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Abstract

The analysis of census data aggregated by administrative units introduces a statistical
bias known as the modifiable areal unit problem (MAUP). Previous researches have
mostly assessed the effect of MAUP on upscaling models. The present study contributes
to clarify the effects of MAUP on the downscaling methodologies, highlighting how a
priori scales and shapes choices could influence the results. We aggregated chicken and
duck fine-resolution census in Thailand, using three administrative census levels in
regular and irregular shapes. We then disaggregated the data within the Gridded
Livestock of the World analytical framework, sampling predictors in two different ways.
A sensitivity analysis on Pearson’s r correlation statistics and RMSE were carried out
to understand how size and shapes of the response variables affect the goodness-of-fit
and downscaling performances. We showed that scale, rather than shapes and sampling
methods, affected downscaling precision, suggesting that training the model using the
finest administrative level available is preferable. Moreover, datasets showing
non-homogeneus distribution but instead spatial clustering seemed less affected by
MAUP, yielding higher Pearson’s r values and lower RMSE compared to a more
spatially homogenous dataset. Implementing aggregation sensitivity analysis in spatial
studies could help to interpret complex results and disseminate robust products.

Introduction 1

Spatial data are becoming increasingly more accessible to the scientific community. 2

However, much data are provided in an aggregated form at different administrative 3

levels, mainly for operational and privacy reasons [1, 2]. Administrative levels are 4

usually arbitrarily determined and modifiable, meaning that they can be assembled to 5

form units of different sizes and shapes [3, 4]. Because administrative units may not 6

adequately reflect the spatial organization of human or natural phenomena, researchers 7

pursue the elaboration of methods for data disaggregation with the help of broadly 8
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available remote sensing data. Often, little attention is paid to the issue of the 9

modifiable units and its effect on spatial representations [5]. This specific issue was 10

discussed in the spatial analysis literature since the 1930s (e.g. [6]), but gained attention 11

with the milestone work of Openshaw and Taylor [7, 8] that led to the introduction of 12

the concept of Modifiable Areal Unit Problem (MAUP). The MAUP encompasses two 13

related but distinctive components: the scale issue and the zonation issue [3, 4, 7–10]. 14

The scale problem reflects how the description of a phenomenon is potentially affected 15

by changing the size of the sampling units, while the zonation issue relates to how 16

changing the shape of sampling units could influence the representation of the 17

phenomenon [7]. These effects occur because patterns and processes operate in the real 18

world according to various scales and designs that are often unknown to the 19

researcher [9]. A descriptive example illustrates some immediate effects. Fig 1a shows 20

how the aggregation of individual-level data at different scales causes a reduction of the 21

variability, and thus narrowing of the distribution. In Fig 1b, individual-level data are 22

aggregated at the same scale but using different, arbitrary, areal unit shapes. The 23

results are highly variable [3, 8, 10]. 24

MAUP is closely related to the ecological inference fallacy, a misinterpretation of 25

statistical inferences drawn at the group level but interpreted at the individuals 26

level [11]. With spatial data becoming a staple in a diversity of fields, the effects of 27

MAUP are explored broadle, from ecology to remote sensing and from physical 28

geography to economy [3,10, 12–18]. Despite the impact of MAUP is often ingnored [5], 29

when it is addressed researchers mostly assess its effect on upscaling, or 30

aggregating [3, 16,18], rather than on downscaling, or disaggregating. The availability of 31

spatial data and data processing capacity fostered an interest into the spatial 32

heterogeneity of diverse processes and encouraged researchers to find ways to 33

disaggregate data. Downscaling techniques are used to disaggregate variables recorded 34

or distributed at an aggregated scale, such as census data, and provide predictions at a 35

finer level of spatial detail. Such fine scale data bear crucial interest in diverse fields 36

and applications in agricultural socio-economics, food security, environmental impact 37

assessment and epidemiology [19]. Concerning livestock, analyzing the emergence of 38

zoonotic diseases requires detailed spatially explicit data of both hosts and their 39

pathogens, e.g. for pathogenic avian influenza (HPAI, [20]). 40

The Gridded Livestock of the World (GLW, [21]) and WorldPop [22] disaggregate 41

population data using statistical techniques and environmental predictors. Outputs of 42

both projects reach good accuracy scores [19, 23], but as they result from a downscaling 43

process, both are potentially subjected to the MAUP. Despite the application of the 44

GLW methodology has become robust and its application frequent (e.g. [19, 24,25], its 45

dependencies to MAUP has not been directly investigated yet. Previous studies 46

(e.g. [24]) showed a certain degree of sensitivity to the scale issue, however, the severity 47

of the problem has not been assessed and a sensitivity analysis using various scale and 48

shape configurations would help quantifying potential sources of uncertainties. 49

In this study, we analyzed the impact of both MAUP effects on the disaggregation of 50

census-like livestock data. The objectives were: (i) to assess, on two different 51

spatially-constrained real datasets, how the MAUP affects both goodness-of-fit metrics 52

and downscaled results, (ii) to increase awareness about the MAUP issues in the context 53

of data disaggregation. A fine resolution census dataset of poultry in Thailand was 54

aggregated at scales corresponding to administrative levels, using sampling units with 55

variable shapes and areas and subsequentely disaggregated to a common resolution over 56

a 500m grid. 57

Fig 1. The Modifiable Areal Unit Problem. Example showing the two effects of
MAUP (adapted from [3]).
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Materials and methods 58

