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Can grid cell ensembles represent multiple spaces?
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The way grid cells represent space in the rodent brain has been a striking discovery, with theoret-
ical implications still unclear. Differently from hippocampal place cells, which are known to encode
multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space
through a single low dimensional manifold, in which coactivity relations between different neurons
are preserved when the environment is changed. Does it have to be so? Here, we compute — using
two alternative mathematical models — the storage capacity of a population of grid-like units, em-
bedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct
representations of multiple environments can coexist, as existing models for grid cells have the po-
tential to express several sets of hexagonal grid patterns, challenging the view of a universal grid
map. This suggests that a population of grid cells can encode multiple non-congruent metric rela-
tionships, a feature that could in principle allow a grid-like code to represent environments with a
variety of different geometries and possibly conceptual and cognitive spaces, which may be expected
to entail such context-dependent metric relationships.
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I. INTRODUCTION
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Global remapping has motivated the conceptual model

Grid cells appear to comprise an essential component
of the cognitive representation of space in rodents [1] and
in other species, e.g. bats [2]. Located in the medial en-
torhinal cortex, these neurons are selectively active when
the animal is in certain positions of the environment, the
so-called fields, at the vertices of a remarkably regular
hexagonal lattice. A study of the activity of grid cells in
multiple environments [3] has shown that while the grid
expressed by each neuron varies across environments in
its spatial phase and orientation, between neurons the co-
activity relations are largely preserved, at least for those
recorded nearby in the tissue, with the same tetrode. In
other words, the grids of different cells undergo a coher-
ent rigid movement when a new environment is explored,
as illustrated schematically in Fig.1 (a) and (b). The
subsequent discovery of quasi-discrete “modules” [4] in-
dicates that these relations are maintained at the local
network level, presumably by recurrent collateral connec-
tions among grid cells. This finding has led to the hy-
pothesis that local ensembles of grid cells comprise each
a single continuous attractor network, expressing a “uni-
versal”, two-dimensional map, which encodes the met-
ric of space independently of the environmental context.
There is a crucial difference with the context-dependent
spatial representations provided by hippocampal place
cells, which display “global remapping” [5] even between
very similar rooms, in particular in the CA3 field [6]:
cells which were silent acquire one or more place fields,
others lose theirs, and the fields that seem to have been
maintained typically are in a different location (Fig.1B).
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of multiple charts [7], in contrast with early and later
models of continuous attractor grid cell networks, which
envisage a single chart [8],[9],[10]. The dominant overall
view, then, holds that the hippocampus encodes multiple,
uncorrelated, context-dependent cognitive maps, while
the grid system provides metric information that is inde-
pendent of the environment. Recent evidence of context-
dependent distortions in the grid pattern have begun to
question the view that the collective map expressed by a
grid module is universal, that is, that it applies to any
environment. Stensola et al. [11] have shown that, when
rats explore large environments, a single grid can exhibit
multiple orientations, likely due to anchoring effects to
the closest wall, which in any case amount to distortions
of the hexagonal pattern. These effects have been ana-
lyzed extensively in a more recent study [12]. Krupic et
al. [13], [14] have shown that the grid pattern deviates
from perfect hexagonality, with both global and local dis-
tortions, in response to environmental features such as
the geometry of the walls. Finally, a couple of recent
studies [15],[16] have shown that the presence of salient
features such as goals or rewards affect the entorhinal
map, changing field locations and inducing remapping
in other space selective cells. These observations, more-
over, refer solely to the position of the peaks of activity,
i.e. the place fields of each cell, and do not take into
account the fact that they vary reliably in height, in-
dependently across peaks, from one environment to the
other [17]. Should we still regard grid cells as a sort of
stack of millimeter paper, providing a universal metric
for space?

Recent studies conducted in both rodents and humans,
moreover, suggest that regular grids may not “measure”
only physical space. Aronov and colleagues [18] find that
both place cells and grid cells, in rats, are involved in
the representation of a non-spatial but continuous, one-
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dimensional variable, such as the frequency of a sound.
An fMRI study by Constantinescu et al. [19] shows an
hexagonal modulation of the BOLD signal in human En-
torhinal Cortex, and elsewhere, in a task that requires
subjects to “navigate” the 2D space spanned by the vary-
ing leg and neck lengths of a drawing of a bird. The rep-
resentation of abstract or conceptual spaces, which could
in principle be topologically and geometrically complex,
would require of the grid cell system a flexibility that can
hardly be reconciled with the universal grid hypothesis.

