroll5, David R. Crosslin6, Felix Day7, Joshua C. Denny5, Digna R. Velez Edwards5,8, 

Hakon Hakonarson9,10, John B. Harley11,12, Scott J Hebbring13, Kevin Ho14, Gail P. 

Jarvik15, Michelle Jones16, Tugce Karderi17, Frank D. Mentch9, Cindy Meun18, Bahram 

Namjou11, Sarah Pendergrass14, Marylyn D. Ritchie19, Ian B. Stanaway6, Margrit 

Urbanek1, Theresa L. Walunas20, Maureen Smith3, Rex L. Chisholm3, International 

PCOS Consortium, Abel N. Kho20, Lea Davis5, M. Geoffrey Hayes1,3,21 

1. Division of Endocrinology, Metabolism, and Molecular Medicine, Department of

Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL,

60611, USA

2. Department of Microbiology, Immunology, and Physiology, Meharry Medical

College, Nashville, TN, 37203, USA

3. Center for Genetic Medicine, Northwestern University Feinberg School of Medicine,

Chicago, IL, 60611, USA

4. Department of Biomedical Informatics, Columbia University New York, NY, 10032,

USA

5. Departments of Biomedical Informatics and Medicine, Vanderbilt University Medical

Center, Nashville, TN, 37203, USA

6. Department of Biomedical Informatics and Medical Education, University of

Washington School of Medicine, Seattle, WA, 98195, USA

7. MRC Epidemiology Unit, Cambridge Biomedical Campus, University of Cambridge

School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom

8. Division of Quantitative Sciences, Department of Obstetrics and Gynecology,

Vanderbilt University Medical Center, Nashville, TN, 37203, USA

9. Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA,

19104, USA

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/714113doi: bioRxiv preprint 

https://doi.org/10.1101/714113
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Department of Pediatrics, The Perelman School of Medicine, University of

Pennsylvania, Philadelphia, PA, 19104, USA

11. Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s

Hospital Medical Center, Cincinnati, OH 45229, USA

12. Department of Pediatrics, University of Cincinnati College of Medicine; US

Department of Veterans Affairs, Cincinnati, OH 45229, USA

13. Center for Precision Medicine Research, Marshfield Clinic Research Institute,

Marshfield, WI, 54449, USA

14. Biomedical and Translational Informatics, Geisinger, Danville, PA, 17822, USA

15. Division of Medical Genetics, Department of Medicine (Medical Genetics) and

Genome Sciences, University of Washington Medical School, Seattle, WA, 98195,

USA

16. Center for Bioinformatics & Functional Genomics, Department of Biomedical

Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA

17. The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3

7BN, United Kingdom

18. Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center

Rotterdam, Rotterdam, The Netherland

19. Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA

20. Division of General Internal Medicine and Geriatrics, Department of Medicine,

Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA

21. Department of Anthropology, Northwestern University, Evanston, IL 60208, USA

Keywords 

Phenome-wide association study, Genomic prediction, Polygenic risk score, Polycystic 

Ovary Syndrome 

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/714113doi: bioRxiv preprint 

https://doi.org/10.1101/714113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Abstract (~300 words)  

Purpose 

As many as 75% of patients with Polycystic ovary syndrome (PCOS) are estimated 

to be unidentified in clinical practice. Utilizing polygenic risk prediction, we aim to 

identify the phenome-wide comorbidity patterns characteristic of PCOS to improve 

accurate diagnosis and preventive treatment. 

Methods and Findings  

Leveraging the electronic health records (EHRs) of 124,852 individuals, we 

developed a PCOS risk prediction algorithm by combining polygenic risk scores (PRS) 

with PCOS component phenotypes into a polygenic and phenotypic risk score (PPRS). 

We evaluated its predictive capability across different ancestries and perform a PRS-

based phenome-wide association study (PheWAS) to assess the phenomic expression 

of the heightened risk of PCOS. The integrated polygenic prediction improved the 

average performance (pseudo-R2) for PCOS detection by 0.228 (61.5-fold), 0.224 (58.8-

fold), 0.211 (57.0-fold) over the null model across European, African, and multi-ancestry 

participants respectively. The subsequent PRS-powered PheWAS identified a high level 

of shared biology between PCOS and a range of metabolic and endocrine outcomes, 

especially with obesity and diabetes: ‘morbid obesity’, ‘type 2 diabetes’, 

‘hypercholesterolemia’, ‘disorders of lipid metabolism’, ‘hypertension’ and ‘sleep apnea’ 

reaching phenome-wide significance. 

Conclusions  

Our study has expanded the methodological utility of PRS in patient stratification 

and risk prediction, especially in a multifactorial condition like PCOS, across different 
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genetic origins. By utilizing the individual genome-phenome data available from the 

EHR, our approach also demonstrates that polygenic prediction by PRS can provide 

valuable opportunities to discover the pleiotropic phenomic network associated with 

PCOS pathogenesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/714113doi: bioRxiv preprint 

https://doi.org/10.1101/714113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Introduction 1 

 2 

Polycystic ovary syndrome (PCOS) is the most common reproductive metabolic 3 

disorders, affecting 5-15% of reproductive age women worldwide [1]. The estimated 4 

cost of diagnosing and treating American women with PCOS is $5.46 billion annually as 5 

of 2017 [2, 3]. In addition to being a major cause of female infertility, the disease is a 6 

well-known risk factor for endocrine complications, such as type 2 diabetes, impaired 7 

glucose tolerance, and metabolic syndrome before age 40 [4]. Monozygotic twin studies 8 

of PCOS have suggested that PCOS is highly heritable (h2= ~70%) [5] and the genetic 9 

architecture is polygenic with complex genetic inheritance pattern [6, 7]. Despite its 10 

clinical importance and high heritability, the underlying genetic etiology of PCOS 11 

remains incompletely understood. The phenotypic manifestations of PCOS are 12 

heterogeneous and exhibit considerable variation across race and ethnicity, further 13 

complicating the clinical diagnosis. Currently, it is estimated that up to 75% of women 14 

with PCOS remain undiagnosed in part due to varying diagnostic criteria from the 15 

National Institutes of Health (NIH), Rotterdam, or Androgen Excess Society, [8-12] 16 

which use different combinations of hyperandrogenism, ovulatory dysfunction, and/or 17 

polycystic ovarian morphology. Despite shared genetic risk across the criteria [13], the 18 

disagreement regarding PCOS phenotypic criteria presents a significant challenge for 19 

both clinical practice and research [14, 15]. The commonalities and differences between 20 

the phenotypic characteristics of PCOS may be better understood with an integrative 21 

observation of phenome-wide pleiotropies and co-morbidities. 22 
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Polygenic risk scores (PRS) built from well-powered genome-wide association 23 

studies (GWAS) have demonstrated operationalizing potential as biological risk 24 

predictors for patient stratification and risk prediction [16-19]. PRS represents the 25 

cumulative effect of common genetic variation summed per individual into a single risk 26 

score, providing an intuitive way to translate GWAS findings into clinically relevant 27 

information such as a patient’s risk of disease [20, 21]. From a precision medicine 28 

perspective, PRS hold significant promise especially for a multifactorial condition with 29 

complicated clinical manifestations, such as PCOS. However, several practical 30 

challenges remain in the equitable translation of PRS into clinical practice [22, 23]. For 31 

instance, most GWAS have been performed in samples of primarily European ancestry, 32 

resulting in PRS statistics that systematically perform worse in populations of different 33 

ancestry, including African ancestry populations. This underperformance is due to a 34 

combination of population-specific genetic effects that are undetected in a Euro-centric 35 

GWAS, and differences in the patterns of linkage disequilibrium (LD) between 36 

populations of differing biogeographic ancestry [24-27]. Thus, the evaluation of PRS 37 

from existing GWAS in both European and non-European ancestry samples is a critical 38 

step in setting priorities for equitable precision medicine initiatives.  39 

The widespread deployment of Electronic Health Records (EHRs) and the 40 

availability of these multi-dimensional records enables evaluation of PRS in a research 41 

context that mimics a clinical hospital setting. Using these data, the predictive capability 42 

of PRS can be assessed regarding many possible diagnoses that can accumulate 43 

during an individual’s lifespan (i.e., the phenome). The eMERGE (electronic MEdical 44 

Records and GEnomics) Network is a nationwide consortium of multiple medical 45 
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institutions that link DNA biobanks to EHRs [28], which is an important resource for 46 

determining the clinical utility of genomic findings, and enabling exploration of the range 47 

of phenotypes associated with genetic variation [29, 30]. 48 

The aim of this study is to systematically examine the utility of PRS derived from a 49 

