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Abstract  21 

Integrated information theory (IIT) postulates that consciousness arises from the cause-effect 22 

structure of a system but the optimal network conditions for this structure have not been 23 

elucidated. In the study, we test the hypothesis that network criticality, a dynamically balanced 24 

state between a large variation of functional network configurations and a large constraint of 25 

structural network configurations, is a necessary condition for the emergence of a cause-effect 26 

structure that results in a large Φ, a surrogate of integrated information. We also hypothesized 27 

that if the brain deviates from criticality, the cause-effect structure is obscured and Φ diminishes. 28 

We tested these hypotheses with a large-scale brain network model and high-density 29 

electroencephalography (EEG) acquired during various levels of human consciousness during 30 

general anesthesia. In the modeling study, maximal criticality coincided with maximal Φ. The 31 

constraint of the structural network on the functional network is maximized in the maximal 32 

criticality. The EEG study demonstrated an explicit relationship between Φ, criticality, and level 33 
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of consciousness. Functional brain network significantly correlated with structural brain network 34 

only in conscious states. The results support the hypothesis that network criticality maximizes 35 

Φ. 36 

 37 

Introduction  38 

Integrated information theory (IIT) proposes that consciousness equates with integrated 39 

information in a system and the integrated information is maximized when integration and 40 

differentiation of the systems’ components are balanced. IIT proposes algorithmic methods to 41 

identify the differentiated parts of a system and quantify the integrated information across the 42 

parts [1–6]. Φ is a measure of complexity of the cause-effect structure of the minimum 43 

information partition among all possible partitions. However, in a dynamic system such as the 44 

brain, the optimal conditions under which the cause-effect structure—that is, the basis of 45 

integrated information— arises has not been elucidated. In this study, we hypothesized that 46 

network criticality, a balanced state between a large variation of functional network 47 

configurations and a large constraint of structural network configurations, may be the basis of 48 

the high Φ in conscious brains. 49 

Criticality was originally introduced for studying phase transition in physics, which was simply 50 

defined as a balanced state between order and disorder in the activities of the elements that 51 

make up a system [7,8]. This property has been observed broadly in physical and non-physical 52 

systems and has been suggested as an optimal state for information storage, transmission, and 53 

integration with high susceptibility to external stimuli [9–13]. In particular, several computational 54 

modeling and empirical studies suggest that the brain dynamics associated with consciousness 55 

reside near a critical state [14–19]. Furthermore, recent studies have attempted not only to 56 

identify whether the conscious brain resides near the critical state but also to understand 57 

systematically how various types of brain perturbations (sleep, anesthesia, and traumatic 58 

injuries) lead to a deviation from criticality [9,20–23]. Such approaches introduce the criticality 59 

hypothesis as a theoretical framework to study pharmacological and pathological states of 60 

unconsciousness, such as anesthesia and coma. Regarding the characteristics of a critical state 61 

such as highly informative, highly susceptible, highly efficient, and highly integrative, criticality 62 

shares many commonalities with the brain state that IIT proposes as conducive to 63 

consciousness. However, the relationship between criticality, Φ, and human consciousness has 64 

not been demonstrated explicitly. 65 
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To identify a relationship between criticality and Φ, we analyzed computationally a large-scale 66 

human brain network model adjusting criticality with a control parameter. The criticality was 67 

defined using the pair correlation function (PCF), a surrogate measure of susceptibility [24]. The 68 

relative change of Φ across states was estimated with Φ̅, a surrogate measure of Φ that we 69 

developed for high-density EEG. Empirically, we modulated the level of human consciousness 70 

in a stepwise manner with an anesthetic and calculated both Φ̅ and PCF from continuous EEG 71 

data. From the modeling study and EEG analysis, we were able to quantitatively study the 72 

relationship between Φ, criticality, and consciousness, and suggested network criticality as a 73 

necessary condition for a high Φ in human brain networks. 74 
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 75 

Figure 1. Schematic flow diagram for studying the relationship between criticality (defined as pair 76 

correlation function, PCF), integrated information (Φ) and human consciousness. (A) Model study: a 77 

simple coupled oscillator model (Kuramoto model) was implemented on an anatomically informed human 78 

brain network structure constructed from diffusion tensor imaging (DTI). The Φ was calculated while 79 

modulating the level of criticality with a control parameter (coupling strength). The level of criticality was 80 

defined using PCF, a susceptibility measure, of the simulated brain activity. (B) Empirical study: 64-81 

channel EEG data derived from seven healthy volunteers were recorded while gradually increasing 82 

sevoflurane concentration from 0.4% to 0.6% to 0.8%, then decreasing it from 0.8% to 0.6% to 0.4%. The 83 

changes of PCF and Φ were compared with the response rate to verbal commands.  84 
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Methods 85 