In a most interesting study [20], a subset of grid units
were depolarized in transgenic mice, leading to what ap-
pears to be global remapping in the hippocampus. What
is so striking is that the manipulation induces extensive
changes, up and down, in the peak firing rates of the dif-
ferent fields of individual grid units, but not in their posi-
tion. This elaborates the observation in [3], and suggests
that what might be universal in the grid representation
expressed by an ensemble of units, if anything, are the
relative positions of the fields, whereas their peak firing
rates are variable (Fig.1C). On the other hand, a strict
hexagonal periodicity of the field positions of individual
units is only possible in flat 2D environments. The adap-
tation model of grid formation [21] predicts instead, on
surfaces with constant positive or negative Gaussian cur-
vature, and appropriate radius, the emergence of grids
with e.g. pentagonal [22] or heptagonal [23] symmetry.
In all other cases, including ecologically plausible natural
environments, non-flat surfaces have varying curvature,
making strictly periodic grids dubious, and rigid phase
coherence most unlikely. But then, what happens to the
universality of the grid in natural environments?

To address these issues, the aim of the present work is
to answer a first fundamental question: is it at all pos-
sible to conceive of multiple, hence non-universal, ideal
grid representations expressed in the same local network,
when the animal is placed in distinct, even if flat, envi-
ronments? In other words, would the storage capacity
of a recurrent network of grid cells be above unity, so
that multiple continuous attractors can coexist, encoded
in the same synaptic efficacies? We pose this question
within two alternative mathematical models, both ac-
cepting the idealized assumptions which underlie the uni-
versal map hypothesis, that is, of strict periodicity and
equal peak rates, depicted in Fig.1D, but allowing for
several uncorrelated grid representations. Under these
assumptions, we analyze an ensemble of grid cells as
a Continuous Attractor Neural Network, extending the
frameworks developed in [24], [25] and [26] for the de-
scription of place cells. We emphasize that the storage
capacity we are interested in quantifies the number of dif-
ferent, independent charts (or collective maps) that the
network can store, and not the spatial resolution (which
may be referred to as information capacity, i.e. the num-
ber of different positions that can be decoded from the
ensemble activity), as considered for example in [27] and
[28].
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FIG. 1. Types of change in grid cell activity in mEC (bot-

tom) concurrent with global remapping in the CA3 field of the
hippocampus (top). The universal grid map model, idealized
from [3] allows only for a coherent translation (and possibly
a rotation) into a new map B, when changing environment.
Under a manipulation which does not entail changing envi-
ronment, the individual fields of each unit have been observed
to independently vary their peak rates, keeping their relative
position ([20], new map C). We assess the hypothesis that the
same network may also express other maps, such as map D,
with a complete re-positioning of the grids of different units.

II. COMPLEMENTARY NETWORK MODELS

We model the grid cell population as an ensemble of
units interacting through recurrent connections, whose
structure defines which activity states are robust - the
dynamical attractors. We assume, however, that a sep-
arate process, based e.g. on adaptation [21], has deter-
mined the emergence of a periodic grid, independently
for each unit, during familiarization with each of p dis-
tinct environments; meanwhile, recurrent connections are
shaped by a Hebbian learning process, such that neu-
rons that happen to have nearby fields tend to fire to-
gether, strengthening their connections, while neurons
with fields far apart remain weakly connected. The con-
nection strength J;; is therefore taken to be a sum of con-
tributions from the exploration of p environments, with
each contribution, once averaged across many trajecto-
ries, a function of the relative position of the fields in
that environment. Exploiting the simplifying assump-
tion that each grid is strictly periodic, we can focus on
the elementary repetitive tile, which has only one field per
unit and is, in the mathematical formulation, connected
by “periodic boundary conditions” to adjacent tiles. The
assumption of periodic boundary conditions is motivated
by the remarkable regularity of the arrangement of the
fields observed in the original experiments, and by the
model being meant to describe interactions within a grid
module, in which all cells share the same spacing and
orientation. The contribution to the connection strength
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between two units ¢ and j is then reduced to a function
of their field centers Z7 and Z7 on the elementary tile in
environment 7

p
= > K@) (1)

where we refer to K() as the “interaction kernel”. The
field peaks, or centers Z; of N units are taken to be ran-
domly and uniformly distributed over the elementary tile.
Our analysis focuses on two different models of neurons
(binary and threshold-linear) and two types of attractor
symmetry (square and hexagonal), which stem from the
tile shape or the interaction kernel. Both neuron mod-
els allow, from complementary angles, a full statistical
analysis, leading to otherwise inaccessible results. The
storage capacity turns out to depend more on how in-
terference reverberates through loops (expressed by the
parameter 1, see below) than on the type of units; and
interference, in the densely coded and densely connected
regime, affects square much more than hexagonal grids.