Poultry population data 59

In 2010, the Department of Livestock Development of the Thai government conducted a 60

national census of poultry in each sub-district and village, counting poultry heads per 61

owner. Each farm was associated by a unique administrative code number to its village, 62

for which geographic coordinates was recorded. The census distinguished between 63

broiler chickens, layer chickens, native chickens, farm ducks and free-grazing ducks. 64

Here, we combined all data to species level ending with chicken and duck. The spatial 65

constraints and determinants of the production systems of duck and chickens differ 66

(intensive and backyard; [26–28]). While chickens can be raised anywhere, in Thailand, 67

ducks are largely raised in wetlands used for double-crop rice production, where 68

free-grazing ducks feed year round in rice paddies [27,28]. 69

Villages records with uncorrected coordinates (coordinates outside of the Thai 70

territory or with 0 in latitude or longitude fields) were removed. In the case of duplicate 71

coordinates or duplicate village unique ID, only one record for each duplicate was 72

randomly selected. The provinces of Bangkok, Nakhon Sawan, Pattani and Phetchaburi 73

were excluded due to lack of data. Once filtered, the village dataset was joined to the 74

census datas using the villages’ administrative code number. 75

Individual level data were aggregated according to Thai administrative units: 76

districts, sub-districts and villages. As a comprehensive file of village boundaries is not 77

available, Voronoi polygons were computed from the village coordinates. 78

Modelling 79

We used the methodology of the Gridded Livestock of the World (GLW) project. The 80

GLW disaggregates livestock statistics and provides spatially detailed estimates of 81

livestock density in the form of raster spatial data [21]. The most recent version 82

(GLW3; [25]) relies on stratified random forest models and a set of environmental 83

predictors. The GLW methodology is fully described in [24] and [19]. Two 84

user-controlled parameters drive the performance of random forest models: the number 85

of trees created and the number of variables randomly selected when creating a splitting 86

point. [29] have shown that 500 trees are a good rule of thumb, while the minimum 87

number of variables that are randomly selected was calculated using the square root of 88

the total number of variables [30]. 89

The set of predictors used included Fourier-transformed MODIS variables (two 90

vegetation indices, the day and night land surface temperature and the band 3 91

middle-infra-red), eco-climatic variables (length of growing season and annual 92

precipitation), topographic variables (elevation and slope) land cover classes and 93

anthropogenic variables (human population density and travel time to major cities and 94

ports) [19,27,28,31].Unpopulated areas, natural areas and water bodies were masked 95

out and only areas suitable for poultry production were considered and used to get 96

corrected poultry densities. Poultry densities corrected by area were transformed to 97

logarithm (base 10) and used as response variable. The full list of spatial domain and 98

predictors is detailed in Table 1 along with sources. 99

All input raster layers (e.g. masks and predictor variables) and outputs (predicted 100

densities) were processed on the whole of Thailand with a spatial resolution of 500 m. 101

Experimental design 102

The effect of scale was explored by aggregating the individual level data to village, 103

sub-district and district level. The effects of zoning were analyzed using two different 104
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Table 1. List of input spatial dataset used to model chickens and ducks densities.
Type Variables Use Source

Land Land and water area Spatial domain and Spatial predictor [32,33]
Land use IUCN world database of protected area Mask [34]
Anthropogenic Worldpop Human population density Spatial predictor and suitability mask [22]

Travel time to cities capital, Provinces’ capital and main harbors Spatial predictor [35,36]
Topography Elevation (GTOPO30) Spatial predictor [37]

Slope (GTOPO30) Spatial predictor [37]
Vegetation 10 Fourier-derived variables from Normalized Difference Vegetation Index from MODIS (MODIS)* Spatial predictor [38]

Length of growing period Spatial predictor [39]
Green-up and senescence (annual cycle 1 and 2) Spatial predictor [40]
Forest cover Spatial predictor [41]
Cropland, irrigated croplands and rainfed croplands cover Spatial predictor [42]

Climatic 10 Fourier-derived variables from Day/Night Land Surface Temperature (MODIS) Spatial predictor [38]
Precipitations Spatial predictor [43]

*Annual mean, annual muinimum, annual maximum, amplitude and phase of annual cycle, amplitude and phase of bi-annual
cycle, amplitude and phase of tri-annual cycle, variance in annual, bi-annual, and tri-annual cycles..

sets of polygon sampling units (PSUs) for each administrative level: (i) irregular (IRR) 105

shapes, the original administrative units, and (ii) regular shapes (REG), a grid having 106

the spatial resolution of the average spatial resolution (ASR) of the correspondent IRR 107

PSUs. The ASR measures the effective resolution of administrative units in kilometers. 108