Ethics Statement: This study was conducted at the University of Michigan Medical School and 86 

approved by the Institutional Review Board (HUM00061087); after careful discussion, written 87 

informed consent was obtained from all participants. 88 

Human brain network model: Many recent studies have successfully applied Kuramoto/Stuart-89 

Landau models to the brain in order to understand the organizational principles of multiscale 90 

brain function, surrogates of information flow, and complex dynamics at the whole brain network 91 

level [25–27]. Similarly, we hypothesized that the application of simple oscillatory models, which 92 

can modulate the criticality with a control parameter, to an anatomically informed brain network 93 

structure could inform the relationship between brain network criticality and integrated 94 

information.  95 

We used a large-scale brain network model that implements a coupled simple oscillator model 96 

on the scaffold of an anatomically informed human brain network structure. The human brain 97 

network consists of 78 parcels of the cerebral cortex constructed from diffusion tensor imaging 98 

(DTI) of 80 young adults [28].  99 

𝜃̇𝑗(𝑡) = 𝜔𝑗 + 𝑆 ∑  

𝑁

𝑘=1

𝐴𝑗𝑘𝑠𝑖𝑛 (𝜃𝑘(𝑡 − 𝜏𝑗𝑘) − 𝜃𝑗(𝑡))     , 𝑗 = 1,2, … , 𝑁.            (1) 100 

Here S is the coupling strength between oscillators and Ajk denotes the anatomical connections 101 

between oscillator j and k, yielding 1 if a connection exists and 0 otherwise. τjk is the time delay 102 

between node j and k. θj(t) is the phase of oscillator j at time t. ωj is the intrinsic frequency of 103 

oscillator j.  104 

Simulation procedures: All parameters for the models were set to simulate alpha oscillations 105 

in the brain. Alpha oscillation models have successfully explained empirically observed brain 106 

network behaviors such as functional connectivity, traveling waves, and network state 107 

transitions based on electroencephalography (EEG) and magnetoencephalography (MEG) 108 

[25,26,29–37]. Thus, alpha oscillations were analyzed to understand the behaviors of Φ and the 109 

criticality at the brain network level. The natural frequencies of the oscillators in our simulation 110 

were given as a Gaussian distribution around 10 Hz with a standard deviation of 0.5 Hz. Time 111 

delay was set proportional to the physical distances between nodes with a propagation speed of 112 

8.6m/s [38]. The coupling strength between the oscillators was continuously changed from 0 to 113 
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18. In each parameter set, 100 configurations were simulated and the results were averaged 114 

over all configurations.  115 

Experimental procedures: We conducted a secondary analysis of high-density EEG data from 116 

a study of sevoflurane-induced unconsciousness in humans; the details of the experiment can 117 

be found in the supplementary text of this article and the previously published Blain-Moraes et al 118 

[39]. The current study tested different hypotheses and, unlike the original study, included 119 

computational analyses of brain network models. 120 

Sevoflurane dataset: 64-channel EEG were recorded from seven healthy volunteers as 121 

sevoflurane concentrations in high-flow oxygen (8 L/min) were gradually increased from 0.4% to 122 

0.6% to 0.8% (the average range at which unconsciousness was induced) or beyond, then 123 

decreased from 0.8% to 0.6% to 0.4%. The EEG was recorded with eyes closed. The loss and 124 

recovery of consciousness were defined as the loss and recovery of response to the verbal 125 

command ‘squeeze your left [or right] hand twice,’ on a recorded loop every 30 seconds, with 126 

right/left hand commands randomized.   127 

Average reference was used for re-referencing and the windowed sinc-FIR filter (in the MATLAB 128 

toolbox from EEGLAB) was used to avoid a possible shifting of the signal. We analyzed 12-129 

second-long EEG epochs with 1-minute-long moving windows.  130 

Criticality: Criticality, a boundary state between order and disorder, has long been proposed to 131 

play an important role in neural dynamics and brain function. Empirical evidence supports the 132 

hypothesis that the brain operates at or near the critical point, not only at the neuronal network 133 

level [22,40,41], but also at the large-scale or global network level [9,12,42–44]. Until now, most 134 

studies have focused on scale-free behavior, showing power law distribution of empirically 135 

observed variables. It has also been recently proposed that high correlation between functional 136 

and structural brain networks [14,23,25,26,45] and a large pair correlation function (PCF) 137 