A. Binary units

The first model we consider is an extension of the
model proposed by Monasson & Rosay [25] for the mod-
eling of place cells in CA3. Here the activity of neurons
is described by binary variables, such that the pattern of
activity of a network of N units is a vertex {o} € {0,1}V.
For the binary model, the kernel K (i,7) between units 4
and j relative to one environment is taken to be a step
function of the distance between their field centers

1 L o

K() = 5Ode — |2 - Zj]) (2)
where ©(z)=1 for > 0 and 0 otherwise — note that the
distance |Z; — ;| is along the shortest path, considering
the periodic boundary conditions. The periodic structure
of the attractor depends on the shape of the rhomboid
unitary tile in which the field center Z; of each unit is
located. The lattice symmetry is specified by the angle
0 between its two primitive vectors. § = 60° corresponds
to the standard case of hexagonal grids, while § = 90°
describes a square grid pattern. These two cases and the
resulting interaction kernel are depicted in Fig.2 (a) and
(b). The cut-off distance d. sets the number of non-zero
connections each unit receives from the storage of a given
environment, denoted by w N: d. = y/(w/7)sinf. This
measure of connectivity within one environment should
not be confused with the global connectivity taking into
account all environments, C' = (N —1)(1—-(1—w)?) ~ N
for large p.

The dynamics of the network is governed by the energy
function:

Ejl{o}] = =) Jijoio; 3)

1<J

3

and constrained by the requirement that at any time
a fixed fraction f of units be in the active state, i.e.
>;0i = fN. We call f the coding level, or sparsity
of the representation. This constraint is taken to reflect
some form of global inhibition. Later we shall focus only,
given w, on the optimal coding level in terms of storage
capacity, hence on a specific value f*(w), which turns out
to be a monotonic function of w (see Fig.3). This model
then allows an explicit focus on the dependence of the
storage capacity on the width of the kernel and on the
resulting optimal sparsity of the representation.

B. Threshold-linear units

We extend our analysis to firing-rate units, whose ac-
tivity is described by a continuous positive value corre-
sponding to their instantaneous firing rate. This second
model allows us to capture the graded nature of neural
activity, which is salient when it represents space, which
is itself continuous. The activity of the network is given
by a configuration {V;} € (RT)", and each unit inte-
grates the inputs it receives through a threshold-linear
transfer function [29]

v {g(hi ~ho) i hi>ho @

0 if hz < ho
where g (the linear gain) and hy (the activation thresh-
old) are global parameters of the network, and the “local
field” h; is a real-valued variable summarizing the input
influence on unit 7 from the rest of the network, which
we take to come from a random but fixed set of C' among
the N — 1 other units, as well as from external sources.
The interaction kernel K(-) is given by the special sum-
of-cosines form

=@ +1) ()

d
E COS

which had been considered as a toy case by [24], before
the discovery of grid cells. The field center of each unit on
the elementary tile is expressed by a set of angles ¢! ().
We shall see that d = 2 and 3 are equally valid choices
on the plane, as well as d = 1, which leads to “band”
solutions (see below). This model therefore allows de-
coupling the form of the kernel, which is extended, with
interactions among units far away on the elementary tile
(and the resulting coding level is correspondingly non
sparse) from the connectivity, which can be made arbi-
trarily sparse if C/N — 0. As a superposition of d cosine
functions, the kernel can also be conveniently written as
a sum of dot products. The +1 term is added to en-
force excitatory connections. While not circularly sym-
metric like the radial kernel used in the binary model,
this cosine kernel allows for the analytical study of pe-
riodic patterns that are spread out on the plane, with a
large fraction of the units active at any given time. The
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FIG. 2. Interaction kernels for the binary (a,b) and rate (c,d)
models. The white lines show the elementary tile of each lat-
tice.

solutions for the hexagonal kernel (Fig.2(d)), in particu-
lar, given by three cosine functions at a 60° angle from
one another, have been considered as a reasonable model
for experimentally observed grid cells. In the figure, the
hexagonal elementary tile extends in the range z = +1/2
and y = £1/ V/3, and the three angles span the directions
' = 2mx, >3 = mw(x £ v/3y). The square kernel is ob-
tained for d = 2 and the two cosines at 90° from each
other (Fig.2 (c)). Note that, as with the binary model,
N units are concentrated on an elementary tile that in
the hexagonal case is v/3/2 of the area of the square case.

An energy function would look similar to the one in
Eq. [3], but now expressed in terms of the continuous
variables {V'}. When C' < N —1 and connections are not
symmetric, the energy formalism does not apply but we
can still analyze the model (see below and in appendix
B), and again we take global inhibition, which can now
also act through a modulation of the common gain g, to
depend on the average activity of the network and to be
such as to optimize storage capacity.