GWAS meta-analysis by the International PCOS Consortium [13] for risk prediction 50 

across multiple ancestries and to further characterize the other EHR phenotypes that 51 

are clinically associated with PCOS genetic risk in both women and men. We first 52 

developed the integrative polygenic and phenotypic risk score (PPRS) for PCOS by 53 

combining the patient DNA genotype information and PCOS phenotypic elements from 54 

the EHR. Then we tested the predictive utility of the algorithm within European ancestry 55 

(EA) samples and further evaluated its performance in African ancestry (AA) and 56 

combined multi-ancestry (MA) participants which included EA, AA, and other ancestries. 57 

In addition, we performed a Phenome-Wide Association Study (PheWAS) of the PPRS 58 

for PCOS to identify the range of phenotypic indicators associated with PCOS and 59 

evaluated the predictive characteristics of PPRS to identify underlying PCOS 60 

pathophysiological pathways.   61 

 62 

 63 

 64 

 65 

 66 

 67 
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Materials and Methods  68 

PCOS Polygenic Risk Score (PRS) Development    69 

We obtained the full summary statistics of the largest meta-GWAS of PCOS through 70 

the International PCOS consortium and developed a PRS for PCOS [13]. 71 

(Supplementary table 1) The GWAS was conducted in 5,209 cases and 32,055 72 

controls of EA women who were diagnosed according to either NIH or Rotterdam 73 

criteria. All variant positions were converted to GrCh37 and we excluded any entries 74 

with missing ORs or risk allele frequency (RAF) information. The RAF of each variant 75 

was calculated using PLINK [31], and we excluded the entries which RAF deviates 76 

more than 15% than our eMERGE data in order to ensure additional quality control 77 

(QC). PRSice software [32] was used to filter any correlated SNVs in pairwise Linkage 78 

Disequilibrium (LD) (r2 > 0.2) and constructed PRS for PCOS by summing the best-79 

guess imputed genotype data of PCOS risk variants in each individual weighted by the 80 

reported effect sizes. We used eight different subsets of PCOS susceptibility SNVs to 81 

build the model based on p-value cutoff and compared for their predictive accuracy in 82 

the following validation step: 5×10-8, 5×10-7, 5×10-6, 5×10-5, 5×10-4, 5×10-3, 5×10-2, and 83 

1 (All SNVs).  84 

 85 

PRS/PPRS Evaluation & PheWAS Discovery Cohort   86 

Our cohort included genotypes and clinical diagnosis records of 99,185 individuals 87 

collected from 12 EHR-linked biobanks nationwide through the eMERGE consortium 88 

[29]. After identity-by-descent (IBD) analysis, we removed 8,019 related individuals that 89 
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were not in canonical IBD position or genetically identical individuals near the origins 90 

(Z0 > 0.83 and Z1 < 0.1). The cohort was composed of multiple self-reported and 3rd 91 

party observed ancestries and we defined them into three main genetic ancestral 92 

groups using the intersection of self-reported ancestries and principal component 93 

analysis (PCA) based k-mean clusters: European (71.7%), African (15.0%), and Asian 94 

(1.0%). We excluded any self-reported or genetically Hispanic participants for ancestry-95 

stratified analysis for better homogeneity. Throughout this study, the first four principal 96 

components (PCs) were used to correct population structure, explaining over 17% of 97 

the variances among different genetic origins.  98 

The phenome data of the participants were collected from the EHR including 99 

diagnostic records and basic demographic information. The data collection was 100 

performed under local institutional review board approval with informed consent from 101 

the patients. Diagnostic information was structured in the format of the International 102 

Classification of Diseases, Clinical Modification (ICD-CM) codes, in both 9th and 10th 103 

edition, and aggregated into a higher level of 1,711 phecodes for a standardized 104 

categorical analysis of diseases (Phecode map version 1.2) [33, 34].  We excluded 23 105 

individuals under the age of 14, the clinically plausible age for PCOS diagnosis, which is 106 

defined as two years after the first menstruation. A demographic information of the 107 

91,144 participants after filtering criteria is presented in Table 1.  108 

 109 

Genotype data and Quality Control  110 

The participants provided their saliva samples for genotyping, which were 111 

genotyped on 78 genotype Illumina or Affymetrix array batches from 12 medical sites. 112 
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Table 1: Demographic and clinical characteristics of discovery cohorts (eMERGE) and replication cohort (BioVU). 
     

             

Site* 
N 

Subjects 
Sex (Female)  

Ancestry 
(EA) 

Ancestry 
(AA) 

Age 
Average 

Age SD 
BMI 

Average 
BMI SD 

PCOS 
cases 

Hirsutism 
cases 

Irregular 
Mense 
cases 

Female 
Infertility 

cases 

BSCH** 862 362 (42.2%) 623 74 N/A N/A N/A N/A 2 5 20 0 

CCHMC** 5385 2320 (43.2%) 4058 523 8.9 6.7 20.9 6.2 11 24 54 2 

CHOP** 9528 4376 (46.0%) 4898 4105 9.8 5.3 21.1 6.2 47 39 205 2 

Columbia 2029 989 (48.8%) 519 143 56.1 19.8 27.0 5.4 3 4 15 1 

Geisinger 2785 1320 (47.5%) 2439 8 62.8 15.7 32.6 8.1 77 48 158 8 

Harvard 23922 13135 (55.0%) 20727 1343 55.3 16.5 28.3 5.8 417 322 2284 217 

KPW/UW 3225 1829 (56.7%) 2891 109 76.1 8.9 26.4 4.8 2 25 10 18 

Mayo Clinic 9307 4672 (50.2%) 6680 17 61.7 15.4 29.3 5.8 48 85 217 17 

Marshfield 3725 2255 (60.9%) 3696 2 69.3 11.0 29.6 6.0 6 84 476 43 

Mt. Sinai 5765 3362 (58.8%) 702 3643 59.6 10.0 30.6 7.4 51 45 200 15 

Northwestern  4719 3913 (82.9%) 2250 301 53.7 14.8 28.7 7.2 65 83 280 51 

Vanderbilt*** 19892 10810 (54.4%) 15902 3371 56.6 17.1 29.4 7.1 220 144 1017 48 

All (Discovery Cohort) 91144 49343 65385 13639 . . . . 949 908 4936 422 

             

  
N 

Subjects 
Sex (Female)  

Ancestry 
(EA) 

Ancestry 
(AA) 

Age 
Average 

Age SD 
BMI 

Average 
BMI SD 

PCOS 
cases 

Hirsutism 
cases 

Irregular 
Mense 
cases 

Female 
Infertility 

cases 

VUMC Replication 
Sample (BioVU) 33708 18096 (54%) 33708 N/A 55.7 20 28.2 6.8 284 225 4330 48 

             
* BSCH = Boston Children's Hospital, CCHMC=Cincinnati Children’s Hospital Medical Center, CHOP= Children's Hospital of Philadelphia, KPW/UW = Group Health 
Cooperative/University of Washington 

** Children's hospital with low average age           

*** No Sample Overlap with replication cohort (BioVU)           
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We used the Michigan Imputation Server(MIS) [35] with the minimac3 missing genotype 113 

variant imputation algorithm to impute missing genotypes in our sample based on the 114 

Haplotype Reference Consortium (HRC1.1) which includes ~65,000 individuals of 115 

diverse ancestry [36]. The imputation resulted in a genome-wide set of ~40 million 116 

SNVs. We filtered the poorly imputed genetic variants with the r-squared imputation 117 

quality threshold (mean variant r-square) less than 0.3, minor allele frequency (MAF) 118 

less than 0.05 and genotype call rate lower than 95%, which resulted in 5,760,270 119 

autosomal polymorphic variants for subsequent analysis. The detailed data collection 120 

and QC report for the eMERGE network is reported elsewhere [29].  121 

 122 

Validation of Polygenic Risk Score  123 

A. Predictive ability of each prediction model with different PRS  124 

We performed logistic regression analysis to demonstrate the prediction ability of 125 

PRS for PCOS diagnosis in the female population of three different genetic racial 126 

cohorts: European (n=33.869), African (n=8,198), and the entire admixed cohort 127 

(n=49,365). Each cohort was randomly divided into 75% training and 25% testing set to 128 

separately calculate the regression statistics and out-of-sample prediction error. Using 129 

generalized linear model, the residuals of PRS after covariate adjustments (first four 130 

