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Abstract:  32 
Few studies have comprehensively investigated the temporal variability in soil microbial 33 
communities despite widespread recognition that the belowground environment is 34 
dynamic. In part, this stems from the challenges associated with the high degree of 35 
spatial heterogeneity in soil microbial communities and because the presence of relic 36 
DNA (DNA from non-living cells) may dampen temporal signals. Here we disentangle 37 
the relationships among spatial, temporal, and relic DNA effects on bacterial, archaeal, 38 
and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. 39 
We intensively sampled plots on each hillslope over six months to discriminate between 40 
temporal variability, intra-plot spatial heterogeneity, and relic DNA effects on the soil 41 
prokaryotic and fungal communities. We show that the intra-plot spatial variability in 42 
microbial community composition was strong and independent of relic DNA effects with 43 
these spatial patterns persisting throughout the study. When controlling for intra-plot 44 
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spatial variability, we identified significant temporal variability in both plots over the six-45 
month study. These microbial communities were more dissimilar over time after relic 46 
DNA was removed, suggesting that relic DNA hinders the detection of important 47 
temporal dynamics in belowground microbial communities. We identified microbial taxa 48 
that exhibited shared temporal responses and show these responses were often 49 
predictable from temporal changes in soil conditions. Our findings highlight approaches 50 
that can be used to better characterize temporal shifts in soil microbial communities, 51 
information that is critical for predicting the environmental preferences of individual soil 52 
microbial taxa and identifying linkages between soil microbial community composition 53 
and belowground processes. 54 
 55 
Importance: Nearly all microbial communities are dynamic in time. Understanding how 56 
temporal dynamics in microbial community structure affect soil biogeochemistry and 57 
fertility are key to being able to predict the responses of the soil microbiome to 58 
environmental perturbations. Here we explain the effects of soil spatial structure and 59 
relic DNA on the determination of microbial community fluctuations over time.  We found 60 
that intensive spatial sampling is required to identify temporal effects in microbial 61 
communities because of the high degree of spatial heterogeneity in soil and that DNA 62 
from non-living microbial cells masks important temporal patterns. We identified groups 63 
of microbes that display correlated behavior over time and show that these patterns are 64 
predictable from soil characteristics. These results provide insight into the 65 
environmental preferences and temporal relationships between individual microbial taxa 66 
and highlight the importance of considering relic DNA when trying to detect temporal 67 
dynamics in belowground communities.  68 
  69 
Introduction:  70 
 Information on the temporal dynamics of microbial communities over different 71 
time scales can be used to better understand the factors influencing the structure of 72 
microbial communities and their contributions to ecosystem processes. The microbial 73 
communities found in the human gut (1), leaf litter (2), marine (3), and freshwater (4) 74 
habitats can exhibit a high degree of temporal variation. Although the magnitude and 75 
timing of this temporal variation in community composition can vary depending on the 76 
environment and taxon in question, such temporal variability is often predictable from 77 
environmental factors (5). For example, ocean microbial communities display 78 
predictable periodic oscillations over time (seasonality) that have been linked to regular 79 
changes in biotic and abiotic factors, including phytoplankton dynamics and 80 
physicochemical factors (reviewed in refs (3, 6)). These changes in environmental 81 
conditions influence the nature of biotic interactions within these ecosystems and can 82 
have important ramifications for understanding the functional attributes of microbial 83 
communities and the ecosystem services they provide (7-9). 84 

 Understanding how temporal changes in environmental conditions influence soil 85 
microbial communities is necessary to accurately understand how microbial 86 
communities contribute to soil processes and for using microbes as bio-indicators of 87 
changes in belowground conditions such as carbon and nutrient availability – 88 
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parameters that are often difficult to measure directly. However, results from previous 89 
studies of temporal variability in soil microbial communities are idiosyncratic. While 90 
some studies show soil microbial communities exhibit measurable temporal variation in 91 
response to experimental warming (10, 11) and seasonal patterns in temperature and 92 
moisture (12-16), other studies show no or minimal variation over time, despite marked 93 
changes in environmental conditions (5, 17, 18). One possible explanation for the 94 
discrepancies across studies is that the spatial heterogeneity in soil microbial 95 
communities—even across short distances—can be sufficiently large to obscure 96 
temporal patterns. This hypothesis is supported by numerous studies demonstrating 97 
that the spatial variability in soil microbial communities (even across locations only a few 98 
meters apart) can be large (for example, ref. (19)). Another explanation is that relic 99 
DNA—legacy DNA from dead microbes that can persist in soil—may dampen the 100 
observed temporal variability by effectively hiding the true temporal dynamics of soil 101 
microbial communities. Relic DNA is abundant in soil (20, 21), and models suggest that 102 
during microbial community turnover, relic DNA can mask changes in community 103 
structure (21).  104 