[24,46] is evidence of criticality. In both the brain network model and empirical EEG data, we 138 

estimated criticality with PCF, which is the variance of global phase synchronization and is 139 

equivalent to susceptibility in statistical physics  140 

𝑃𝐶𝐹 = 𝑁 {< 𝑅𝑒2[𝑧(𝑡)] >𝑡− < 𝑅𝑒[𝑧(𝑡)] >𝑡
2}                  (2) 141 

where Re[z(t)] is the real part of the z(t) in Eq. (3).  142 

𝑧 = 𝑟 𝑒𝑖𝛹 =  
1

𝑁
∑  𝑁

𝑗=1 𝑒𝑖𝜃𝑗             (3) 143 
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where Ψ is the order parameter phase. The absolute value r = |z| represents the degree of 144 

synchronization. The r is equal to zero when the phases of nodes are uniformly distributed and 145 

one when all the nodes have the same phase.  146 

Calculation of Φ̅:  IIT defines integrated information (Φ) as the effective information (𝜑) of the 147 

minimum information partition (MIP) in a system [1–3,5,47]. The MIP is also defined as the 148 

partition having minimum effective information among all possible partitions.  149 

Φ [X;x] = : 𝜑 [ X;x, MIP(x) ]          (4) 150 

MIP (x) = : arg min{ 𝜑 (X;x , P) }          (5) 151 

where X is the system, x is a state, and P is a partition P={𝑀1, … ,  𝑀𝑟 }.  152 

Identifying the MIP requires searching all possible partitions and comparing their effective 153 

information φ. This is the most time-consuming and computationally demanding process in the 154 

application to high-density EEG. Furthermore, considering the fact that EEG data recorded 155 

during anesthetic state transitions are non-Gaussian and continuous time series, we used the 156 

𝛷̃𝐴𝑅 as a measure of integrated information [48]. The computed 𝛷̃𝐴𝑅 values from original signals 157 

were compared with the 𝛷̃𝐴𝑅 values of surrogate data sets, and non-significant 𝛷̃𝐴𝑅 values were 158 

set as zero. 159 

Although many improvements have been made in the algorithms of Φ over the last decade, the 160 

computation time is still unrealistic because of the need to search an enormous number of 161 

partitions to identify the MIP. In our previous study, we proposed a surrogate measure Φ̅ to 162 

circumvent the explosive computational time of Φ for high-density EEGs. Φ̅ estimates the 163 

relative change of Φ across states by considering the average feature of many small sample 164 

units rather than trying to identify the MIP and its effective information for all EEG channels. A 165 

sample unit consists of a small number of EEG channels randomly selected from 64 channels 166 

and the total number of sample units is taken as large enough to represent the behavior of the 167 

entire high-density EEG montage. In this study, we limited our interest only to the relative 168 

changes of Φ values across states, rather than attempting to calculate the exact Φ value for 169 

each brain state, which would be impossible to measure using the superficial and spatially 170 

imprecise brain activity recorded by EEGs.  171 

For each sample unit, we were able to calculate the MIP and its effective information—that is, 172 

the Φ of the sample unit. For instance, in this study, we selected 8 random EEG channels for a 173 

sample unit and acquired 200 sample units that were randomly selected from the baseline 174 
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states. The same 200 sample units determined in the baseline were then compared across EEG 175 

windows to investigate the increase or decrease of Φ values.  Since the number of possible 176 

bipartitions of 8 channels is ∑  4
𝑘=1 𝐶(8, 𝑘) = 162, where C stands for the combination of k unique 177 

elements chosen from eight possible elements, calculating Φ for all EEG windows of seven 178 

subjects during state transitions is possible within a relatively short computational time. 179 

The average Φ̅ is defined as follows. 180 

Φ̅ =
1

𝑘
∑  𝑘

𝑖=1 𝛷𝑖(𝑛)  −  
1

𝑘
∑  𝑘

𝑖=1 𝑚𝑒𝑑𝑖𝑎𝑛(𝛷𝑠𝑢𝑟𝑟(𝑖)(𝑛) )                     (6) 181 

where n is the number of EEG channels for a sample unit and k is the number of sample units of 182 

the n EEG channels. 𝛷𝑖(𝑛) measures the effective information of MIP for the n EEG channels, 183 

by definition, the integrated information of the sample unit. Here, we chose n=8 and k=200 184 

following our previous study [49]. 𝛷𝑠𝑢𝑟𝑟(𝑛) is the spurious 𝛷𝑖(𝑛) estimated from randomly 185 

shuffled EEG data sets. Subtracting the randomness, Φ̅ reflects the average integrated 186 

information of 200 sample units taken from the high-density EEG data that exceeds the spurious 187 

information integrated from the surrogate data. Since Φ̅ estimates the relative change of Φ, it is 188 

appropriate for our purposes to detect the maximum Φ to compare with the maximum criticality.  189 