III. STORAGE CAPACITY

Both models can store a single population map, as in
the bottom panels of Fig.1A,B, and the equations for
such a map admit periodic bump solutions that repro-
duce the shape of the tile/kernel (as well as potentially
other solutions, e.g. stripes, to be discussed later). We
are interested however in their capacity to store several
distinct maps, as in Fig.1A and D, and in the possibil-

4

ity to calculate such storage capacity analytically, in the
mean field approximation. The general strategy involves
formulating and resolving a set of self consistent equa-
tions relating the activity of the units in the network.
When the model admits an energy function, these are
the saddle point equations derived from the computation
of the “free energy” of the system with the replica trick,
which allows to take into account the statistics of the field
centers in each environment. Without an energy func-
tion, e.g. when the connections are sparse and not sym-
metric, equivalent equations can be derived through the
so-called Self Consistent Signal-to-Noise Analysis [30].
The solutions to these equations, that describe the ac-
tivity in one map, disappear sharply at a critical value
o, of the storage load o = (p/C), which measures the
ratio of the number of maps to the number of connec-
tions to each unit. «a. then gives the maximum number
of maps that the network can store and retrieve or ex-
press, normalized by the connectivity. Crucially, we have
developed a novel method to assess whether below a.
these solutions are indeed stable and prevail on others
(Fig. 6 and 7).

The details of these methods, that build on [25] and
[26] for the binary model and on [31] and [24] for the
rate model, can be found in appendix. We focus, in the
calculation of the storage capacity, on so-called “bump
states”, in which activity is localized along each of the
two dimensions of the elementary tile (anywhere on the
tile, given the translation invariance of the interaction
kernel). Other solutions however exist, as discussed in
section IV.

A. Binary units

The statistical analysis of the minima of the free energy
leads to the patterns of activity {o} that are likely to be
observed given the connectivity. More precisely, we have
derived self-consistent equations for the average activity
p(Z) = (o;) of unit ¢ having its grid field centered in &
(in the elementary tile):

0@ = [a: L o ez aa. (O
V2mar

where
u(@) = [ a7 K(7.7) o0 (7)

is the signal input received by the unit through the in-
teractions corresponding to the environment in which the
bump is localized, say, 7 = 1, and z is the noisy, Gaus-
sian input due to the interference from the other envi-
ronments, say, T = 2, ...,p, see Eq. (1). The variance ar
of these Gaussian inputs is, in turn, self consistently de-
rived from the knowledge of the activity profile p, see ap-
pendix A. The uniform (inhibitory) input A enforces the
constraint [ dZp(Z) = f. We have considered the limit
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case of neurons responding deterministically to their in-
puts, although the analysis extends naturally to stochas-
tic noise.

We calculate, from the saddle point equations, the stor-
age capacity a.(w, f) as the maximal value of the load
a for which a bump-like solution to Eq. [6] exists. Then,
for a given value of w, we find the coding level f*(w)
that maximizes the storage capacity. Over a broad range
0 < w < 0.5 the optimal f* turns out to be approxi-
mately half the value of w (see Fig.3). That the optimal
value for the coding level is proportional to w can be
understood intuitively by considering the spatial profile
of the signal p(Z): if too few cells are allowed to be ac-
tive, the connections to the cells that are forced to be
silent, within the connectivity range of the active cells,
will be frustrated. On the other hand, if too many cells
are active, those outside the connectivity range will con-
tribute more to the noise than to the signal. This optimal
storage capacity is plotted in Fig.4, for the square and
hexagonal grids as a function of w. At low w the two
values are similar, but when w increases their trends di-
verge — a Y-related effect — leading to substantially higher
capacity value in the hexagonal case, of order 10~2 for
w =~ 0.5. This value would definitely allow, in a real cor-
tical network with order thousands (or tens of thousands)
of neurons, the storage and retrieval of multiple indepen-
dent grid maps. Again considering the spatial profiles of
the signal p(Z) allows to gain intuition about this diver-
gence. At very low w, i.e. short range interactions, what
happens in other tiles can be neglected, and the two grids
behave similarly. When the range is wider, the location of
the fields in the immediately neighbouring tiles starts to
be relevant. In the square case, there are four first neigh-
bours, contributing to excite silent neurons in-between
the fields. For an hexagonal arrangement of the fields,
there are six neighbouring tiles that each contribute rel-
atively less excitation in-between fields. Intuitively this
last geometrical arrangement makes the structure more
rigid and reduces the influence of the noise due to the
storage of other charts.

0.25{ — square grids
— hexagonal grids
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FIG. 3. Optimal coding level for the binary model.
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FIG. 4. Storage capacity as a function of w for square and
hezagonal grids in the binary model, given an optimal coding
level f ~w/2.