 We conducted a six month study aimed at disentangling the spatial and relic DNA 105 
effects on temporal dynamics in belowground microbial communities. Our study sites 106 
were soils on opposing hillslope aspects of a montane ecosystem in the Boulder Creek 107 
Critical Zone Observatory (BcCZO) located within the Colorado Front Range of the 108 
Rocky Mountains. We intensively sampled two 9 m × 9 m plots, divided into 3 m × 3 m 109 
sub-plots every 43-50 days from November 2015 to May 2016 (Fig. 1; five time points 110 
total). We chose these locations because the soil microbial communities on the two 111 
hillslopes are compositionally distinct (20), relic DNA is abundant (40-60% of the total 112 
soil DNA pool, ref. (20)), and the two sites undergo distinct changes in moisture and 113 
temperature during this time span (22), providing us with naturally contrasting systems 114 
in which to investigate temporal dynamics in belowground microbial communities. We 115 
characterized the microbial communities at each site using 16S rRNA gene and internal 116 
transcribed spacer 1 (ITS) marker sequencing to profile the prokaryotic (bacterial and 117 
archaeal) and fungal communities, respectively. Here, we unravel the relationships 118 
between spatial and temporal variability in soil microbial community composition and 119 
show the influence of relic DNA on these sources of variability. Further, we use this 120 
information on temporal dynamics to identify groups of microbes that share temporal 121 
patterns and similar responses to changes in environmental conditions, information that 122 
provides insight into the ecologies of understudied soil microbial taxa.  123 

 124 
Results & Discussion:  125 
Spatial variation in soil microbial communities is stronger than temporal variation 126 
and is unaffected by relic DNA. Consistent with a previous study conducted at these 127 
sites (20), and other studies describing the spatial variability of soil microbial 128 
communities (19), the prokaryotic and fungal communities on the south-facing hillslope 129 
(SFS) were distinct from those on the north-facing hillslope (NFS), regardless of the 130 
time point sampled or whether relic DNA was removed (Supplementary Fig. 1). Most 131 
notably, the SFS had higher relative abundances of the archaeal phylum Crenarchaeota 132 
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(all of which were classified as probable ammonia-oxidizing ‘Candidatus 133 
Nitrososphaera’), and the bacterial phyla Nitrospirae and Verrucomicrobia 134 
(Supplementary Fig. 2). Beyond these expected slope-specific differences, we observed 135 
significant intra-plot spatial heterogeneity in microbial community composition that 136 
persisted throughout the course of the experiment, and this intra-plot heterogeneity was 137 
evident irrespective of whether relic DNA was removed. Before removing relic DNA, 138 
there was significant spatial variability across the sub-plots in both prokaryotic and 139 
fungal communities on the NFS (Fig. 2 a,e; PERMANOVA R2=0.228 and R2=0.311; 140 
P≤0.001, respectively). These significant spatial differences were still apparent on the 141 
NFS for both prokaryotes and fungi after relic DNA was removed (Fig. 2 c,g; 142 
PERMANOVA R2=0.234 and R2=0.292; P≤0.001, respectively). We also found 143 
significant spatial variability on the SFS in samples that were not treated to remove relic 144 
DNA, but this spatial effect was much more pronounced than on the NFS, with a clear 145 
partitioning between sub-plots 5, 6, 8 and 9 (see ‘Plot Design’ in Fig. 1a for numbering) 146 
from the remainder of the sub-plots (Fig. 2 b,f; PERMANOVA R2=0.308, P≤0.001 for 147 
prokaryotes and R2=0.317, P≤0.001 for fungi). Similar to the NFS, these strong spatial 148 
patterns remained after relic DNA was removed (Fig. 2 d,h; PERMANOVA R2=0.310 for 149 
prokaryotes and R2=0.291 for fungi; P≤0.001). These data show that pronounced spatial 150 
variability in soil microbial community composition at the meter scale persists over time. 151 
The presence of relic DNA does not affect our overall ability to detect this persistent 152 
spatial variation.  153 