Functional connectivity: Phase Lag Index (PLI), a measure of phase locking between two 190 

signals, was used to define the functional connectivity in the EEG network [50]. We chose a 191 

Hilbert transform to extract the instantaneous phase of the EEG from each channel and 192 

calculate the phase difference 𝛥𝜃𝑖𝑗(𝑡) between channels i and j, where 𝛥𝜃𝑖𝑗(𝑡) =  𝜃𝑖(𝑡) − 𝜃𝑗(𝑡), t 193 

= 1,2,…,n, and n is the number of samples within one epoch. 𝑃𝐿𝐼𝑖𝑗 between two nodes i and j is 194 

then calculated using equation (7):  195 

𝑃𝐿𝐼𝑖𝑗 = |< 𝑠𝑖𝑔𝑛 ( 𝛥𝜃𝑖𝑗(𝑡) ) >| ,     0 ≤  𝑃𝐿𝐼𝑖𝑗 ≤ 1.            (7) 196 

Here, the sign() function yields: 1 if 𝛥𝜃𝑖𝑗(𝑡) > 0; 0 if 𝛥𝜃𝑖𝑗(𝑡) = 0; and -1 if 𝛥𝜃𝑖𝑗(𝑡) < 0. The mean 197 

< > is taken over all t=1,2,…,n. If the instantaneous phase of one signal is consistently ahead of 198 

the other signal, the phases are considered locked and 𝑃𝐿𝐼𝑖𝑗 ≈ 1. However, if the signals 199 

randomly alternate between a phase lead and phase lag relationship, there is no phase locking 200 

and 𝑃𝐿𝐼𝑖𝑗 ≈ 0.  201 

Surrogate data: To control for spurious connectivity of EEG, 20 surrogate data sets were 202 

generated with a random shuffling method, in which a time point is randomly chosen in each 203 

EEG channel; the EEG epochs are then shuffled before and after the time point. The shuffled 204 
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data have the same amplitude distribution and power spectrum of the original EEG, but there 205 

are disruptions of the original connectivity between two EEG signals.  206 

Network construction: We expected that different EEG frequency bands and different states 207 

would have different levels of spurious connectivity [51]. Thus, after subtracting the median PLI 208 

of 20 surrogate data sets, if the remaining PLI was larger than 0.1 then the connectivity of two 209 

EEG signals was set as 1; otherwise, it was set as 0. The threshold (0.1) was chosen to avoid 210 

isolated nodes in the EEG network in the baseline states. The node degree of an EEG channel 211 

was defined as the number of functional links in the network.  212 

EEG simulation: To test if the PLI network of EEG in conscious states is similar to the 213 

structural brain network in a critical state, we simulated 78 source signals in the structural brain 214 

network in a critical state and projected it into the 64 sensor signals on the scalp. We could then 215 

directly compare the PLI networks of EEG and the PLI network of the simulated EEG (; the 64 216 

sensor signals on the scalp). The signals generated from the Kuramoto model and structural 217 

brain network represent source activities of the brain, which are under the surface of where 218 

EEG is measured. In reality, the electrical potentials generated by the neural activity in the brain 219 

conduct outwards through brain tissue and the skull and finally appear at the scalp surface 220 

where the EEG signal is measured. In order to compare experimental EEG and the model 221 

signals, we generated surface level signals from the simulated source signals. We used three 222 

concentric spherical head models; the three layers consist of the brain, skull, and scalp. The 223 

conductivity of the three layers was set to be 0.33, 0.0042, and 0.33 S/m, respectively [52]. The 224 

source activity was represented as a dipole moment. The coordinate of the dipole moment in 225 

the brain was determined by the region’s standard coordinates and the orientation of the dipole 226 

moment was randomly assigned. The forward model simulation was conducted by using the 227 

Field Trip Toolboox [53]. 228 

Statistical Analysis: We performed one-way ANOVA (“anova1.m”, MATLAB toolbox) with 229 