PCs, sites) were obtained and scaled to build the logistic regression model in the 131 

training set. Regression coefficients and p-value of PRS variable, and pseudo-R2 of the 132 

eight different PRS models were measured.  133 
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We applied the regression model built out of the training set to measure out-of-134 

sample performance in the testing dataset. We predicted the individuals as ‘PCOS 135 

cases’ if their fitted scores are higher than the average fitted score and calculated the 136 

accuracy by comparing with their actual diagnosis records of PCOS. The overall 137 

accuracy, sensitivity, specificity of each model were measured and structured through 138 

confusion matrix. The area under the receiving operating characteristic (ROC) curve, 139 

AUC, was also measured for classifier performance of each model.   140 

B. Stratification ability of each prediction model with different PRS  141 

To evaluate the phenotypic stratification ability of PRS, we divided the cohort into 142 

ten quantiles based on PRS of each individual and compared the average phenotypic 143 

values (e.g. proportion of PCOS diagnosed patients, body mass index (BMI), PRS) 144 

among the groups. The proportion of PCOS patients in each quantile, average PRS 145 

values, and average BMI measures of each individual were analyzed. We also 146 

performed independent t-test to assess if the average PRS score differences between 147 

PCOS cases and controls were statistically significant.  148 

C. Performance improvement by the PRS variable 149 

To estimate the performance of the PRS variable, we built a null regression model 150 

without the PRS variable for PCOS prediction (PRS model vs. Null model).The 151 

incremental pseudo-R2 by McFadden’s [37] were calculated between the PRS models 152 

and the null logistic regression only with first 4 PCs and site variables. The analysis of 153 

variance (ANOVA) was performed to examine how significant PRS variable impacts the 154 

PCOS diagnosis prediction model compared to the null model.  155 
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 156 

PRS model: 157 

logit(PCOS diagnosis = 1) = β0*PRS + β1*Site + β2*4PCs + β3 158 

Null model: 159 

logit(PCOS diagnosis = 1) = β0*Site + β1*4PCs + β2 160 

 161 

Development of prediction algorithms with PRS and PCOS component 162 

phenotypes (PPRS) 163 

We built an integrative polygenic and phenotypic risk score (PPRS) with PRS and 164 

PCOS component phenotypes in the EHR to maximize the utility of PRS for risk 165 

prediction. Additional dichotomous phenotypic variables to each individual from their 166 

EHR diagnosis records: hirsutism (ICD9 code 704.1, ICD10 code L68.0), irregular 167 

menstruation (ICD9 code 626.4, ICD10 code N92.6), and female infertility (ICD9 code 168 

627, ICD10 code N97.0) were selected, all of which are well-established clinical 169 

components of PCOS. A total 908 individuals with hirsutism, 4,936 individuals with 170 

irregular menstruation, and 422 individuals with female infertility ICD diagnosis codes 171 

were identified in the eMERGE consortium database.  172 

Firstly, the logistic regression adjusted for first four PCs and sites were examined 173 

for their effect coefficients and variable p-values. Psuedo-R2 of each model was 174 

calculated for measuring the improvement over the normal PRS model. ANOVA 175 

between the integrative model and normal PRS model were examined.  176 
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 177 

PPRS model: 178 

logit(PCOS diagnosis = 1)  =  β0*PRS  +  β1*Site  +  β2*4PCs  +  β3*Hirsutism  179 

+  β4*Irregular menstruation  +  β5*Female infertility  +  β6 180 

PPRS null model: 181 

logit(PCOS diagnosis = 1)  =  β0*Site  +  β1*4PCs  +  β2*Hirsutism  +  182 

β3*Irregular menstruation  +  β4*Female infertility  +  β5 183 

 184 

Phenome-wide analysis  185 

To investigate the potential pleiotropy of PCOS, PCOS components, and other 186 

diseases in the EMR phenome, we selected the best performing PRS model that 187 

presented a validated predictive accuracy and stratification ability across ancestries 188 

based on the examination results above. PheWAS was performed on the mapped 1,711 189 

representative EHR phenotypes with a minimum of 30 case patients from the discovery 190 

cohort of 91,144 participants after QC criteria. Case group for a given phecode is 191 

defined by the presence of at least one assignment of the corresponding ICD codes 192 

from EHR as defined in the phecode map v1.2. Controls for each phecode are defined 193 

by the absence of the same ICD codes that defined cases and the absence of clinically 194 

related phenotypes. Based on the assumption that a participant with higher PCOS-PRS 195 

conveys greater genetic risk, our main sex-stratified PheWAS interrogated the comorbid 196 

networks of high-risk predictive phenotypes for PCOS (PheWAS-1). 49,343 female 197 

participants and 41,669 male participants were used for the analysis. Logistic 198 
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regression was used adjusting for genotyping site and the first four PCs of ancestry to 199 

correct for population stratification in the MA cohort [logit (Clinical Phenotype = 1 | PRS, 200 

Site, 4PCs) = β0 + β1*PRS + β2*Site + β3*4PCs]. 201 

In this study, phenome-wide significance refers to either (1) the Bonferroni corrected 202 

threshold of p-value=2.9×10-5 adjusting for multiple testing, which is determined by 203 

using the p-value of 0.05 divided by the 1,711 phenotypes interrogated, or (2) the false 204 

discovery rate (FDR) significance of 0.05, which is a popular alternative threshold to the 205 

stringent Bonferroni correction in reporting PheWAS. Manhattan PheWAS plots of -206 

log10(p-value) were generated for visual inspection of significant clinical traits. All the 207 

analyses were performed in the R statistical software environment (ver 2.1.2). 208 

 209 

Sensitivity Analysis 210 

We performed several comparative PheWAS in an effort to interrogate different 211 

phenome-wide aspects of the PRS in clinical phenome.  212 

Firstly, to distinguish secondary or symptomatic phenotypes derived from the 213 

PCOS-diagnosed patients, we removed the clinical diagnosis records of the 949 214 

individuals with PCOS (phecode 256.4, ICD9 256.4 and ICD10 E28.2) and performed 215 

the same PheWAS analysis. (PheWAS-2). Additionally, to gauge the contrasting 216 

performance of polygenic prediction over a single-variant approach, we performed 217 

traditional PheWAS of each genome-wide significant susceptibility loci (p-value < 5×10-218 

8) for PCOS (RAF > 0.05). This analysis aims to compare the clinical phenotypes 219 

associated with the cumulative effects of multiple genetic variants on PRS versus a 220 
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single genetic signal generated by an individual PCOS susceptibility locus. Among 113 221 

genome-wide significant loci (p-value < 5×10-8) for PCOS, (Supplementary Table 1) we 222 

filtered the entries with MAF > 0.05 and genotype call rate > 0.90 in our discovery 223 

cohort and MAF > 0.01 in summary statistics. 85 SNVs were selected and used for the 224 

subsequent PheWAS analysis (PheWAS-3). 225 

 226 

PRS PheWAS Replication   227 

To confirm the predictive performance of our PRS algorithm and its effect on clinical 228 

phenome, replication analyses were performed at Vanderbilt University Medical Center 229 

on an independent genotyped sample of 33,708 European descent individuals (BioVU). 230 

The participants were genotyped on the Illumina MEGAEX platform (~2 million markers) 231 

and we applied filters for individual call rates < 98%, batch effects (p-value < 5 x 10-5), 232 

heterozygosity (|Fhet| > 0.2), and sample relatedness (pihat > 0.2). After imputation with 233 

1000G reference panel, we excluded any genetic variants with missingness > 0.02, 234 

certainty < 0.9, or imputation info score < 0.95. The genetic ancestry of the samples 235 

were restricted to only EA, based on comparison to 1000G European population and a 236 

K-means clustering definition. The final samples included 33,708 individuals of 237 

European descent genotyped on 5,550,390 SNVs. Using the same PRS generation 238 

methodology in discovery samples, we took the identical phenome-wide approach to 239 

identify the associated phenotypic networks with PRS among the replication samples. 240 

Logistic regression was used adjusting for first four ancestry PCs. 241 

Results 242 
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Polygenic risk scores for PCOS are normally distributed in European and multi-243 

ancestry participants  244 

A total of 5,760,270 autosomal single nucleotide variants (SNVs) were considered 245 

for the PCOS-PRS construction, which displays the genetic architecture of effect size 246 