 154 
Removing relic DNA enhanced our ability to detect temporal changes in soil 155 
microbial communities. We investigated the effect of relic DNA on temporal variability 156 
in belowground microbial communities on a sub-plot basis to control for the 157 
aforementioned high degree of intra-plot spatial variability and discriminate between 158 
temporal and spatial sources of variation in microbial community structure. When 159 
limiting PERMANOVA permutations to within sub-plots over time, we found significant 160 
temporal variability for both prokaryotes and fungi on both slopes in untreated control 161 
soils (PERMANOVA R2 =0.128 P≤0.001 for prokaryotes and R2 =0.124 P≤0.001 for fungi 162 
on the NFS; and R2 =0.110 P≤0.001 for prokaryotes and R2 =0.101 P≤0.001 for fungi on 163 
the SFS) and in soils that were treated to remove relic DNA (PERMANOVA R2 =0.119 164 
P≤0.001 for prokaryotes and R2 =0.103 P≤0.001 for fungi on the NFS; and R2 =0.098 165 
P≤0.001 for prokaryotes and R2 =0.106 P≤0.001 for fungi on the SFS). We found no 166 
significant interaction between temporal variability and relic DNA dynamics, suggesting 167 
that the presence of differences in microbial community composition between time 168 
points is not dependent on the removal of relic DNA. However, on average, the 169 
prokaryotic communities on both slopes were significantly more dissimilar over time 170 
after relic DNA was removed, compared to untreated control soils that contained relic 171 
DNA (Fig. 3; Kruskal-Wallis test P≤0.05). These results show that, while compositional 172 
differences between time points can be identified in the presence of relic DNA, the 173 
removal of ‘legacy’ DNA from dead microbes significantly enhances the ability to detect 174 
important temporal variation in the composition of soil prokaryotic communities. While 175 
the differences in temporal variability across all sub-plots are significant for the 176 
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prokaryotic communities in this study, we did observe a similar pattern for fungal 177 
communities, albeit not as strong (Fig. 3).   178 
 179 
Temporal variability in distinct assemblages of prokaryotes and fungi are 180 
predictable from soil variables. Characterizing shifts in the relative abundances of 181 
individual microbial taxa in temporally dynamic soil systems can give important insight 182 
into the ecologies of individual taxa and the environmental factors that influence 183 
belowground communities. Thus, we next sought to identify specific groups of taxa that 184 
exhibited correlated changes in relative abundances over time in soils after relic DNA 185 
was removed. To do this, we used local similarity analysis (LSA) (23) to identify strong 186 
(local similarity score ≥0.7) and significant (q-value ≤0.05) positive pairwise microbe-187 
microbe temporal correlations. We constructed and analyzed networks from these 188 
correlations and extracted distinct groups (modules) of microbes from NFS and SFS 189 
networks using modularity analysis (24) (Fig. 4). On the NFS, the mean normalized 190 
relative abundances of 247 microbial taxa (151 bacteria and 96 fungi) were significantly 191 
correlated with at least one other taxon over time (Fig. 4a). These correlated taxa 192 
clustered into five modules – the mean normalized relative abundances of all five 193 
modules changed significantly with time and displayed distinct temporal trajectories 194 
(Fig. 4b). On the SFS, 189 taxa (85 bacteria and 104 fungi) were included in the 195 
network, and clustered into six modules (Fig. 4c). The relative abundances of five of 196 
these six SFS modules changed significantly with time (Fig. 4d).  197 
 A large proportion of the temporal variation in the mean normalized relative 198 
abundances of the modules that changed significantly over time could be explained by 199 
measured soil or environmental characteristics. At each time point, we measured a suite 200 
of soil and environmental parameters, including: snow depth, soil temperature and 201 
moisture, extractable inorganic nitrogen (NO3- + NH4+), salinity (electrical conductivity), 202 
extractable phosphorus (P), pH, and the chromophoric properties of water-soluble 203 
organic matter (WSOM; a metric of organic matter lability (25)). These measured soil 204 
characteristics explained 16 to 56% of the variance in the mean normalized relative 205 
abundance of individual modules (Supplementary Fig. 3). Most modules on both slopes 206 
were best predicted by climatic variables, most notably soil temperature, soil moisture, 207 
and snow depth (Supplementary Fig. 3). These results are in line with previous studies 208 
demonstrating how changes in soil temperature (10, 14-16), moisture (26) and snow 209 
pack (12) can influence belowground microbial communities. In contrast, module 5 was 210 
best explained by changes in inorganic nutrient concentrations (phosphorus; 211 
Supplementary Fig. 3). While nitrogen and phosphorus inputs can have predictable (27) 212 
and lasting (2) effects on microbial community structure, we have a more limited 213 
understanding of how short-term seasonal variation in the availability of these nutrients 214 
can influence microbial community dynamics, despite evidence that belowground 215 
microbial communities are important mediators of soil nutrient dynamics (28, 29). Our 216 
results show that a subset of soil microbes organize into modules that are responsive to 217 
these subtle changes in phosphorus availability. Variability in WSOM constituents did 218 
not contribute significantly to temporal variability in environmental conditions 219 
(Supplementary Fig. 4) and thus, we excluded these measures from the models 220 
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describing the temporal variability of the modules. Given that previous work at these 221 
sites showed a high degree of spatial variation in WSOM distributions (25, 30), we 222 
suspect that the pronounced spatial variability in WSOM distributions may have 223 
obscured our ability to detect significant effects of WSOM characteristics on the 224 
temporal dynamics of the soil microbial communities. 225 