Tukey-Kramer correction (“multcompare.m” with alpha = 0.05 and ctype = “tukey-kramer” in 230 

MATLAB) for the comparison of the PCF and Φ̅ among different states. The statistical tests 231 

were carried out for the modeling and empirical analysis separately. The adjusted P-values of 232 

0.05 or lower (*P < 0.05, **P < 0.01, and ***P < 0.001) were considered to be statistically 233 

significant (S1 Table and S2 Table). 234 

 235 
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Results 236 

 237 

Model Study: Correlation between Criticality and Φ̅ 238 

We simulated various brain network dynamics by adjusting the control parameter (i.e., coupling 239 

strength). First, we determined the critical state of the model by identifying the coupling strength 240 

that yielded a maximum criticality. The criticality of the system was defined by PCF, which 241 

reflects the susceptibility of the brain network dynamics to perturbation. As the coupling strength 242 

of the network was increased, the PCF reached a maximum at an intermediate coupling 243 

strength, while the order parameter increased monotonically (dotted line in Figure 2A). In Figure 244 

2A, we illustrate the intermediate coupling strength (blue region) as the critical state of this brain 245 

network model and selected an incoherent (green region) and highly synchronized (red region) 246 

states of lower PCFs as a supercritical and subcritical state, respectively. The Φ̅ value was also 247 

maximized at a point between sub- and supercritical states, at a similar coupling strength that 248 

corresponds to the maximum PCF. 249 

Here, we assumed that the maximum Φ̅ may arise due to the balance between the large 250 

variation of functional network configurations and the large constraints of structural network 251 

configurations, as a characteristic of a critical state. The disrupted balance in an incoherent or 252 

highly synchronized brain network results in a small Φ̅. Figure 2B presents the functional brain 253 

networks based on the phase lag index (PLI). The functional connectivity at the maximum PCF 254 

(in the critical state) resembles the structural brain network of DTI, whereas the functional 255 

connectivity at the lower PCFs (in the sub-and supercritical states) are relatively homogeneous 256 

and not similar with the structural brain network. 257 

 258 
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 259 

Figure 2. Criticality, Φ̅, and structured functional connectivity in the brain network. (A) When modulating 260 

the coupling strength (a control parameter), the maximum Φ̅ coincides with the maximum criticality, as 261 

measured by the pair correlation function (PCF), while the order parameter (dotted line) increases in a 262 

monotonic way. (B) Only in the critical state (blue region in Figure 2A), a salient structured functional 263 

connectivity, which resembles the structural brain network, emerges in the brain network. Color bar 264 

indicates the node degree.  265 

 266 

A Network Mechanism of the Maximal Φ̅ in a Critical State  267 

In a critical state, a network synchronization is balanced by incoherent and synchronous 268 

connections through partial phase locking. At a coarse-grained level, the distribution of 269 

incoherent and synchronous connections is shaped by the network topology; oscillations at the 270 

nodes with dense connections become slower and more synchronous, while oscillations at the 271 

nodes with sparse connections are faster and incoherent [25,26]. As a consequence, a coarse- 272 

grained functional network resembles a structural network in a critical state [14,54,55].  273 

 274 
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Figure 3A presents the Spearman correlation coefficients between the node degrees (in the 275 

structural brain network) and the PLIs of the 78 nodes (in the functional brain network) as 276 

coupling strength increases. The Spearman correlation coefficient is at a maximum in the critical 277 

state (blue region), while both the super- and subcritical states (green and red regions, 278 

respectively) are associated with smaller correlations. The results imply that the constraint of the 279 

structural network on a functional network is maximized in the critical state, with higher degree 280 

nodes having a larger PLI. Figure 3B presents the scatter plots of the PLIs versus the node 281 

degrees of the 78 nodes in the three states. A large positive correlation coefficient appears only 282 

in the critical state (Figure 3B blue, r=0.57, p-value < 0.001). However, the large correlation 283 

does not mean that the functional network is static. Figure 3C presents the temporal evolution of 284 

the Spearman correlation coefficients between the instantaneous phases of alpha oscillations in 285 

the functional brain network and the node degrees in the structural brain network for the three 286 

states. The varying correlation coefficients indicate the temporal change of the phase lead-lag 287 

relationships among 78 brain regions upon the structural brain network. The large variation of 288 

functional networks is one of the characteristics of a critical state and measured by a large PCF. 289 

As a result, the large variation of the functional brain network at a small-time scale (~ seconds) 290 