B. Threshold-linear units

In this model the coding level and the connectivity
range are both fixed by the shape of K(-). The mean
field approach can be however extended to the case of
arbitrary values of the connectivity density C/N, with
the Self-Consistent Signal-to-Noise Analysis [30]. The
storage capacity is given by the « for which the solution
to the equation

disappear. In fact, the disappearance of the solution only
gives an upper bound on «., as one has to check its sta-
bility as well. The details of the derivation and the ex-
pression of the average signal fi and of the interference
noise r are reported in appendix B. We plot such critical
value for square and hexagonal grids with the respec-
tive kernels, as a function of the inverse density N/C, in
Fig.5 (full curves, blue and red). In the fully connected
regime, we find a result, corroborated also by computer
simulations, similar to the one obtained with the binary
model, with however a huge difference in capacity be-
tween square and hexagonal grids, and a value ~ 1072
only for the latter. Moreover, it turns out that for the
square kernel the stripe or band solutions of the next sec-
tion are the global minima, and the square solutions are
only marginally stable. In all cases the capacity increases
as the connectivity density decreases, reaching an asymp-
totic value as N/C' — oo. The quantitative results for
hexagonal grids has implications consistent with those of
the binary model: it suggests that, again, a network of
grid cells, for which a plausible number of synapses per
neuron may be in the order of thousands, and with a
connectivity, say, of order C/N ~ 0.1, would have the
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capacity to encode perhaps a hundred different environ-
ments.

C. Sparsity and noise reverberation

The binary model shows that the difference in capacity
between hexagonal and square grids results from the ef-
fective interactions among the fields in different tiles, as it
emerges only with wide kernels and dense coding. When
both are sparse, hexagonal and square grids are roughly
equivalent. The w — 0 limit can be worked out analyt-
ically and o, — 0 in both cases, but only after having
reached a maximum around o, ~ 0.02 for quite sparse
codes, w ~ 0.03 and f ~ 0.015. Sparse coding is known
to suppress noise reverberation (leading to small ), but
remarkably this relatively large capacity is approximately
preserved for hexagonal grids with dense coding, w ~ 0.5
and f ~ 0.25, illustrating the efficiency with which this
compact arrangement minimizes interference.

The threshold-linear model affords complementary in-
sight, again on how the hexagonal /square capacity differ-
ence depends on the units active in each attractor rever-
berating their activity. Mathematically, this is expressed
explicitly by the dependence of Eq.8 on the order pa-
rameter v, which quantifies the amount of reverberation
through the loops in the networks. The physical mean-
ing of ¥ can be inferred from the expression derived in
appendix B and C:

_ 1o
T/J—ggf- 9)

The factor ¢'Ty/d is in fact the typical noise Ty/d am-
plified by the renormalized gain ¢’ and multiplied by the
average fraction of active units, the f parameter as in
the binary model. ) is then the one-step loop term in
the reverberation of the noise; its effect on the capac-
ity is illustrated by the dashed line in Fig.5, in which
such contribution is factored out. For densely connected
networks, storage capacity would massively increase and
relative differences would decrease without noise rever-
beration. The optimal capacity for the hexagonal kernel
is then (mainly) the result of a reduced reverberation
of the noise, due to the shape of the activity distribu-
tion of its attractors: the average fraction of active units
(f ~ 0.46) in the attractive state of the hexagonal kernel
model is considerably lower than the same fraction in the
square kernel, where it would be f ~ 0.79 for the square
grids, and is only somewhat reduced to f ~ 0.68 for the
stripes, which replace them as the stable solutions for
this kernel.

IV. BAND SOLUTIONS

In the previous analysis, we focused on “bump” states,
in which activity is localized in a grid pattern. An-
other possibility are partially localized solutions: “band”
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FIG. 5. Storage capacity in the threshold-linear model as a
function of the inverse connectivity density N/C, on a log-
log scale. Full lines give a. for the three different interaction
kernels (bands in green, square grids in red and hexagonal
grids in blue). Dashed lines indicate what the capacity would
be without noise reverberation. The crosses on the left show
the capacity obtained with numerical simulations for a fully
connected network.

states, where activity is localized along a single direction
in the elementary tile, and extends along a stripe in the
orthogonal direction.

In the binary model, these band states can be oriented
along an edge of the tile (Fig.6(b,f)), or along the diago-
nal of the tile (Fig.6(c,g)), or in a discrete multiplicity of
other orientations. Individual units “fire” along stripes
of the same orientation, with relative offsets. We can
study the propriety of some of these band states in the
w — f parameter space, to find that they are particu-
larly favored in regions of high coding level. Given the
connectivity range set by w, bump states are the global
minima of the free energy for low f, and one of the band
states (which one depends on 6) becomes the minimum
for higher f. For example, for both square and hexagonal
grids, at small connectivity range w = 0.1, band states
have lower free energy than the bump state for coding lev-
els beyond 0.25, while for the larger connectivity range
w = 0.5, this happens for coding levels beyond 0.4. This
is intuitive, since for sufficiently large f a band state has
a shorter boundary between active and quiescent units
than a bump, and it is the length of the boundary that
raises the free energy above its minimum value. More-
over, we can study how these different states are sep-
arated by computing the size of the free-energy barrier
to cross to go from one state to another. The method to
compute this barrier is sketched in Fig.7(c) and explained
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in more details in appendix D. In Fig.7(d) we show the
size of the barriers to cross to go from a “bump” state to
“band” states. On the range of coding levels where these
two kinds of states co-exist, the “bump” state is always
more robust for an hexagonal grid compare to a square
grid, as shown by the higher barrier size in an hexago-
nal grid (blue curve, from Bump to Band Edge or Band
Diag. state) compare to square grid (full red curve, from
Bump to Band Edge state).