 The construction of modules based on shared temporal patterns allowed us to 226 
identify biotic or abiotic factors that are correlated with shifts in the relative abundances 227 
of individual taxa. As most soil prokaryotic taxa remain undescribed (31), linking the 228 
observed temporal dynamics of specific taxa (many of which cannot be classified to the 229 
genera or species level of taxonomic classification) to their ecological attributes remains 230 
difficult. However, we did identify some bacterial taxa with temporal dynamics that can 231 
be explained from our presumed understanding of their ecologies. For example, similar 232 
to studies showing Bradyrhizobium phylotypes tend to be more abundant in low pH soils 233 
(31), we found a single Bradyrhizobium phylotype on both slopes (modules 2 and 6) for 234 
which pH was a significant predictor (Supplementary Fig. 3), indicating that temporal 235 
changes in soil pH influences the relative abundance of this abundant phylotype. 236 
Similarly, snow cover was the best predictor for the temporal variability of taxa belonging 237 
to module 4 (Fig. 4 and Supplementary Fig. 3). We identified several taxa in module 4 238 
that have been directly linked to the microbial communities associated with snow, 239 
including the bacterial phylotypes classified as Herminiimonas sp. and 240 
Sphingobacteriaceae spp. (32, 33) (Supplementary Table 1). We also observed several 241 
fungal phylotypes belonging to the Mucorales and Mortierellales orders that clustered in 242 
module 4 (Supplementary Table 1). Members of these fungal groups have been termed 243 
“snow-molds” and are commonly observed on the surface of soils during snowmelt at 244 
these sites (34).  245 

Our study also provides insight into the short-term temporal variation of 246 
ectomycorrhizal communities, the environmental factors that influence these patterns 247 
and other fungal and prokaryotic taxa that co-vary with ectomycorrhizal fungi. 248 
Ectomycorrhizal fungi were found on both slopes and partitioned into several modules 249 
that were significantly variable over time (on the NFS, modules 0-4; and on the SFS, 250 
modules 6, 7, and 9; Fig. 4 and Supplementary Table 1). On the NFS, 56% of the 251 
predicted ectomycorrhizal fungal taxa were found in module 2 (Fig. 4; Supplementary 252 
Table 1). Module 2 was best predicted by soil moisture and pH, suggesting that these 253 
ectomycorrhizal taxa prefer slightly drier and higher pH soils (Supplementary Fig. 3). 254 
However, other ectomycorrhizal taxa on the NFS were best predicted by other 255 
combinations of soil characteristics and environmental parameters, suggesting a degree 256 
of niche partitioning within soil ectomycorrhizal fungal communities (Supplementary Fig. 257 
3), a finding in agreement with previous observations (35, 36) . Fewer ectomycorrhizal 258 
taxa displayed correlated behavior with other microbes on the SFS, but the majority of 259 
them (69%) belonged to module 6, which was best predicted by snow and moisture. On 260 
the SFS, these ectomycorrhizal taxa tended to be more abundant when soils were drier 261 
with less snow cover (Supplementary Fig. 3). These findings indicate a degree of 262 
temporal niche partitioning in ectomycorrhizal fungal communities on both slopes in 263 
response to distinct environmental conditions (Supplementary Fig. 3). 264 
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 265 
Conclusions:  266 

 This study provides new evidence that the temporal dynamics of groups of 267 
prokaryotes and fungi living in surface soils are, to some degree, predictable, and that a 268 
more detailed characterization of the temporal variability in soil microbial communities is 269 
critical to understanding the dynamic nature of the soil microbiome. The extensive 270 
spatial and temporal sampling design of our study allowed us to disentangle the 271 
relationships between spatial heterogeneity in microbial communities, temporal 272 
dynamics of these communities, and the effect of relic DNA on these temporal patterns. 273 
Unsurprisingly, spatial variation in community structure at both the hillslope scale, and 274 
the meter scale (intra-plot) was the dominant source of variability in this study and relic 275 
DNA had no significant effect on our ability to characterize these spatial patterns (Fig. 2 276 
and Supplementary Fig. 1).  277 