(beta) by risk allele frequency (RAF) presented in Figure 1. There was a significant 247 

negative correlation between RAF and effect size, which is generally anticipated in 248 

common quantitative traits and supports the use of methodology of PRS to explore the 249 

extreme of the common polygenic liability spectrum. According to the central limit 250 

theorem, PRS in a large population will show normality when the genetic architecture of 251 

the target trait is polygenic, i.e. produced by the addition of many genetic variants of 252 

small effect [38, 39]. 253 

PRS were calculated at eight different p-value cutoffs from the PCOS GWAS 254 

summary statistics (5×10-8, 5×10-7, 5×10-6, 5×10-5, 5×10-4, 5×10-3, 5×10-2, 1) for all the 255 

discovery eMERGE participants (n=91,144).  Each set of scores were adjusted for 256 

participant site and first four PCs. All the polygenic scores were evaluated for their 257 

predictive performance in the female populations of EA (n=33,869), AA (n=8,198) and 258 

MA cohorts (n=49,365). The covariate-adjusted PCOS-PRS generally presented a 259 

normal distribution across each ancestry cohort (Supplementary Figure 1). PRS 260 

models with trimodal or skewed distributions (PRS p-value cutoff: 5×10-7, 5×10-6, 5×10-261 

5), which may be a function of poor representation of risk variants across populations, 262 

were not considered for the subsequent phenome-wide analysis.  263 

 264 
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Fig 1. Effect distribution of PCOS susceptibility variants in samples from the 

International PCOS consortium by risk allele frequency. (a) The 120,340 PCOS 

autosomal SNVs with p-value < 0.05, and (b) the 139 PCOS genome-wide significant 

SNVs (p-value < 5×10-8). The dark green line and grey band around it are the linear 

regression fit and its 95% confidence interval, respectively, between risk allele 

frequency and effect size (beta). 

Validation of PCOS PPRS in European ancestry participants    265 
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A. Predictive ability of each prediction model with different PRS  266 

In the PRS prediction models using the training set of the female EA cohort 267 

(n=33,869 with 632 PCOS cases), all the coefficient p-values of the PRS variables are 268 

statistically significant except for two PRS models of SNVs with p-value < 5×10-7 and p-269 

value < 5×10-6 that do not show PRS normality (Supplementary Figure 1). The 270 

average odds ratios (OR) of the significant PRS variable across EA was 1.13 (average 271 

SE=0.046) and the average pseudo-R2 value was 0.044, which indicates 4.4% of the 272 

phenotypic variances in the training sample could be explained by PRS (Table 2). 273 

The regression models built in the training set were then used to predict PCOS case 274 

status in the testing dataset. A model including PRS yielded average prediction 275 

accuracy of 0.55, sensitivity of 0.55, specificity of 0.76 with an average area under the 276 

receiving operating characteristic curve (AUC) of 0.72 in the EA participants (Table 3). 277 

B. Stratification ability of each prediction model with different PRS  278 

The percentage of PCOS-diagnosed patients increases in higher PRS quantiles, 279 

and the individuals in the highest PRS group tend to have higher average BMI. In the 280 

genome-wide PRS calculation with SNVs with p-value ≤ 1, the average BMI of the 281 

individuals in highest PRS quantile is 1.1 kg/m2 higher than the individuals in the lowest 282 

PRS group (Cohen’s d=0.16, t-test p-value=1.06×10-9) (Figure 2 and Table 4). The 283 

finding confirms the positive correlation between elevated generic risk for PCOS, actual 284 

PCOS diagnosis, and higher risk for increased BMI. 285 

  286 
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Table 2: Regression results of the PRS and PPRS models in PCOS prediction. 

  
        

  

  

PRS* PPRS* 

  

 
PRS/PPRS 

p-value 
Cutoff 

OR 
Std. 

Error 
P R2 OR 

Std. 
Error 

P R2   

 European Ancestry   

 5E-08 1.14 0.047 4.76E-03 0.045 1.14 0.052 1.40E-02 0.232 
  

 5E-07 1.04 0.042 3.78E-01 0.043 1.04 0.046 3.89E-01 0.230 
  

 5E-06 1.08 0.039 6.41E-02 0.044 1.08 0.044 7.26E-02 0.231 
  

 5E-05 1.10 0.041 2.13E-02 0.044 1.10 0.046 3.59E-02 0.231 
  

 5E-04 1.13 0.045 6.12E-03 0.044 1.11 0.049 2.85E-02 0.231 
  

 5E-03 1.11 0.047 2.70E-02 0.044 1.08 0.051 1.45E-01 0.231 
  

 5E-02 1.16 0.048 2.11E-03 0.045 1.12 0.052 3.21E-02 0.231 
  

 1 1.15 0.049 3.13E-03 0.045 1.11 0.052 4.04E-02 0.231 
  

 Multiancestry 
  

 5E-08 1.16 0.038 1.15E-04 0.040 1.15 0.042 1.19E-03 0.228 
  

 5E-07 1.08 0.037 4.28E-02 0.038 1.09 0.038 2.99E-02 0.227 
  

 5E-06 1.09 0.037 1.60E-02 0.038 1.10 0.038 1.19E-02 0.227 
  

 5E-05 1.12 0.037 2.35E-03 0.039 1.12 0.038 3.67E-03 0.228 
  

 5E-04 1.12 0.038 1.88E-03 0.039 1.11 0.039 8.59E-03 0.228 
  

 5E-03 1.16 0.039 1.25E-04 0.040 1.13 0.041 2.54E-03 0.228 
  

 5E-02 1.20 0.039 5.03E-06 0.041 1.16 0.042 3.81E-04 0.228 
  

 1 1.22 0.040 5.33E-07 0.041 1.19 0.043 5.91E-05 0.229 
  

 African Ancestry 
  

 5E-08 1.14 0.090 1.42E-01 0.031 1.15 0.099 1.62E-01 0.211 
  

 5E-07 1.24 0.086 1.22E-02 0.034 1.30 0.093 4.63E-03 0.215 
  

 5E-06 1.25 0.086 9.80E-03 0.034 1.30 0.092 3.95E-03 0.216 
  

 5E-05 1.23 0.086 1.71E-02 0.034 1.27 0.093 1.08E-02 0.214 
  

 5E-04 1.19 0.088 4.38E-02 0.032 1.17 0.094 9.82E-02 0.211 
  

 5E-03 1.18 0.090 6.74E-02 0.032 1.18 0.098 9.32E-02 0.211 
   

 5E-02 1.25 0.091 1.23E-02 0.034 1.17 0.097 1.07E-01 0.211 
  

 1 1.30 0.091 3.33E-03 0.036 1.26 0.097 1.56E-02 0.214 
  

  
        

  

 Average of the significant models (regression coefficient p-value < 0.05)  

 PRS 
Average 

OR 
Average 

R2 
Null R2 ** 

Incremental R2***                               
over PRS null model 

    

 EA 1.13 0.044 0.004 0.041     

 MA 1.14 0.039 0.004 0.036     

 AA 1.25 0.034 0.004 0.030     
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 PPRS 
Average 

OR 
Average 

R2 
PPRS Null 

R2 ** 
Incremental R2***                               
over null model  

Incremental R2***                               
over PPRS null model   

 

 EA 1.12 0.231 0.193 0.228 (61.5-fold) 0.038 (19.6%)  

 MA 1.13 0.228 0.201 0.224 (58.8-fold) 0.027 (13.2%)  

 AA 1.28 0.215 0.193 0.211 (57.0-fold) 0.021 (11.0%)  

 OR = odds ratio; SE = standard error; R2 = psuedo-R2 

 * PRS: PRS + basic covariates [Model(1) = PCOS ~ PRS + PC1-4 + Site ] 
 

  

 

* PPRS: PRS + PCOS component phenotypes + basic covariates [PPRS = PCOS ~ PRS + PC1-4 + Site + Hirsutism + 
Female Infertility + Irregular Menses] 

 ** Null model: basic covariates only [Null Model = PCOS ~PC1-4 + Site] 

 

** PPRS Null model: PCOS component phenotypes + basic covariates [PPRS Null Model = PCOS ~ PC1-4 + Site + 
Hirsutism + Female Infertility + Irregular Menses] 

 

*** Improvement rate: (Incremental change in pseudo-R2 between the model with PRS/PPRS and the null model without 
PRS/PPRS) / (Pseudo-R2 of the null model without PRS/PPRS)   
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Table 3: Average performance of PRS prediction algorithms in the female cohorts of European (n=33,869), 
Multiancestry (n= 49,365) and African (n=8,198) participants. 