(Figure 3C) under the large constraint from the structural brain network (Figure 3B) in a large 291 

time scale (~ minutes) in the critical state may be the network condition for the maximal Φ̅ in the 292 

brain network. 293 
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 294 

Figure 3. Correlations between the functional and structural brain networks near to and far from a critical 295 

state. (A) The Spearman correlation coefficient between the 78 phase lag index (PLI) values in the 296 

functional brain network and the 78 node degrees in the structural brain network is maximal in the critical 297 

state (black line, blue shaded region). (B) The scatter plots (the 78 PLI values versus the 78 node 298 

degrees) for the supercritical (green), critical (blue), and subcritical (red) states. The large correlation in 299 

the critical state implies a large constraint of the structural network on the functional network. (C) The 300 

Spearman correlation coefficients between the instantaneous phases of alpha oscillations and the node 301 

degrees of the 78 nodes in the structural brain network. The large temporal variation indicates a large 302 

repertoire of functional connectivity, which is a characteristic of a critical state.  303 

 304 

 305 
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EEG study: Correlation between Criticality, Φ̅, and Human Consciousness  306 

To investigate the relationship between criticality, integrated information, and level of human 307 

consciousness, we compared the PCF and Φ̅ of high-density EEG and the response rate during 308 

general anesthesia. The behavioral response rate, which is inversely proportional to the drug 309 

concentration, was used as a surrogate for the level of consciousness. In figure 4A, the 310 

conscious resting state and the conscious recovery state have a higher PCF and Φ̅ than in the 311 

unconscious states. For the continuous EEG data, the change of PCF correlates with the 312 

change of Φ̅. Moreover, both the measures reflect the response rate during the significant state 313 

transition. These results are consistent with the model prediction and empirically demonstrate 314 

for the first time a direct relationship between PCF, Φ̅, and the level of human consciousness. 315 

The model study also predicted a large correlation of the structural brain network with the 316 

functional brain network in consciousness, which corresponds to the functional brain network in 317 

a critical state. However, since we recorded only the scalp EEG, we were not able to test the 318 

correlation between functional (PLI) and structural (node degree) brain networks. Instead, we 319 

compared the PLI networks of the EEG and a simulated EEG. For the simulation of EEG in the 320 

conscious state, we first simulated the source signals in the structural brain network in a critical 321 

state (the same simulation in Figure 2 and 3) and then projected the source signals onto the 322 

scalp (see the Method in details). If the model prediction is correct, both the PLI networks 323 

should be largely correlated.      324 

Indeed, we found high Spearman correlation coefficients between the PLI network of the EEG in 325 

the conscious states and the PLI network of the simulated EEG in a critical state. This 326 

correlation decreases along with the reduced response rate in the unconscious states (Figure 327 

4B). The high correlation coefficients in conscious states indicate a strong constraint of the 328 

structural brain network on the EEG. 329 

 330 
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  331 

Figure 4. Criticality, integrated information, and level of human consciousness during general 332 

anesthesia. (A) The PCF and Φ̅ of 64-channel EEG correlate with the response rate (grey area), 333 

which was modulated with increasing anesthetic concentrations. (B) The Spearman correlation 334 

coefficients between the PLI networks of the EEG and the simulated EEG based on the 335 

anatomical brain network and critical state. The conscious states (baseline, induction, and 336 

recovery) show larger correlations, which implies a stronger constraint of the structural brain 337 

network on the EEG in conscious states. As a result, the balance between the large constraint 338 

of the structural brain network and the large repertoire (i.e., large PCF) of the functional brain 339 

network may be the network basis of the large Φ̅ of EEG in the conscious brains.  340 

 341 

 342 
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Discussion 343 

Summary of the findings: In this paper, we performed a computational modeling and EEG 344 

data analysis to study the relationship between integrated information, criticality, and level of 345 

human consciousness. In the modeling study, we simulated the brain network activities near 346 

and far from a critical state and quantified the criticality and integrated information with PCF and 347 

Φ̅.  We found that when the brain network reaches a maximal PCF, the Φ̅ is also maximized 348 

under the largest constraint of the structural brain network (that is, with the largest correlation 349 

between the functional and structural brain networks). To verify the modeling results, we 350 

gradually modulated the level of consciousness in humans with a general anesthetic and 351 

compared the PCF and Φ̅ of high-density EEG with the behavioral response rate. We found 352 

that, in the conscious resting states, the subjects have the highest PCF and Φ̅𝑠 when the 353 

behavioral response rates are highest. We also showed that the functional brain network of 354 

