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Abstract 19 

We analyzed publicly available whole genome sequencing data from cattle which were 20 

germline genome-edited to introduce polledness. Our analysis discovered the unintended 21 

heterozygous integration of the plasmid and a second copy of the repair template sequence, 22 

at the target site. Our finding underscores the importance of employing screening methods 23 

suited to reliably detect the unintended integration of plasmids and multiple template 24 

copies.  25 
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Article 26 

As genome editing technology evolves, so does our understanding of the unintended 27 

alterations it produces, both in form and frequency. Several sequencing-based methods 28 

have been developed to screen for off-target errors (GUIDE-Seq1, SITE-Seq2, CIRCLE-Seq3, 29 

DISCOVER-Seq4), and long-read sequencing of the target site can be used to detect on-30 

target errors. Each screening approach carries assumptions and biases that may allow 31 

alterations of unexpected types to go undetected. Recent examples of previously 32 

unexpected alterations are complex genomic rearrangements at or near the target site in 33 

mammalian genome editing experiments5, 6. The complex rearrangements included 34 

insertions, deletions, inversions, and translocations that were difficult to detect by standard 35 

PCR and DNA sequencing methods.  36 

In this study, we analyzed the target site of publicly-available whole genome sequencing 37 

data7 from genome-edited calves to confirm the intended edit and to screen for potentially 38 

undetected on-target errors (Supplementary Methods). The calves were genome-edited7, 39 

using transcription activator-like effector nucleases (TALENs) and a repair template for 40 

homology-directed repair (HDR)8, to introduce the Celtic polled allele (Pc), a variant that 41 

produces the hornlessness (polled) trait in cattle. The Pc variant, common in some cattle 42 

breeds9, is a 212-bp duplication in place of a 10-bp sequence in an intergenic region on 43 

chromosome 1 (chr1:2,429,000-2,429,500; bosTau9). The variant follows an autosomal 44 

dominant inheritance, but the mechanism underlying the association with polled trait is 45 

unknown.  46 

Given that the repair template plasmid was delivered in the pCR2.1-TOPO plasmid (Fig. 47 

1a), we included the plasmid backbone sequence in our comparison of the sequencing reads 48 

with the bovine reference genome. In our analysis, we discovered the presence of the full-49 

length plasmid backbone in both genome-edited calves (Supplemental Fig. 1). While one 50 

allele contained the intended edit, identical to the naturally-occurring Pc variant (Fig. 1b), 51 
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close inspection revealed integration of the plasmid and a second copy of the repair 52 

template sequence at the target site in the other allele in both calves (Fig. 1c). The 53 

plasmid-containing allele (denoted Pc*) was found to have been inserted continuous with 54 

the template ends, producing a duplication of the template and two novel bovine-plasmid 55 

junctions (Supplemental Fig. 2). No off-target insertions of the plasmid or the template 56 

were detected.  57 

Previously, the template plasmid integration was not detected7. Probable reasons include: 58 

the plasmid backbone was not included in the sequence alignment, elevated noise at the 59 

target locus, limited signal of the sequencing data, and PCR conditions insensitive to detect 60 

the integrations. The noise was elevated due to the complex sequence context that 61 

obscured the integration: (1) the Pc variant itself is a duplication of the reference sequence 62 

(HORNED allele) in place of a 10-bp sequence, and (2) the target locus is highly repetitive, 63 

potentially masking rearrangements. The signal is limited by the sequencing depth of 20 64 

reads for each DNA base, on average. In an ideal scenario, heterozygosity would result in 65 

10 reads identifying the plasmid insertion but given that the plasmid DNA sequence is not in 66 

the reference genome, the plasmid reads would remain unmapped. The template plasmid 67 

integration was not detected by PCR genotyping7 due to the following: (1) the expected PCR 68 

amplicons, correctly sized for the Pc variant (212-bp duplication in place of a 10-bp 69 

sequence), were produced, (2) the primers were not designed to amplify the plasmid, (3) 70 

the amplicons produced by the template plasmid integration were prohibitively large, and 71 

(4) the qualitative nature of the assay was insensitive to the increased number of template 72 

copies (Supplementary Methods, Supplemental Fig. 3, and Supplemental Table 1).  73 

Next, we performed a literature search of template plasmid integration at the target site in 74 

genome editing experiments, to determine the prevalence of this class of unintended 75 

alterations. We found that while there are reports, the template plasmid integration is often 76 

not a major finding, and thus we suspect that the integration errors are under reported or 77 
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overlooked. Template plasmid integration events are known to occur with zinc finger 78 

nucleases (ZFNs) at both the target and off-target sites10, 11. Using HEK-293 cells, Olsen, et 79 

al.10 showed that transfection of plasmid alone resulted in plasmid integration at a rate of 80 

28x10-5 per cell; the addition of one ZFN increased the frequency to 55x10-5 per cell and 81 

two ZFNs further increased the frequency to 99x10-5 per cell. Work by Dickinson et al.12, 82 

using CRISPR/Cas9 with a template plasmid in C. elegans, reported the integration of a 83 

second copy of the template at the target site. Additional publications using CRISPR/Cas9 84 

with double stranded DNA (dsDNA) repair templates showed that the dsDNA templates can 85 

form multimers that integrate into the target site in fish13 and mice14.  86 

Our discovery highlights a potential blind spot in standard genome editing screening 87 

methods. In light of our finding, we propose modifications to current screening methods to 88 

enable detection of plasmid integration and integration of multiple template copies. The 89 

alignment of sequencing data should include both the reference genome and plasmid 90 

sequences. PCR genotyping should incorporate plasmid-specific primers. Methods to detect 91 

increased copies of the template and unintended integration of the template plasmid include 92 

long-range PCR conditions, quantitative PCR (e.g., digital droplet PCR), Southern blot, and 93 

long-read sequencing (e.g., Nanopore, PacBio). The application of suitable screening 94 

methods will provide a more precise measure of the prevalence of template plasmid 95 

integration events and drive improvements to genome editing, to the benefit of the field.   96 
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Figures97 

 98 

Fig. 1: Template plasmid integration at the target site of genome-edited calves. 99 

Genomic structure of the template plasmid (a), unedited parental cell lines (b), and the 100 

genome-edited calves (c). (a) The repair template, containing the Pc sequence and flanking 101 

homology arms, is inserted in the pCR2.1 plasmid in an antisense orientation at the TOPO 102 

cloning site. (b) The unedited parental cell lines are homozygous for HORNED. (a) The 103 

genome-edited calves are heterozygous: one chromosome contains the intended edit (Pc), 104 

while the other chromosome harbors template plasmid integration, in addition to the 105 

intended edit.   106 
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