   

 Summary - Average      

 PRS* Accuracy Sensitivity Specificity 
Balanced 

Accuracy*** AUC**** 

 European (n=33,869) 0.551 0.547 0.755 0.651 0.715 

 Multiancestry (n= 49,365) 0.533 0.529 0.736 0.632 0.693 

 African (n=8,198)  0.496 0.494 0.590 0.542 0.543 

          

 PPRS** Accuracy Sensitivity Specificity 
Balanced 

Accuracy*** AUC**** 

 European (n=33,869) 0.873 0.876 0.717 0.797 0.870 

 Multiancestry (n= 49,365) 0.881 0.886 0.640 0.763 0.823 

 African (n=8,198)  0.864 0.872 0.522 0.697 0.706 

       

 * PRS: PRS + basic covariates [PRS Model = PCOS ~ PRS + PC14 + Site ] 

 

** PPRS: PRS + PCOS component phenotypes + basic covariates [PPRS Model = PCOS ~ PRS + PC1-4 + Site  + 
Hirsutism + Female Infertility + Irregular Menses] 

 *** Balanced Accuracy = (Sensitivity + Specificity)/2     

 **** AUC = Area Under the Curve     
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Fig 2. Stratification performance by quantile of PRS models, including PCs 1-4 and 

site as covariates, in (a) EA, (b) MA, and (c) AA populations.  Group 1 includes those 

with the lowest PRS, and group 10 includes those with the highest. Bar colors indicate 

the average BMI in the quantile (darker indicates higher BMI), while the proportion of 

PCOS-diagnosed patients in each group is indicated at the top of each bar. 
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Table 4: Quantile analysis of PRS in the female European cohort (n=33,869) (PRS SNVs’ p-
value<5×10-8 and p-value≤1 only). 

  

 
           

 
  

GROUP* 
PCOS 
cases 

PCOS 
prop** 

Average 
BMI (kg/m2)  

Average 
PRS 

 

PRS  
P < 5×10-8 

1 45 1.3% 27.9 -1.750 

 2 57 1.7% 27.9 -0.950 

 3 54 1.6% 27.6 -0.813 

 4 60 1.8% 28.1 -0.239 

 5 61 1.8% 28.2 -0.068 

 6 62 1.8% 28.0 0.014 

 7 75 2.2% 27.6 0.248 

 8 65 1.9% 28.1 0.810 

 9 82 2.4% 27.9 0.952 

 10 71 2.1% 27.8 1.790 

 … 

 

PRS  
P ≤ 1 

1 50 1.5% 27.3 -1.790 

 2 49 1.5% 27.5 -1.020 

 3 61 1.8% 27.8 -0.654 

 4 48 1.4% 27.9 -0.369 

 5 58 1.7% 28.0 -0.113 

 6 66 2.0% 27.8 0.132 

 7 68 2.0% 28.0 0.386 

 8 65 1.9% 28.1 0.672 

 9 85 2.5% 28.4 1.040 

 10 82 2.4% 28.4 1.720 

 PRS is adjusted with covariates and scaled for standardization.  

 * Higher group number indicates higher PRS   

 ** Proportion of PCOS case patients in the quantile    
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The subsequent t-test reveals that PRS of case patients are significantly higher than 287 

the controls in all the nominally significant PRS models with regression p-value < 0.05, 288 

implying that higher genetic risk scores indicate higher occurrence of  PCOS diagnosis 289 

(p-value=2.15×10-4, 7.75×10-4, 2.43×10-4, 2.51×10-5, 3.12×10-5 in PRS model SNVs’ p-290 

value < 5×10-8, 5×10-4, 5×10-3, 5×10-2, 1 respectively) (Supplementary Table 2). 291 

C. Performance improvement by the PRS variable  292 

All the PRS models containing PCOS-PRS provided an improved fit over the null 293 

model by increasing the estimated explained sum of squares (pseudo-R2) by 294 

McFadden’s [37]. The average increase of pseudo-R2 by the PRS variable in EA 295 

samples is 0.040, which is a 10-fold improvement (=0.040/0.004) over the null model. 296 

The ANOVA p-values of differentiating the PRS models from the null model are all 297 

under 1×10-31, which validate the statistical significance of the performance 298 

improvement over the null model (Table 2 and Supplementary Table 3). 299 

  300 

Evaluation of PRS in multi-ancestry and African ancestry participants    301 

A. Predictive ability of each prediction model with different PRS  302 

In the training set of the MA cohort (n=49,365 with 949 PCOS cases), the coefficient 303 

p-values of all PRS variables remain significant with positive beta coefficients (Table 2; 304 

model1). The average OR of PRS is 1.14 (average SE=0.038) and the average 305 

pseudo-R2 value is 0.039, indicating that 3.9% of the phenotypic variance in the MA 306 

cohort could be explained by the PRS model. In the training set of AA participants 307 

(n=8,198 with 172 PCOS cases), the coefficient p-values of PRS variables remain 308 
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overall significant except for two PRS models of SNVs with p-value < 5×10-8 and p-309 

value < 5×10-3 which may be due to the smaller sample size. Even though the 310 

regression p-values of the PRS variable do not show uniform performance in AA as 311 

compared to EA, the nominally significant PRS models generate a higher effect size in 312 

the AA samples compared to the other ancestry groups. The average OR of PRS 313 

models in the AA is 1.25 (SE=0.089), higher than both the EA (OR=1.13) and MA 314 

(OR=1.14). This is possibly due to the low RAF of PCOS risk variants in AA compared 315 

to EA (Supplementary Table 1).  316 

For the testing dataset, PRS prediction displays an average 0.533 of accuracy, 317 

0.529 of sensitivity, 0.736 of specificity with an average AUC of 0.693 in the multi-318 

ancestry cohort. The out-of-sample performance in AA yielded an average AUC of 319 

0.543 and showed an overall lower average accuracy (0.496), sensitivity (0.494) and 320 

specificity (0.590) compared to other ancestry groups (Table 3). 321 

B. Stratification ability of each prediction model with different PRS   322 

In the MA cohort, the proportion of PCOS patients increases from 1.5% in the 323 

lowest quantile to 2.6% in the highest quantile in the PRS calculation of SNVs with p-324 

value ≤ 1. The average BMI of the participants in the highest PRS quantile is 1.2 kg/m2 325 

higher (Cohen’s d=0.17, t-test p-value=1.62×10-13) than the participants in the lowest 326 

PRS group (Supplementary Table 4, Figure 2(b)). 327 

In the AA cohort, the number of PCOS patients does not always increase with 328 

higher PRS quantile, but the observation of an excess of PCOS patients in the highest 329 

PRS quantile is generally consistent across the models (Figure 2c). In the full-inclusive 330 

PRS model (SNVs with p-value ≤ 1), the rate of PCOS patients increases from 1.7% in 331 

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/714113doi: bioRxiv preprint 

https://doi.org/10.1101/714113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

the lowest quantile to 3.1% in the highest PRS quantile (Supplementary table 4). The 332 

observed increase of the rate of PCOS patients is most pronounced in the PRS model 333 

with genome-wide significant variants (SNVs with p-value < 5×10-8), as the PCOS case 334 

rate doubles from 1.7% in the lowest quantile to 3.5% in the highest PRS quantile. We 335 

did not identify any notable trends in BMI in AA participants, which is depicted by the 336 

quantile color changes in Figure 2(c). 337 

An independent t-test confirms the significant differences of average PRS between 338 

PCOS cases and controls in MA across the models. The PRS difference between 339 

PCOS MA cases and controls is 0.165 after scaling with a full-inclusive PRS model, 340 

SNVs with p-value ≤ 1 (Cohen’s d=0.201, t-test p-value=2.62×10-6). In AA, only the full-341 

inclusive PRS model shows statistically significant difference between PCOS cases and 342 

controls with a PRS difference of 0.175 (Cohen’s d=0.191, t-test p-value=2.90×10-2) 343 

(Supplementary Table 2). 344 

C. Performance improvement by the PRS variable  345 

In the joint ancestry participants, all the prediction models containing the PRS 346 

variable provide a better fit over the null model by increasing the average pseudo-R2 to 347 

0.039, which is an 8.75-fold increase (=0.035/0.004) in explanatory power (Table 2). 348 

The subsequent ANOVA analysis confirms the statistical significance of the improved 349 

fits over the null model with all p-values<1×10-46 (Supplementary table 3). 350 

In the AA samples, the statistically significant PRS models show the average 351 

pseudo-R2 of 0.034, which has the poorest fit among the ancestries. The models show 352 

an average pseudo-R2 improvement of 7.5-fold increase (=0.030/0.004) from the null 353 

model without PRS (Table 2). Even with the lowest average incremental pseudo-R2 354 

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 24, 2019. ; https://doi.org/10.1101/714113doi: bioRxiv preprint 

https://doi.org/10.1101/714113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