A different behaviour is observed in the threshold-
linear network. In this case, the rigid symmetry imposed
by the 3-cosine interaction kernel makes the bump pat-
tern a global minimum. In the 2-cosine case, instead,
band state are stable solutions, corresponding to a macro-
scopic overlap with only one of the two cosines. We can
describe bands also with a 1D interaction kernel, with a
single cosine, and compare the storage capacity for band
patterns with the one for square and hexagonal grids. In
Fig.5, the green line shows the capacity for band patterns
as a function of the connectivity. For a densely connected
network, it is above that for square grids, and the barrier
methods indicates that these are only marginally stable
to collapsing into stripes. This is in line with the reduc-
tion of the capacity from one to two dimensions shown
in [24]. Interestingly, as soon as the emergence of a third
cosine is allowed the capacity is instead enhanced, sur-
passing the 1D kernel except for very low values of con-
nectivity density.

Square Grid
Bump Band Edge Band Diag. Uniform
(a) (b) (c) (d)
Hexagonal Grid
Bump Band Edge Band Diag. Uniform

() (f) (9) (h)

FIG. 6. Different solutions to the saddle point equations in the
binary model. Bumps (a,e) are stable at low f (f=0.2 in the
figure). Edge-oriented and diagonal bands are stable solutions
for the 8 = 60° tile at higher [ (e.g. [=0.4, f,g), but only the
former (b) are stable for 0 = 90°: Uniform solutions (d,h) are
always unstable below the critical capacity.

V. DISCUSSION

Our results indicate that, given appropriate conditions,
a neural population with recurrent connectivity can ef-
fectively store and retrieve many hexagonally periodic
continuous attractors. This possibility suggests that a
regular grid code may not be restricted to represent only

7
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\./\/
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FIG. 7. Bump and band states in the binary model. Free-
energies of the bump and band states for hexagonal grids (a)
and square grids (b). (c) Free-energy barriers are given by
the difference in free-energies between an unstable mixed-state
(band edge + bump shown here) and a metastable state (bump
state shown here). (d) Size of the free-energy barriers to cross
to go from the bump state to band states. w = 0.1, a — 0.

physical space; it could also express continuous abstract
relations between arbitrary features, at least if they can
be mapped to a two-dimensional space. This would how-
ever require a system flexible enough to store and retrieve
uncorrelated grid representations. Our results show that
this flexibility does not need, in principle, separate neu-
ral populations for separate representations, but can be
achieved by a single local ensemble, provided it can learn
effectively orthogonal representations.