 When controlling for this spatial variability, we were able to detect significant 278 
temporal shifts in microbial community composition, regardless of whether relic DNA 279 
was removed or not. We emphasize that the magnitude of the temporal variation in soil 280 
microbial communities was consistently lower than the spatial variation, even between 281 
sub-plots located only a few meters apart. This spatial variability in surface soil microbial 282 
communities was relatively stable over time, suggesting that efforts to describe spatial 283 
variation in overall community composition are not necessarily impacted by collecting 284 
samples across different time points.  285 

 We show that when sites are sampled sufficiently across space, temporal 286 
variability is apparent in both soils that have been treated to remove relic DNA and in 287 
untreated controls. However, we provide new evidence that the removal of relic DNA 288 
results in greater dissimilarity over time, suggesting that by removing relic DNA, we 289 
enhance our ability to detect temporal patterns in the belowground communities (Fig. 3). 290 
These findings support our previous hypothesis (20), and predictions based on 291 
modeling (21), that the presence of relic DNA can dampen temporal patterns in soil 292 
microbial communities. The presence of relic DNA, even in high amounts, does not 293 
automatically lead to relic DNA biases in other ecosystems (21). However, our data do 294 
suggest that relic DNA has important effects on studies of temporal variation in soil 295 
microbial communities (and possibly in other ecosystems), and that the consequences 296 
of failing to remove relic DNA would not be apparent from single time point samples. 297 
 The belowground environment is one of the most complex and dynamic microbial 298 
habitats on Earth. By controlling for spatial and relic DNA effects on temporal variability 299 
in these soil microbial communities, we identified groups of microbes that have similar 300 
temporal dynamics and the environmental factors that predicted their temporal 301 
distributions. A deeper understanding of relationships between soil microbiota can help 302 
resolve both the roles of individual taxa and potential ‘ecological clusters’ with emergent 303 
function. For example, taxa that covary may exhibit similar niche preferences and 304 
compete for growth substrates. In contrast, taxa belonging to a given module may 305 
broadly respond to similar environmental signals but occupy distinct substrate niches 306 
(37). Microbes that are correlated over time may interact through cross-feeding of 307 
metabolic substrates or co-utilization of leaky functions (38)—either directly or in a time-308 
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lagged manner. Understanding the basis for shared temporal dynamics is important as 309 
microbial interactions are crucial in shaping microbial communities (39), but difficult to 310 
measure directly (40). Future investigations that combine cell culturing, synthetic 311 
microbial communities, and genomics may help resolve the specific drivers of these co-312 
occurrence patterns (37, 41, 42).  313 
 314 
Methods: 315 