EEGs in conscious states largely correlates with the functional brain network of the simulated 355 

EEGs, which were modeled to reflect the underlying structural brain network in a critical state. 356 

From both the modeling study and EEG analysis, we propose that the balance between the 357 

large variation of functional brain network (as measured as the large PCF) and the large 358 

constraint from the structural brain network in a critical state is a necessary condition to 359 

generate the high Φ̅ of conscious states. 360 

Criticality and maximal Φ̅ : IIT’s composition principle states that any subset of elements 361 

within a system can be a mechanism of the system if the intrinsic cause-effect power is 362 

irreducible [1,3]. Furthermore, the set of all mechanisms and their constraints within the system 363 

comprises a system’s cause-effect structure. Algorithmically, the intrinsic cause-effect structure 364 

can be identified by the effective information among partitions (𝜑), with the integrated 365 

information of a system (Φ) defined by the information transmission of the minimal information 366 

bipartitions. However, in the application to our brain network model, since we did not give any 367 

cause-effect structure initially, a non-zero Φ̅ may emerge through only the interaction of 78 368 

nodes in the brain network. This raises the following questions. How does a non-zero Φ̅ emerge 369 

spontaneously in the brain network? What is the network basis that facilitates the emergence of 370 

a cause-effect structure? In this study, we propose that the phase lead-lag relationship that is 371 

shaped by the structural brain network may create conditions that facilitate the emergence of a 372 

cause-effect structure.   373 

Previous studies have examined how brain network topology modulates the frequencies and 374 

phases of local node dynamics, subsequently shaping a pattern of global information flow and 375 
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functional connectivity. A mathematical relationship between the node degree and the phase of 376 

node dynamics was identified analytically [25,26], which enables us to estimate analytically the 377 

phase of a node (in a functional network) with only its node degree and local connectivity (in a 378 

structural network). This was tested with diverse brain networks (human, monkey, and mouse), 379 

which demonstrated that when considering long-term and spatially coarse-grained brain 380 

activities (> minutes) the global phase lead-lag relationship and information flow pattern 381 

(measured by transfer entropy and Granger causality) were predictable based only on the 382 

structural brain network topologies of the three species. In particular, the difference between the 383 

"hub node" and "peripheral node" becomes most salient at a critical state. In other words, the 384 

structural complexity of overall coupled node dynamics is maximized at a critical state. The 385 

differences between frequency and phase among coupled node dynamics naturally give rise to 386 

information flow in the brain network, consequently dividing the nodes in the brain network into 387 

‘senders’ and ‘receivers’ of information flow. However, in sub- and supercritical states, there is 388 

no information flow between node dynamics because of a highly-synchronized state (i.e., no 389 

difference that would allow for information flow) and incoherent state (i.e., no interaction that 390 

would allow for information flow). Therefore, a cause-effect structure may emerge between 391 

these two extreme states and be maximized at a balanced state. Extrapolating from results 392 

based on the phase lead-lag relationship, emerging a cause-effect structure without external 393 

stimuli is likely not random but rather is organized by a mathematical relationship between 394 

network structure and dynamics in a critical state [25,26,56,57].  395 

 396 

A large variation under a large constraint: In our modeling study and EEG analysis, we found 397 

that a large variation of the functional brain network occurs in spite of a strong constraint from 398 

the structural brain network. Notably, the large variation and the strong constraint were 399 

observed at different time scales. When we investigated the correlation coefficient between the 400 

instantaneous phases and the node degrees of the 78 nodes, the correlation coefficient at each 401 

time point varied widely at a short time scale (~ seconds) (Figure 3C). By contrast, the averaged 402 

instantaneous phases and the node degrees at a longer time scale (~ minutes) have a large 403 

positive correlation coefficient (r=0.57, Figure 3B), which implied a bias toward positive values in 404 

the short time scale variation. Our previous EEG study demonstrated that the correlation 405 

coefficient between the EEG network and the structural brain network was pronounced when 406 

calculated with large temporal windows (> 60 seconds) but diminished when calculated with 407 

small windows (< 5 seconds). Interestingly, the scale-dependency appeared only in the baseline 408 
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conscious states, not in the altered states of consciousness such as anesthetized state, 409 

minimally conscious state, and unresponsive wakefulness syndrome [23]. The conscious brain 410 

can be characterized by diverse repertoires of global functional connectivity on a short time 411 

scale. However, when combining all repertoires of small windows in a large window, the 412 