Given the recent observation of non-spatial coding —
a consistently tuned response to the “position” along a
1D non-spatial variable, sound frequency, during a sound
manipulation task — by neurons that qualify as grid cells
in a 2D spatial exploration task [18], it would be inter-
esting to know whether a similar selectivity can be ob-
served for a 2D non-spatial variable, as suggested by indi-
rect observations of hexagonal modulation [19]. Several
important questions are left open for future investiga-
tion. First of all, if global remapping is possible within a
grid cell population, why has it not been observed ex-
perimentally? Possibly, a remapping capacity of grid
cells may have been hidden by the fact that multiple
mappings were only studied in simple, empty, flat envi-
ronments - and then they turned out to be the same,
modulo translations [3]. The hypothesis of a universal
grid, that shifts without deformation across an environ-
ment and from one environment to the other, faces severe
difficulties as soon as curvature is taken into considera-
tion. In curved environments, rigid translations are not
possible, and the geodesic transformations that partially
substitute for them do not leave field-to-field relations
unchanged, making a universal grid a priori impossible.
Nevertheless, natural environments show a wide range
of both positive and negative curvature, which does not
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seem to pose any problem to the navigational skills of
rodents, or of other species. It is then conceivable that
the apparent universality of the grid pattern comes from
the experimental restriction to flat environments, which
all belong to the same, rather special, class of two dimen-
sional spaces with zero curvature, and that a richer grid
behavior is required in order to code for position in more
general spaces. The emergence of grid representations in
curved environments has been investigated with a model
based on single cell adaptation [22][23], which illustrates
the emergence of different regular patterns for distinct
ranges of curvature. Estimating the storage capacity
of recurrent networks expressing curved grids, however,
poses some challenges. Since shifting the grid pattern
along a curved surface moves individual fields by a differ-
ent amount, the relationships between grid units cannot
be reduced to the relationships between a single pair of
their fields. Long-range translational coherence becomes
impossible. Curved grids can be only partially coherent,
and whether this partial coherence is sufficient to build
stable attractors is an open problem [32]. A second open
problem is the ability of a network encoding multiple
charts to support path integration, since the noise intro-
duced by other charts is likely to introduce discontinuities
in the dynamics shifting the activity bump, impacting
the accuracy of the integrator. It has recently been sug-
gested [33] that interactions between different grid mod-
ules (each encoding a single chart or coherent ensemble
of maps) can enhance the robustness to noise during path
integration. The possibility that this result generalizes to
modules encoding multiple charts, and the analysis of the
capacity deriving from interactions between modules, are
beyond the scope of the present work, but deserve future
investigation. Finally, a third issue concerns the learning
dynamics that sculpts the grid attractors. What is the
mechanism that leads to the attractors of the recurrent
network? Does a single grid dominate it, in the case of
flat environments? Can self-organization be unleashed
by the interplay between the neural populations of mEC,
including non-grid units, and hippocampal place cells,
aided by the dentate gyrus [34]7 Including the hippocam-
pus may be needed also to understand the distortion of
the grid pattern, reported in several experimental stud-
ies [4][11][13], that by disrupting long-range order also
weakens coherence. At the system level, a finite storage
capacity for the grid cell network implies the possibility
that medial Entorhinal Cortex, or any other area in the
brain [19] that is observed to include grid-like units, can
serve context memory. This would turn upside down the
widely shared notion that memory for the specific spa-
tial features of each environment is only available down-
stream, in the hippocampus, and conceptually reunite
medial Entorhinal Cortex with other regions of the mam-
malian temporal lobe, known to be dedicated to their own
flavour of memory function [35].Moreover, the possibility
of multiple uncorrelated continuous attractors in flat en-
vironments, combined with the discovery of transitions
between (highly correlated) states in which the grid is

8

the same but the peak firing rate of each field is different
[20], and with a new understanding of the disorder and
frustration inherently associated to the grid representa-
tion of curved environment [32], puts to rest the rigid or-
der which had appeared as the most salient character of
the newly discovered grid cells. It suggests instead a sort
of spin glass at intermediate temperature, i.e., that in or-
der to code densely and efficiently for position on (many)
continuous manifolds, grid cells have to be equipped with
the flexibility and the ability to compromise characteris-
tic of self-organized disordered system.
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Appendix A: Mean field equations: Binary Model

The free-energy can be written, in the large N limit,
in terms of macroscopic quantities:

I=E§Mf—@—%QWﬁ%+/u@M@)

_% / didy p(F)K (|17 — i) p(7)

df/Dzln[lJreBZWJrB“(f)]

(A1)

where (8 is an inverse temperature or noise level, and the
function Q(gq, 8) is given by

N N
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The order parameters minimizing the free energy func-
tional are the average activity p(Z) (see main text) and

L 1-2
q= /df/Dz {1 + e_ﬁzm_ﬁu(w)} (A3)

where X enforces the constraint [ dZp(Z) = f and Mg, ,
are the eigenvalues of the kernel K and are given by

w J1 (2\/ zkl,kz)
V #k1,k2

ko — Ky cosf\ >
)

where J7 is the Bessel function of the first kind of order 1.

)‘kl,kz = (A5)

In the text we focus on the limit of vanishing stochastic
noise 8 — oo, and the term B(g— f), which remains finite
in such limit, can be identified with the parameter v of
the threshold-linear model, quantifying the reverberation
through the loops of the network of the quenched noise,
which is due to the interference of the other maps.

Appendix B: Mean field equations: Threshold-linear
Model

When an energy functions can be defined (with full or
in any case symmetric connectivity) the thermodynamics
of the system is dominated by the minima of the free
energy density

F= —T<< /Dz In Tr(h, h2)>> - ;; Im?'|*(B1)

—B(m) — Z(mg’l)Q +mB'(m) — royo + 11y

a,l

+% (111[1 — ToB(yo — )]

B B )
1 —ToB(yo — y1)

where we have maintained a notation consistent with
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[31] and [24], for example
1/2 /
ki (T BI (o — 2
Tr(h,hQ)—k—&—(zﬂ) exp(2 (ho h))
11/2
{1 +erf %g (ho — h)] } (B2)
h = Z m!? . n'% + B'(m) (B3)
ol

—z/(—2Tyr1)
h2 =71 —To (B4)
1/g'=1/g — 2hs (B5)
Dz = L 6722/2d2, (B6)

Nezd

while ((-)) denotes an average over the quenched noise
(the field centers in all other stored maps, distinct from
the one which is currently expressed); and B(x), together
with the gain g, can be used to constrain the mean activ-
ity and the sparsity of the activity pattern [31], analogous
to the parameter A in the binary model.