(0.030) among the ancestries, the significant difference between the PRS models and 355 

the null model in Africans are confirmed with all ANOVA p-values<5×10-3 356 

(Supplementary table 3). 357 

 358 

Development of PPRS prediction algorithms with PRS and PCOS component 359 

phenotypes  360 

The addition of PCOS component EHR phenotypes to polygenic risk prediction 361 

significantly improved the predictive accuracy (Table 2; model2 and Figure 3). The 362 

average pseudo-R2 of the PPRS is 0.231 in EA, 0.228 in MA, and 0.215 in AA samples, 363 

which indicates an average 14.7% improvement in pseudo-R2 (19.6% in EA, 13.2% in 364 

AA, 11.0% in MA) over the PPRS null model by the inclusion of PCOS component 365 

phenotypes. Compared to the basic null model, the PPRS prediction boosts the average 366 

predictive performance (pseudo-R2) by approximately 60 times (61.5-fold in EA, 58.8-367 

fold in AA, 57.0-fold in MA) by the combinational use of PCOS component EHR 368 

phenotypes and PRS. Of note, the PRS variable’s p-values in every PPRS model 369 

remain consistently valid in the MA samples (p-values<5×10-3), whereas it was not 370 

always significant in AA or even EA samples. The ORs of the PRS and PPRS remain 371 

similar across the ancestries (Figure 4). 372 

The subsequent ANOVA tested that all the pairs between PPRS and PPRS null 373 

models were statistically distinct across the cohorts and every PPRS model show the 374 

improved fit over the PPRS null model (Supplementary Table 3). The average ORs of 375 

irregular menstruation (ICD9 code 626.4, ICD10 code N92.6), female infertility (ICD9 376 

code 627, ICD10 code N97.0) and hirsutism (ICD9 code 704.1, ICD10 code L68.0) for377 
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Figure 3. Comparison of odds ratios (ORs) for the PRS and PPRS in (a) EA, (b) MA, and (c) AA cohorts, at different 

PRS/PPRS inclusion thresholds by GWAS p-value. The top row shows OR distributions for the PRS model, which 

adjusted for basic covariates [PRS Model = PCOS ~ PRS + PC1-4 + Site]. The bottom row shows OR distributions for the 

PPRS model which adjusted for the same basic covariates as well as PCOS EHR component phenotypes [PPRS Model = 

PCOS ~ PRS + PC1-4 + Site + Hirsutism + Female Infertility + Irregular Menses].  
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Figure 4. Comparison of Receiving Operating Curves (ROC) of the PPRS and PRS prediction models for PCOS 

diagnosis. The models with the genome-wide significant SNVs (p-value < 5×10-8) were evaluated in females of (a) EA, (b) 

MA, and (c) AA cohorts, along with the full-inclusive prediction models (p-value < 1) in females of (d) EA, (e) MA, and (f) 

AA cohorts. The areas under the curve (AUC) are provided in Table 2 and Supplementary Table 2. PRS model adjusted 

for basic covariates [PRS Model = PCOS ~ PRS + PC1-4 + Site ], and PPRS model adjusted for the same basic 

covariates as well as PCOS EHR component phenotypes [PPRS Model = PCOS ~ PRS + PC1-4 + Site  + Hirsutism + 

Female Infertility + Irregular Menses]. Null models only included the basic covariates without the PRS variable.   
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PCOS prediction were, as expected, strong across the cohorts: 5.49, 10.9, and 17.1, 378 

respectively (Supplementary Table 5).  379 

 380 

Clinical phenome analysis   381 

A. Associated phenotypes with PRS (PheWAS-1) 382 

The general scheme of our PheWAS analyses are depicted in Figure 5a. Based on 383 

the model examination described above, the genome-wide PRS that includes all SNVs 384 

with p-value ≤ 1 was selected as the best performing PRS model and used for 385 

phenome-wide analysis. The phenomes of 49,343 female participants and 41,669 male 386 

participants were analyzed separately to test for association with high genetic risk for 387 

PCOS. 388 

In the female PheWAS with PRS, 75 EHR phenotypes were identified with 389 

phenome wide significance (Figure 5b, Supplementary Table 6a). ‘Morbid obesity’ 390 

(phecode 278.11) and obesity-related endocrine phenotypes, including ‘overweight, 391 

obesity, and other hyperalimentation’ (phecode 278), ‘type 2 diabetes’ (phecode 250.2), 392 

‘essential hypertension’ (phecode 401.1) ‘hypercholesterolemia’ (phecode 272.11), 393 

‘hypertension’ (phecode 401), ‘disorders of lipid metabolism’ (phecode 272) are the top-394 

ranked. The phenome-wide significant association of ‘polycystic ovaries’ (phecode 395 

256.4) and PCOS-PRS are observed with one of the largest effect sizes (OR=1.015) 396 

among the result. 397 

As a complex endocrine disorder, the PCOS pathophysiology seems to be tightly 398 

linked to the expression of endocrine or circulatory system manifestation. Among the 75  399 
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Fig 5. PheWAS scheme and results using PRS. (a) PheWAS scheme and sample 

sizes; (b) PheWAS Manhattan plot of PRS (SNVs with p-value ≤ 1); (c) PheWAS 

Manhattan plot of PRS (SNVs with p-value < 5E-08); (d) pie chart summarizing 

PheWAS groups. In Manhattan plots (b) and (c), the x-axis represents the EHR 

phenotype categorical group and the y-axis represents the negative log(10) of the 

PheWAS p-value. Red lines indicate the cutoff for phenome-wide significance. For 

readability, only the most significant associations are annotated. Full lists of phenome-

wide significant results are provided in Supplementary Tables 5 and 6, respectively. The 

pie chart in (d) shows EHR categories for the 72 phenome-wide significant phenotypes 

identified through PheWAS of the genome-wide PRS (SNVs with p-value ≤ 1). 
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phenome-wide significant traits with PRS, the phenotypes of circulatory system (26.0%) 400 

and endocrine/metabolic system (21.0%) appeared the most frequently (Figure 5d), 401 

while the four highest associated phenotypes are all endocrine/metabolic features.  402 

Among the remainder of the phenome-wide significant phenotypes, associations of 403 

musculoskeletal phenotypes like ‘osteoarthrosis’ (phecode 740 and 740.9) or ‘calcaneal 404 

spur; Exostosis NOS’ (phecode 726.4) possibly imply the hormonal changes on the 405 

skeletal system impacted by PCOS epidemiology. Multiple symptomatic genitourinary 406 

phenotypes of PCOS were also identified: ‘abnormal mammogram’ (phecode 611.1) or 407 

‘other signs and symptoms in breast’ (phecode 613.7). An obesity-related pulmonary 408 

disorder of ‘sleep apnea’ (phecode 327.3) is also observed (classified as neurological 409 

phenotype in phecode map) with ‘obstructive sleep apnea’ (phecode 327.32). We could 410 

not identify any psychological or depression related phenotype that is known to have 411 

genetic correlation with the hormonal changes of PCOS.  412 

The overall low range of OR (1.004~1.010) of the PheWAS results should be noted, 413 

which is assumedly due to the aggregated effects of the low impact SNVs for PCOS, 414 

especially in the full-inclusive PRS with the entire GWAS SNVs. The ORs from the 415 

generic PheWAS of individual PCOS SNVs are observed to be higher before merging 416 

them into the cumulative PRS, which is described later (Supplementary Table 7). 417 

In the replication analysis on an independent cohort of 18,096 EA females (BioVU), 418 

16 out of 75 phenome-wide signals from the discovery analysis are replicated including 419 

‘PCOS’ (p-value=1.93×10-2, phecode 256.4) with the positive OR of 1.174 (Table 5a). 420 

Half of the replicated phenotypes (8 out of 16) belong to the endocrine/metabolic 421 

category. In particular, the following obesity-related endocrine phenotypes exhibit strong 422 
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Table 5: (a) 16 significant phenotypes of PRS (SNVs’ p-value ≤ 1) female-stratified PheWAS that were phenome-wide significant in the discovery cohort (n=49,343) and 
successfully replicated in the independent VU cohort (n=18,096). (b) 3 phenome-wide significant results of PCOS-PRS (SNPs with P < 1) male-stratified PheWAS from the 
discovery cohort (n=41,669) and replication cohort (n=15,612)  

               