 Site description, plot design and sampling procedure: The two plots were set up 316 
on opposing slopes alongside an instrumented transect at ~2,530 meters elevation 317 
(approximately 40.01°N, 105.47°W), chosen on the expectation that there would be a 318 
high level of temporal variability in soil microbial communities as a result of intra-annual 319 
changes in soil moisture and temperature (22). The north-facing slope (NFS) and south-320 
facing slope (SFS) have distinct soil and vegetation characteristics and experience 321 
different water delivery patterns, particularly during snowmelt (22) (Fig. 1). The NFS and 322 
SFS soils are Ustic dystrocryept (Catamount series) and Lithic haplstoll, respectively 323 
(43). Soil moisture and temperature were variable over the course of the study and 324 
followed expected seasonal trends (Fig. 1). In general, the NFS had a higher soil 325 
moisture and a lower temperature than the SFS (Fig. 1). The NFS is vegetated with 326 
moderately dense Pinus contorta (Lodgepole pines) and develops a snowpack during 327 
the winter that melts in spring. In contrast, the SFS is much more sparsely vegetated 328 
with Pinus ponderosa (Ponderosa pines), intervening grasses and Arctostaphylos uva-329 
ursi (kinnikinnick) shrubs and experiences pulses of snowmelt throughout the winter and 330 
spring. We sampled ~10-15 random soil cores (0-5 cm, mineral soils only; 1” core 331 
diameter) within each sub-plot at each of the five time points. The soil cores from each 332 
sub-plot were pooled, sieved to 2 mm and homogenized at each time point and 333 
partitioned for microbial community and nutrient analyses. Sample dates are reported in 334 
Supplementary Table 2.  335 
 Continuous environmental measurements: Several automated measurements 336 
were collected every 10 minutes at a meteorological station located near the sample 337 
sites (see ‘Data availability’ for data source information). Each slope was instrumented 338 
with a soil temperature sensor (Campbell Scientific T-107 temperature probe), and a 339 
soil water content reflectometer (Campbell Scientific CS616) located 5 cm below 340 
ground. The daily averages from these sensors on each slope are illustrated in Fig. 341 
1b,c. When modelling the relative mean importance of temperature and volumetric 342 
water content to module temporal distributions, we used the average of daily mean 343 
values from these sensors between sample dates, except for the first time point, which 344 
is the mean from the preceding 34 days. Snow depth was measured using digital 345 
ultrasonic snow depth sensors (Judd Communications Inc.) fitted with CR1000 346 
dataloggers (Campbell Scientific). Snow depth is reported as mean daily snow depth 347 
between sampling points from three sensors on each slope (NFS at snow pole 3, 348 
sensors 1-3 and SFS snow pole 10, sensors 9, 11 and 15). 349 
 Discrete environmental measurements: Inorganic N pools were measured for 350 
each sub-plot at each time point except for the January 2016 sample on the NFS, sub-351 
plots 1 and 2 and SFS sub-plot 3, where insufficient soil was collected. Sieved soils for 352 
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inorganic N analyses were stored at 4°C for <72 h. Inorganic N pools were extracted 353 
from 10 g field-moist soil in 100 mL 2M potassium chloride with periodic shaking for 18 354 
h and filtered through cellulose Whatman 1 filters. Ammonium (NH4+) concentrations 355 
were measured in these extracts on a BioTek Synergy 2 with a detection limit of 0.009 356 
mg N L -1 and nitrate (NO3-) concentrations were measured on an OI Analytical FS-IV 357 
with a detection limit of 0.5603 μg N L- 1. Dissolved inorganic nitrogen (DIN) was 358 
calculated as the sum of NH4+ and NO3-.  359 

Water-soluble organic matter (WSOM) was analyzed for each sub-plot at each time 360 
point except for the following plots, where insufficient sample was collected: NFS 361 
February 2016 (all sub-plots); SFS February 2016 sub-plots 1, 8 and 9 and April 2016 362 
sub-plot 5. Sieved soils were stored at -20°C until WSOM extraction. WSOM was 363 
extracted by leaching 10 g of soil with 50 ml 0.5 M K2SO4 following the methods 364 
described in (25). The spectroscopically-active portion of the WSOM was characterized 365 
with UV-Vis and fluorescence spectroscopy. Samples were diluted to minimize the inner 366 
filter effect (44) and the UV-Vis absorbance was measured from 200-800 nm in 1 nm 367 
increments using an Agilent 8453 Spectrophotometer with a 1 cm path 368 
length. Dissolved organic carbon (DOC) and total nitrogen were measured on a 369 
Shimadzu TOC-V. SUVA254, a proxy for the aromaticity of the WSOM, was calculated 370 
as the absorbance at 254 nm normalized by the DOC concentration (45). Fluorescence 371 
scans were collected on a Horiba Jobin Yvon Fluoromax-4 with a 1 cm quartz cuvette 372 
and normalized to Raman units (46). The fluorescence index (FI) (47) and humification 373 
index (HIX) (48) were calculated from the fluorescence scans using Parallel Factor 374 
Analysis (PARAFAC) to further resolve discrete components representing different 375 
classes of fluorophores (25).  376 