The minima are given, in the limit 7" — 0, by the
saddle point equations

e {(o o)

ng/<</h>Tth(h—Th)>> (B8)
T
ro = @To 1= ToBlyo —241)/d (B10)
2 (1-ToByo — y1)/d)?
s T
7t (([,2))
_ %o Tofy, . (B12)
2d (1 —ToB(yo —y1)/d)
Introducing the variables
v d(C;T—%? )
()

we can write the free energy as a function of macroscopic
quantities

()

gl
Top?d
+mb(m) — B(m) + Op;p (B15)
with now
1
g = (B16)
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To calculate the storage capacity, we focus on the case
in which a single environment is retrieved by the network,

m' >0

=0, Vr#£l,

although the analysis can be extended to the retrieval of
bump states that are localized in multiple environments.
Without loss of generality, we assume therefore that en-
vironment 7 = 1 is retrieved. With this assumption, and
introducing the two signal-to-noise ratios

o
P (B17)

_ b(m)—Th
w = T (B18)

that represent respectively the environment specific com-
ponent of the signal and the uniform background inhi-
bition acting on each unit, the saddle point equations
can then be reduced to a system of two equations in two
variables

By (v,w) = A (v,w) — daAsz(v,w) =0 (B19)
Es(v,w) = A1 (v,w) (d — As(v, w)) —daAs(v,w) =0

To
(B20)
where A;(w,v), Az(w,v) and Az(w,v) are the averages:

Ay (w,v) —02T0<<Zv o[ o <w+;”l'"lz)>>

~({/ 7))

+
[
Az (w,v) _1}2T0 <<Z'u n/ Dz(w—FZv -z

(B21)
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Appendix C: Finite connectivity and noise
reverberation

Equations B19 and B20 can be extended to arbitrary
value of connectivity density C/N following the self-
consistent signal-to-noise analysis developed in [30]. This

gives
= A2 - (1 +% (W)) dadAs =0 (C1)

These equations interpolate, as the free parameter C'/N
varies, between the two limiting cases of a fully con-
nected network (C/N = 1) and the extremely diluted
case (C/N — 0) studied in [36]. We see that the re-
verberation factor i enters in the equation for the stor-
age capacity as a correction on the loopless equation

— daAz = 0, modulated by the connectivity density
C/N, and that the lower the v, the higher the storage
capacity.

For the fully connected network this correction gives

Y Nk
— =
P

which is the sum over all the k-loops contributions to the
reverberation of the noise.

Note, finally, that for ease of comparison with the bi-
nary model we have written in the main text

(C3)

Aa
As. (C4)

S =
Il

l )>> Appendix D: Free-energy barriers in the binary

(B22)

(o))

(B23)
Solutions to equations (B19) and (B20) give the minima
of the free energy that correspond to the retrieval of one
of the stored environments. FEj(v,w) = 0 describes a
closed curve in the w — v plane, and these solutions are
the intersections with Fs(v,w) = 0, which depends on
the gain g.

As the storage load @ = p/C increases, this closed
curve shrinks and eventually disappears. The value
a = a, at which the curve vanishes marks a phase tran-
sition: for a > a.. retrieval solutions do not exist. The
storage capacity a. can therefore be calculated by finding
the vanishing point of 1 = 0, and in this way one auto-
matically selects the optimal value of the gain g, which
therefore

model

Free-energy values for the different metastable states
are calculated using (A4) after order parameters have
been computed by solving the saddle-point equations.
These equations are solved iteratively, starting from
an initial condition for order parameters, and iterat-
ing the values of the order parameters until convergence
to fixed values. The free-energiy values of the differ-
ent metastable states are obtained by initializing p(Z)
as ppp(Z) for Bump States (Fig.6(ae)) and ppar(Z)
for Band Edge states (Fig.6(b,f)) or pp.p(Z) for Band
Diagonal states (Fig.6(c,g)). In order to estimate the
size of the barrier that must be jumped over in order
to go from one state X to another state Y, we pro-
ceed as follows. The activity profile is initialized as
pF=%%(%) = 2px (Z) + (1 — 2)px (&), with z chosen such
that p"=F°%2(Z) = px(7) and pF7+°024(T) = py (7)
for € < z. When solving equations from such an initial
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condition, the network state goes close to a saddle-point
lying at the boundary between the two basins of attrac-
tion associated to states X and Y, before sliding into
state X as shown in Fig.7(c). The size of the barrier is

11

then given by the difference between the free-energy of
the saddle-point and that of the meta-stable state X.
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