 
(a)   Discovery analysis Replication analysis 

 phecode description group OR SE p n_total n_cases OR SE p n_total n_cases 

 
278.11 Morbid obesity endocrine/metabolic 1.010 0.001 9.74E-18 37108 6790 1.116 0.029 1.64E-04 15329 1762 

 
278.1 Obesity endocrine/metabolic 1.008 0.001 4.14E-17 44267 13949 1.087 0.022 1.29E-04 17051 3484 

 
278 

Overweight, obesity and 
other hyperalimentation 

endocrine/metabolic 1.007 0.001 2.20E-16 47803 17485 1.077 0.020 1.44E-04 18096 4529 

 
250.2 Type 2 diabetes endocrine/metabolic 1.007 0.001 8.18E-13 42874 10800 1.081 0.022 3.70E-04 16562 3660 

 
327.3 Sleep apnea neurological 1.008 0.001 4.71E-12 40673 6503 1.096 0.028 1.33E-03 15602 1847 

 
250 Diabetes mellitus endocrine/metabolic 1.007 0.001 5.39E-12 43325 11251 1.079 0.021 3.56E-04 16763 3861 

 
571 

Chronic liver disease and 
cirrhosis 

digestive 1.008 0.001 4.17E-09 40531 4582 1.093 0.032 4.64E-03 15369 1463 

 
539 Bariatric surgery digestive 1.012 0.002 7.59E-09 47803 2034 1.202 0.055 8.00E-04 18096 439 

 
327.32 Obstructive sleep apnea neurological 1.007 0.001 1.16E-08 39291 5121 1.098 0.032 3.98E-03 15138 1383 

 
571.5 

Other chronic nonalcoholic 
liver disease 

digestive 1.008 0.001 2.13E-08 40251 4302 1.112 0.033 1.38E-03 15219 1313 

 
743.9 

Osteopenia or other disorder 
of bone and cartilage 

musculoskeletal 1.005 0.001 1.71E-07 43335 11354 0.956 0.022 4.45E-02 16019 3263 

 
256.4 Polycystic ovaries endocrine/metabolic 1.015 0.003 3.16E-07 40696 942 1.174 0.069 1.93E-02 15637 281 

 
743 

Osteoporosis, osteopenia 
and pathological fracture 

musculoskeletal 1.004 0.001 6.38E-07 47803 15822 0.957 0.019 1.84E-02 18096 5340 

 
250.3 Insulin pump user endocrine/metabolic 1.008 0.002 2.25E-06 35057 2983 1.136 0.036 3.42E-04 14065 1163 

 

250.23 
Type 2 diabetes with 

ophthalmic manifestations 
endocrine/metabolic 1.010 0.002 9.20E-06 33663 1589 1.221 0.062 1.20E-03 13272 370 

 
627 

Menopausal and 
postmenopausal disorders 

genitourinary 1.004 0.001 1.40E-05 40468 14392 0.947 0.020 7.64E-03 16061 4301 
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(b)   Discovery analysis Replication analysis 

 
phecode description group OR SE p n_total n_cases OR SE p n_total n_cases 

 
278.11 Morbid obesity endocrine/metabolic 1.009 0.002 5.93E-08 32456 3489 1.049 0.036 1.78E-01 13465 1082 

 
250.2 Type 2 diabetes endocrine/metabolic 1.005 0.001 1.41E-05 36835 10984 1.031 0.021 1.49E-01 14000 4198 

 
250 Diabetes mellitus endocrine/metabolic 1.005 0.001 2.47E-05 37199 11348 1.029 0.021 1.70E-01 14180 4378 

              

 Phenome-wide significant threshold: p-value < 2.9E-5           
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evidence of replication after multiple testing correction (p-value < 6.7×10-5, 0.05/75): 423 

‘morbid obesity’ (phecode 278.11), ‘obesity’ (phecode 278.1), ‘overweight, obesity and 424 

other hyperalimentation’ (phecode 278). The well-known comorbidity between ‘type 2 425 

diabetes’ (phecode 250.2) and PCOS is also identified along with other diabetic 426 

syndromes like ‘diabetes mellitus’ (phecode 250). Other notable replicated phenotypes 427 

included multiple neurological and digestive manifestations, which have well-known 428 

association to obesity, such as ‘chronic liver disease and cirrhosis’ (phecode 571), 429 

‘bariatric surgery’ (phecode 539) and ‘other chronic nonalcoholic liver disease’ (phecode 430 

571.5). An obesity-related pulmonary disorder of ‘sleep apnea’ (phecode 327.3) is also 431 

observed (classified as neurological phenotype in phecode map) with ‘obstructive sleep 432 

apnea’ (phecode 327.32).  433 

In male-specific PheWAS with PRS (SNVs with p-value ≤ 1) model, three metabolic 434 

phenotypes reached phenome-wide significance in the discovery analysis: ‘morbid 435 

obesity’ (phecode 278.11), ‘type 2 diabetes’ (phecode 250.2), ‘diabetes mellitus’ 436 

(phecode 250) which are known risk factors and/or co-morbidities for PCOS (Figure 5b, 437 

Table 5b, Supplementary Table 6b). However, none of the associations were 438 

replicated in the replication analysis on 15,611 independent males. It is possible that the 439 

replication sample remained underpowered and larger sample sizes will be needed to 440 

distinguish these results from a true null result.  441 

 442 

B. Sensitivity analysis – Case-excluded analysis (PheWAS-2)  443 

After removing 949 PCOS patients in PheWAS investigation, we still identified 68 444 

PRS-phenotype associations that reached phenome-wide significance (Supplementary 445 
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table 8), which is not very different from PheWAS-1. The result might be due to the 446 

challenge of current diagnosis practices in identifying PCOS cases, which implies the 447 

control groups are not completely excluding PCOS patients and possibly include some 448 

mixed signals from the unidentified PCOS cases. Alternatively, it is possible that genetic 449 

risk for PCOS remains a robust risk factor for these phenotypes even in the absence of 450 

clinical manifestations of PCOS. 451 

The representative signals of diabetes/obesity-related endocrine traits that are 452 

identified in PheWAS-1 remained significant: ‘morbid obesity’ (phecode 278.11), ‘type 2 453 

diabetes’ (phecode 250.2), ‘obesity’ (phecode 278.1), ‘overweight, obesity and other 454 

hyperalimentation’ (phecode 278), ‘diabetes mellitus’ (phecode 250), 455 

‘hypercholesterolemia’ (phecode 272.11), ‘disorders of lipid metabolism’ (phecode 272) 456 

and ‘hyperlipidemia’ (phecode 272.1) etc.  457 

Four phenotypes no longer remained phenome-wide significant in PheWAS-2 458 

compared to PheWAS-1, including ‘menopausal and postmenopausal disorders’ 459 

(phecode 627), ‘iron deficiency anemias, unspecified or not due to blood loss’ (phecode 460 

280.1), ‘sleep disorders’ (phecode 327) and ‘Insomnia’ (phecode 327.4). A new 461 

metabolic phenotype of ‘disorders of fluid, electrolyte, and acid-base balance’ (phecode 462 

276) was phenome-wide significance in PheWAS-2 compared to PheWAS-1, but the 463 

association did not remain significant in replication analysis. The phenome-wide 464 

significant phenotype with the largest effect size in PheWAS-2 is ‘localized adiposity’ 465 

(OR=1.014, phecode 278.3), same as for PheWAS-1. It should be of note that the range 466 

of OR is low in PRS-PheWAS due to the cumulative effect sum of all PCOS 467 

susceptibility loci including low-effect variants. 468 
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 469 

C. Sensitivity analysis – Associations with individual PCOS susceptibility loci 470 

(PheWAS-3)   471 

In the individual PheWAS of 85 PCOS genome-wide significant variants, even 472 

though no association survives phenome-wide significance, likely due to the multiple 473 

testing burden, 11 PCOS variants show notable association to ‘polycystic ovaries’ 474 

across the ancestry groups (Most significant variant hg19 chr11:30226528, OR=1.36, 475 

phecode 256.4), ranked as the second most significant phenotype (Supplementary 476 

table 7). Out of top 100 associations in PheWAS-3, the largest number of associations 477 

were related to circulatory system for ‘thrombotic microangiopathy’ (31.0%). 478 

Endocrine/metabolic related phenotypes were the second most frequent category 479 