Other standard soil characteristics were measured at each time point by pooling 377 
equal masses of soil from each sub-plot plot on each slope. These measurements 378 
included: pH, electrical conductivity (mmhos cm-1) and P (ppm). Standard soil chemical 379 
analyses were performed at the Colorado State University Soil Water and Plant Testing 380 
Laboratory using their standard protocols. 381 
 Relic DNA removal and DNA extraction: Relic DNA was removed as described 382 
previously (20). Briefly, 0.03 g of each soil from each sub-plot pool was sub-sampled, 383 
resuspended in 3.0 mL phosphate buffered saline (PBS) (1% weight/vol slurry) and 384 
either treated with 40 µM propidium monoazide (PMA) in the dark, or left untreated as a 385 
control. Both treated and untreated samples were vortexed in the dark for 4 minutes and 386 
exposed to a 650-watt light for 4 × 30 s light:30 s dark cycles to activate PMA in treated 387 
samples. Light-exposed samples were frozen at -20°C until DNA extraction. DNA was 388 
extracted from 800 µL of PMA treated and untreated soil slurries using a PowerSoil-htp 389 
96 well soil DNA Isolation kit (MoBio) following the manufacturer’s instructions, except 390 
770 µL was used in the C2 step. All samples and ‘no soil’ negative controls were 391 
randomized into these 96 well DNA extraction plates and extracted simultaneously.  392 
 Amplicon sequencing and analytical methods: For sequence-based analyses of 393 
16S rRNA and ITS marker regions, we used the approaches described previously (20). 394 
Briefly, we amplified each sample in duplicate in 25 μl PCR reactions containing: 12.5 μl 395 
of Promega GoTaq Hot Start Colorless Master Mix; 0.5 μl of each barcoded primer (10 396 
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µM each of bacterial 16S: 515F 5'-GTGCCAGCMGCCGCGGTAA-3' & 806R 5'-397 
GGACTACHVGGGTWTCTAAT-3’; fungal ITS: 5′-CTTGGTCATTTAGAGGAAGTAA-3′ & 398 
ITS2 5′-GCTGCGTTCTTCATCGATGC-3′); 10.5 μl water; 1 μl of template DNA. 399 
Thermal cycler program: 94°C for 5 min, followed by 35 cycles of (94°C 45 s; 50°C 60 s; 400 
72°C 90 s) and a final extension 72°C 10 min. Duplicate PCR reactions for each sample 401 
were pooled, cleaned and normalized using the ThermoFisher Scientific SequalPrep 402 
Normalization Plate kit. Cleaned and normalized amplicons were pooled, spiked with 403 
15% phiX and sequenced on an Illumina MiSeq using v2 500-cycle paired end kits. The 404 
samples were sequenced in two batches total – one for prokaryotes and one for fungi. 405 
Reads were processed as described in (ref. (27)). Briefly, raw amplicon sequences were 406 
demultiplexed according to the raw barcodes and processed with the UPARSE pipeline 407 
(49). A database of ≥97% similar sequence clusters was constructed in USEARCH 408 
(Version 8) (50) by merging paired end reads, using a “maxee” value of 0.5 when quality 409 
filtering sequences, dereplicating identical sequences, removing singleton sequences, 410 
clustering sequences after singleton removal, and filtering out cluster representative 411 
sequences that were not ≥75% similar to any sequence in Greengenes (for prokaryotes; 412 
Version 13_8) (51) or UNITE (for fungi) (52) databases. Demultiplexed sequences were 413 
mapped against the de novo constructed databases to generate counts of sequences 414 
matching clusters (i.e. taxa) for each sample. Taxonomy was assigned to each taxon 415 
using the RDP classifier with a threshold of 0.5 (53) and trained on the Greengenes or 416 
UNITE databases. To normalize the sequencing depth across samples, samples were 417 
rarefied to 10,159 and 7,076 sequences per sample for the 16S rRNA and ITS 418 
analyses, respectively. Functional predictions for fungal taxa were obtained using 419 
FUNGuild (54). 420 

Statistical analyses: Calculations of Bray-Curtis dissimilarity by slope, sub-plot and 421 
temporal analyses were conducted on the entire 16S rRNA or ITS datasets without 422 
filtering. Bray-Curtis distances were calculated on square root transformed taxon 423 
relative abundances using the mctoolsr R package (55).  424 

Temporal analyses and network construction: We identified significant temporal 425 
correlations in the relative abundances of individual taxa on each slope that were, on 426 
average, ≥ 0.1% of the community across all samples in soils that were treated to 427 
remove relic DNA using extended Local Similarity Analysis (eLSA) (23) with the 428 
following parameters: lsa_compute -s 5 -r 9 -p perm. We defined significant 429 
temporal associations as those with a local similarity (LS) score ≥ 0.7 (i.e.-strong to very 430 
strong correlations) and a q value ≤ 0.05. Pairs of significantly correlated taxa were 431 
analyzed in Gephi (version 0.8.2). Network modularity was calculated by implementing 432 
the ‘modularity’ function (24) within Gephi, with a resolution setting of 0.9 for both 433 
slopes. Node IDs (individual taxa) belonging to the same module were extracted to 434 
delineate temporal patterns in their normalized relative abundances. Normalized relative 435 
abundances for each node ID were calculated using the tRank command in the multic R 436 
package.  437 