different functional connectivity patterns across small windows may be averaged out and only 413 

the common functional connectivity patterns that are constrained by the structural brain network 414 

remain. Such an averaged functional connectivity in a large window can be simulated by the 415 

mean-field method upon a structural brain network. Nevertheless, how the large variance and 416 

the large constraint contribute to the large integrated information in conscious states remains 417 

elusive. Further studies are required to understand the mechanistic association between the 418 

functional variance, structural constraint, and Φ in a network. 419 

 420 

Deviations from criticality and Φ̅ : When brain dynamics deviate from a critical state, the 421 

capacity to shape global node dynamics into a structure that resembles the network structure is 422 

lost. In a supercritical state, there is no functional interaction between nodes. In a subcritical 423 

state, node dynamics cannot be structured due to strong functional interactions between nodes 424 

that eliminate functional heterogeneity. As a result, the Φ̅ of a brain not in a critical 425 

state―regardless of whether the deviation is toward subcriticality or supercriticality―will 426 

decrease in proportion to the distance from the critical state. 427 

Many empirical studies support the criticality hypothesis in consciousness by comparing the 428 

dynamics of various conscious states with unconscious states (such as sleep, anesthesia, 429 

seizure, and coma). They have commonly shown that unconsciousness is associated with a 430 

deviation from criticality, which is quantified with various methods (power law, susceptibility, pair 431 

correlation function, and correlation between the functional and structural brain networks) 432 

[15,22,23,40,58–68]. However, no one has yet associated criticality, human consciousness, and 433 

Φ because of the explosive computational demands required for Φ calculations. In a previous 434 

study, we introduced a method that statistically estimates the increase/decrease of Φ for a 435 

continuous EEG, termed Φ̅, and showed the applicability to characterizing levels of 436 

consciousness with high-density EEG and also enabled us to study a relationship with network 437 

criticality. Our current results show that the empirical and computational model studies support 438 

the hypothesis that the characteristic network properties in a critical state naturally give rise to a 439 

structured, asymmetric phase lead-lag relationship among oscillators and, in turn, maximize Φ 440 

in the conscious brain. 441 
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 442 

Limitations: This study has several limitations. First, Φ̅ does not measure the precise Φ. 443 

Instead, we estimated the relative change of Φ, focusing on the increase/decrease along with 444 

the change in criticality in the network model and based on empirical EEG during anesthetic-445 

induced unconsciousness. Even so, this relative measure is sufficient for the purpose of this 446 

study, which is to examine the relationship between Φ, criticality, and levels of consciousness. 447 

And considering the significant differences among the six versions of Φ in the recent 448 

comparison [69], testing our conclusion with other versions of Φ is required. Second, in this 449 

study, we derived a relationship between asymmetric phase lead-lag relationships and Φ̅, but 450 

this relationship does not explain how the phase lead-lag relationship generates a cause-effect 451 

relationship defined by information partition for Φ. It may require an analytic study to identify 452 

conditions to link phase lead-lag and Φ. Third, to find an association between Φ, criticality, and 453 

consciousness, we used the subjects’ response rate during exposure to a general anesthetic as 454 

a surrogate for the level of consciousness. However, it is well known that unresponsiveness 455 

does not necessarily correlate with lack of consciousness. Although previously studied in the 456 

context of vegetative and minimally conscious states, our research team has recently identified 457 

covert consciousness during propofol sedation in which overt motoric responses were absent 458 

but brain network responses suggestive of volition were present [70]. Future studies might 459 

incorporate EEG data, behavioral responsiveness, and neuroimaging protocols to determine 460 

covert consciousness in order to more precisely identify the relationship between critical 461 

dynamics, consciousness, and Φ. Finally, the structural brain network used in the modeling 462 

study includes only the cortex. Including subcortical networks such as thalamocortical and 463 

hippocampocortical connections, etc. could improve the modeling performance for complex 464 

state transitions during general anesthesia.  465 

 466 

Conclusion: We demonstrated for the first time an explicit relationship between criticality, 467 

integrated information, and human consciousness with computational modeling and EEG 468 

analysis. We propose that network criticality, that is, a balanced state between large variation of 469 

functional network configurations and strong constraint of structural network configurations, is a 470 

network condition for integrated information. Understanding this relationship may open a new 471 

way to study diverse states of consciousness situated near to and far from a critical state in 472 

terms of integrated information. It may also provide a theoretical foundation for controlling the 473 

level of consciousness and integrated information by modulating criticality at a network level. 474 
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