(21.0%) composed of either ‘PCOS’ or ‘ovarian dysfunction’, and 12% of the top 480 

associations were digestive traits, largely devoted to diverticular diseases. We did not 481 

identify any associations related to obesity or diabetes, which were the most significant 482 

phenotypic features found in PheWAS-1 and PheWAS-2.  483 

 484 

Discussion 485 

 486 

A key question in precision medicine is how to identify patients at high risk for a 487 

given disease for the goal of targeting preventive care. In this study, we examined the 488 

ability of PRS to predict PCOS clinical diagnosis and mine comorbid EHR phenotypes 489 

with the ultimate goal of improving diagnostic accuracy for PCOS. We show that a PRS 490 
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for PCOS can be used (a) to identify patients at elevated risk of PCOS and (b) to 491 

determine the comorbid or pleiotropic phenome-wide expression associated with PCOS 492 

in a clinical setting.  493 

The primary accomplishment of this study is a systematic enhancement of the 494 

polygenic risk prediction by integration of additional disease component phenotypes in 495 

the EHR into a PPRS. The onset of hirsutism, menstrual dysfunction, or female infertility 496 

are representative symptoms of PCOS and essential in determining clinical 497 

hyperandrogenism [10, 40, 41]. They are not required for a diagnosis of PCOS per se, 498 

but are useful in suggesting PCOS in a clinical context. The PPRS significantly 499 

improves the average explanatory power (pseudo-R2) of PCOS prediction by 0.221 500 

(59.1-fold increase) compared to the null model without PRS or component phenotypes, 501 

and by 0.037 (14.7% increase) over the null model with the component phenotypes 502 

alone (Table 2 and Figure 4). In contrast to the previous studies that attempted to 503 

identify PCOS diagnosis with risk score calculation [13, 42], our algorithm did not limit 504 

risk predictor in a single-dimension, using both phenotype and genotype markers with 505 

polygenic inheritance, and extensively demonstrated the predictive performance of 506 

PPRS with several machine-learning techniques. The findings shown here strengthen 507 

the potential clinical utility of PPRS as a disease predictor, particularly when combined 508 

with component symptom information available within the EHR.  509 

To date, research has consistently shown that the PRS built from EA GWAS data 510 

does not perform as robustly across non-EA samples. In this study, we assessed the 511 

performance of a Eurocentrically built PCOS-PRS on the samples of EA, AA, and the 512 

joint MA cohorts. Undeniably, validation statistics varied by ancestry group and the 513 
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PCOS diagnosis prediction in AA cohort shows the poorest performance. However, it is 514 

of note that more than half of the tested models in AA still show statistical significance in 515 

terms of regression p-value, and those models display a reliable efficiency for PCOS 516 

detection in effect size and AUC (Table 3). Interestingly, the ORs for PRS differ across 517 

the ancestry cohorts, and somewhat higher in some prediction models in AA (average 518 

OR of model1=1.25, model2=1.28) and MA samples (average OR of model1=1.14, 519 

model2=1.13) than EA samples (average OR of model1=1.13, model2=1.12). The 520 

overall ORs of the PRS variable are fairly stable throughout all polygenic prediction 521 

models (OR 1.12~1.28). The observed significance of the PRS variable in the MA 522 

cohort, more stable than in the EA or AA participants alone, is likely due to the 523 

increased statistical power with larger sample size that counters the sample 524 

heterogeneity introduced. In addition, we found that the accumulation of genetic variants 525 

did not always increase the predictive capability of PRS in terms of pseudo-R2 and OR 526 

(Figure 3, Table 2). This might be due to the different RAF of PCOS risk variants by 527 

different PRS p-value cutoffs, and the varying LD structure of the ancestry groups. 528 

Previous research has confirmed that the LD pattern varies between EA and Chinese 529 

women at the PCOS susceptibility loci encoding LH/choriogonadotropin receptor 530 

(LHCGR) and FSH receptor (FSHR) genes, but the reproducible signals of the loci are 531 

consistently associated to PCOS regardless of ancestry[43, 44]. Our sensitivity analysis 532 

(PheWAS-3) also suggests the varying phenotypic effect of PCOS loci in different 533 

ancestries, but confirms the strong association with PCOS nonetheless. These findings 534 

demonstrate the primary role of PCOS-PRS in cumulatively explaining substantial 535 
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variation of disease susceptibility across ancestries even with differing LD structures, 536 

and extend the general utility of PPRS in disease prediction. 537 

Furthermore, our PRS-based phenome-wide analysis revealed several clinical 538 

associations that are tightly linked with obesity, confirming the shared metabolic 539 

pathways between PCOS and obesity in a phenomic aspect. As obesity is a common 540 

finding which can be found in 50-65% of PCOS patients[10], and previous Mendelian 541 

randomization study revealed the causal relationship of BMI on PCOS etiology[45], 542 

many of our findings could be interpreted as phenotypic evidence of co-morbid obesity. 543 

‘Morbid obesity’ (phecode 278.11), ‘hypercholesterolemia’ (phecode 272.11), ‘disorders 544 

of lipoid metabolism’ (phecode 272), ‘hyperlipidemia’ (phecode 272.1), ‘hypertension’ 545 

(phecode 401) or ‘abnormal glucose’ (phecode 250.4) are easily understandable with 546 

the context of heightened metabolic risks for obesity. ‘Sleep apnea’ (phecode 327.3) 547 

and ‘chronic liver disease and cirrhosis’ (phecode 571), ‘GERD’ (phecode 530.11), 548 

‘diseases of esophagus’ (phecode 530 and 530.1) are either neurological, pulmonary or 549 

digestive assorted symptoms that are commonly found in the patients with obesity.  550 

It is also noteworthy that there were 75 significant associations identified in women 551 

while in men, there were only three significantly associated diagnosis (morbid obesity, 552 

type 2 diabetes, diabetes mellitus) despite a similar sample size for males and females 553 

in the analysis. It is possible that the clinical consequences of high androgens in males 554 

are less likely to cause symptoms for which medical treatment is sought, or that these 555 

genetic variants only elevate androgen levels in a female ‘environment’ but not a male 556 

one. The three identified phenotypes in males additionally suggest that if an individual 557 
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harbors high genetic risk for PCOS, the metabolic manifestations are similar regardless 558 

of sex. 559 

Consistent with previous studies [13, 45], we identified phenotypic evidence of 560 

positive BMI association with genetic risk of PCOS. In the stratification analysis of PRS, 561 

our observation of the increased BMI in individuals with high risk of PCOS are evident in 562 

both EA and MA cohorts (Figure 2). The comorbid phenotypes could be driven by 563 

pleiotropy in which PCOS-associated genes also increase BMI, or could be due to 564 

under diagnosis of PCOS itself, in which case the association with obesity phenotypes 565 

may be a result of comorbidity with undiagnosed PCOS. 566 

Several limitations to this study need to be acknowledged. First, the sample size of 567 

AA participants was relatively small which increases the likelihood of both false negative 568 

and false positive findings. Further investigation is needed to fully understand the 569 

overlap in PCOS genetic factors across multi-ancestry participants and the 570 

methodological application of Eurocentric PCOS-PRS to other genetic ancestries 571 

considering LD structure. Secondly, the phenotypic components we used for polygenic 572 

prediction are currently limited to only three representative phenotypes: hirsutism, 573 

irregular menstruation, and female infertility. Fueled by our PheWAS finding, the work 574 

could be extended by incorporating the additional phenotypes that might increase the 575 

likelihood of an eventual diagnosis. Also, the phecode of PCOS used for PheWAS was 576 

converted from ICD-9-CM 256.4 and ICD-10-CM E28.2, which was used as a proxy for 577 

capturing PCOS in the EMR. This phecode may not perfectly capture PCOS as they 578 

may or may not capture hyperandrogenemia. The selection bias in our discovery cohort 579 

should be acknowledged as well. Two of our participating sites (Geisinger and 580 
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Marshfield) mainly recruited their patients for the study of obesity and type 2 diabetes, 581 

which resulted in a higher proportion of obese patients into their biobank and therefore 582 

may inflate the prevalence of PCOS in these subgroups. Lastly, due to the low 583 

diagnosis rate of PCOS patients in current EHR system, it is possible that unidentified 584 

PCOS cases could reduce power in each analysis.  585 

Our approach has provided a novel methodological opportunity to stratify patients’ 586 

genetic risk and to discover the phenomic network associated with PCOS pathogenesis. 587 

Integrative analysis of the PRS-PheWAS enables the systematic interrogation of PCOS 588 

comorbidity patterns across the phenome, which cannot be readily identified by a 589 

single-variant approach. The identified phenomic networks could be used at the stage of 590 

first screening, prior to the testing of hormones or imaging of ovaries, or to help the 591 

patient and physician decide whether more extensive testing would be useful for PCOS 592 

diagnosis. From a precision medicine perspective, such an approach may provide a 593 

greater understanding of a patient’s clinical presentation and suspected diagnosis 594 

based on phenotypic or genetic variations.  595 

  596 
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