Random forest analysis: For each slope, we used Random Forest modeling (56) to 438 
first identify the measured environmental and soil variables that were significant 439 
predictors of time (P ≤ 0.05), using time as a response variable (Supplementary Fig. 4). 440 
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These significant environmental factors are expected to predict changes in module 441 
abundance over time. We conducted a second round of Random Forests analysis with 442 
the significant environmental predictors shown in Supplemental Fig. 4 to identify the 443 
most important environmental factors or soil characteristics that predicted the mean 444 
normalized relative abundances of each module (see ref. (57) for a similar approach). 445 
The importance (increase in mean square error %) and significance of each predictor 446 
was computed for each tree and averaged over the forest (9999 trees) using the 447 
rfPermute R package. Significant predictors were defined as those with a P value ≤ 448 
0.05. Samples for which environmental and soil characteristics were missing because of 449 
insufficient sample were excluded from random forest and Spearman correlation 450 
analysis.  451 

 452 
Data Availability: Raw DNA sequence data, the corresponding mapfile and all soil and 453 
environmental characteristics are available on figshare.com: 454 
10.6084/m9.figshare.6710087. Snow depth data are available through the Boulder 455 
Creek Critical Zone Observatory website: 456 
http://criticalzone.org/boulder/data/dataset/2423/. Temperature data for the NFS and 457 
SFS are available through the Boulder Creek Critical Zone Observatory website 458 
http://criticalzone.org/boulder/data/dataset/2426/. 459 
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Figures: 667 

 668 
Figure 1: Overview of the Gordon Gulch sampling sites and environmental 669 

conditions across the sampling sites. (a) Conceptual diagram of sampling site 670 
location and plot design, reproduced with modification from ref. (29). The North facing 671 
slope (NFS) plot was centered at 40°0'44.759"N 105°28'9.123”W. The South facing 672 
slope (SFS) plot was centered at 40°0'48.551"N 105°28'8.355"W. Inset in (a) is an 673 
illustration of plot design. A single plot is comprised of nine 3 m × 3 m replicate sub-674 
plots, as described in the main text. Daily mean soil volumetric water content and soil 675 
temperature from in situ sensors at 5 cm depth for the NFS (b) and SFS (c) during the 676 
course of the experiment. Vertical dashed lines in (b) and (c) indicate sampling dates. 677 
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Figure 2: Intra-plot spatial variability in 679 
soil microbial communities persists 680 
over time on both slopes regardless of 681 
whether relic DNA is removed. NMDS 682 
plots showing the prokaryotic (a-d) or 683 
fungal (e-h) communities on the north 684 
facing slope (a,c,e,g) and south facing 685 
slope (b,d,f,h). Points are colored by sub-686 
plot number (plot layout is illustrated in 687 
Fig. 1). Hulls connect the outermost points 688 
on each slope. PERMANOVA R2 values 689 
are listed on each panel; a single asterisk 690 
indicates a PERMANOVA P value ≤0.001. 691 
  692 
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 693 
Figure 3: Prokaryotic microbial communities were significantly more 694 

dissimilar over time in soils without relic DNA. (a) Prokaryotes (b) Fungi. Points are 695 
the mean community dissimilarity for a given sub-plot across all time points (n=5) for 696 
samples after relic DNA removal (no relic DNA) or untreated samples (control). Box 697 
plots illustrate interquartile range ± 1.5 × interquartile range. The horizontal line in each 698 
box plot is the median. Outliers (>1.5 × interquartile range) are shown as points outside 699 
of whiskers. Kruskal-Wallis test (K-W) P values are shown. 700 
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 702 
Figure 4: Temporal niche structure in belowground microbial communities. 703 

Correlation networks based on significant microbe-microbe temporal correlations for the 704 
NFS (a) and SFS (c). Nodes in (a) & (c) are individual prokaryotic or fungal taxa. Lines 705 
between nodes represent significant (q value ≤ 0.05) and strong (local similarity score ≥ 706 
0.7) positive temporal correlations across all five time points. The sizes of nodes are 707 
proportional to the number of correlations to other nodes (the degree), whereby larger 708 
nodes have more connections. Colors represent distinct modules, as determined using 709 
the modularity algorithm described in ref. (24). Boxed numbers in networks are arbitrary 710 
module numbers and match those in panels (b) and (d). Modularity analysis of each 711 
network revealed clusters of microbes that have similar temporal patterns. These 712 
temporal patterns were plotted for the NFS (b) and SFS (d). Points in (b) and (c) are the 713 
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mean Van der Waerden (VdW) normalized relative abundance of all taxa in a given 714 
module. Error bars show ± SEM. The PERMANOVA P value describing the relationship 715 
of the normalized relative abundances in relation to time are shown. P values marked 716 
with asterisks are significant at P≤0.005. Background is shaded by season: 717 
orange=autumn; blue=winter; green=spring. See Supplementary Table 1 for taxonomic 718 
module membership. 719 
 720 
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