It is calculated as the square root of the land area of the administrative units considered, 109

divided by the number of administrative units [44, 45]. REG PSUs were computed only 110

at sub-district and district level. The density of birds per km2 of suitable land was 111

estimated in all polygons corresponding to each PSUs and transformed to its Log10 [24]. 112

Two methods where applied to extract or sample the predictors by polygon, in order 113

to understand their effect on the downscaled prediction. One method randomly sampled 114

a point in each PSU and extracted the matching pixel value for each predictor. The 115

other averaged the predictors within the PSU. 116

Model evaluation 117

The census polygons used as response variable were separated in training and validation 118

sets. 70% of polygons were used to train the model, while the remaining 30% were used 119

as evaluation data set. PSUs were sampled into training and evaluation datasets 20 120

times to assess the internal variability of the predictions. Once the model was fitted, 121

average and standard deviation maps were computed from the twenty outputs. 122

Model evaluation was carried out using two approaches. Firstly, to assess how well 123

the model predicted poultry densities, the root mean square error (RMSE) and 124

Pearson’s r correlation coefficient (COR) were computed between the observed values of 125

the evaluation set of PSU and the predicted densities aggregated at polygon level of the 126

corresponding validation PSUs. RMSE measures model accuracy, i.e. how far the 127

predicted values were, on average, from the observed values. COR measures precision, 128

i.e. the extent to which the observed and predicted values are proportional to each 129

other. Lower RMSE and higher COR indicate better fits between predicted and 130

observed values. RMSE and COR were estimated for the overall models. Moreover, to 131

measure the internal precision associated to the area, RMSE and COR were also 132

estimated considering PSUs area, grouping PSUs accordingly to the frequencies of their 133

area (Supporting information, S1 Fig): 0-10 km2, 10-20 km2 and >20 km2 for villages, 134

0-100 km2, 100-200 km2 and >200 km2 for sub-districts, 0-500 km2, 500-1000 km2 and 135

>1000 km2 for districts. 136

Secondly, the Pearson’s r was computed between predictions and the observed data 137

at the village level only to assess the capacity of models trained using various PSUs to 138

predict poultry population at a fine scale, i.e their “downscaling precision” (CORdown). 139
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This is crucial to understand the effects of MAUP on the downscaled predictions 140

considering the finest administrative levels available as reference. Three different 141

bounding boxes (hereafter bbox ) were selected in different areas of Thailand to visually 142

investigate the differences between the predictions and the observations. A graphical 143

summary of the methodology is shown in Fig 2. The model is fully operational under R 144

3.4 [46] and the codes used are available from the corresponding authors on request. 145

Fig 2. Flowchart of the analysis.

Results 146

Data cleaning and filtering 147

The 62 142 village records originally available were reduced to 57 794 (Table 2). Once 148

the filtered village database was joined to the poultry census, the final georeferenced 149

census dataset used to train the models accounts for 53 301 records (Table 2). Fig 3 150

show the two species observed densities aggregated at sub-districts and districts 151

administrative level. Chickens were homogenously distributed. Ducks were mainly 152

clustered in the central and southeast part of the country. 153

Table 2. Data filtering results. For duplicate coordinates or duplicate village unique ID, only one record for
each duplicated row was randomly selected and added to the finale database.

Unfiltered Duplicated ID Duplicated coordinates Filtered

V illages 62142 6579 33 57794
Census 3170213 - - 53301

Fig 3. Observed poultry densities in logarithm (base 10) aggregated at
Districts and Sub-Districts level. In grey the provinces of Bangkok, Nakhon
Sawan, Pattani and Phetchaburi, excluded from the analysis due to lack of data.

Model outputs maps 154

The model predictions within bbox 1 are shown in Fig 4, while bbox 2-3 are displayed in 155

the S3 Fig and S4 Fig. Chickens were widely distributed though high densities clusters 156

are observable in the North-East and South-West parts of bbox 1. Ducks were present 157

mostly in the central part. The model was able to reproduce the observed spatial 158

pattern of both species, regardless of the sampling method. 159

The mean predicted values are comparable to the observed ones but the predicted 160

values distributions are clustered around the mean and appeared less variable than the 161

observed. For both species, the aggregation of input data produced higher mean value 162

at coarser scale, together with a narrowing effect of the values distribution and a 163

smoothing effect on the frequencies (S2.1 Fig and S2.2 Fig). 164

IRR and REG shaped administrative units showed slightly different predicted spatial 165

pattern. In both cases, the distribution of the predicted values is consistent with the 166

observed values, however, REG shapes seemed to predict a slightly smoother spatial 167

pattern, detecting more variability across space than IRR shapes, which predicted more 168

values clustered around and above the mean value. 169
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Fig 4. Observed and Predicted Log10 poultry values inside bbox1. a)
chickens, b) Duck.

Model evaluation 170

The RMSE bar plots for ducks and chickens are shown in Fig 5. For both species, the 171

overall accuracy increased (lower RMSE values) as the administrative level of the input 172

data became coarser. However, this trend is more consistent for ducks rather than for 173

chickens. Model runs on REG shaped PSUs showed generally less variability, but they 174

had lower accuracy than IRR PSUs for chickens and comparable or slightly lower for 175

ducks. Randomly sampling the predictors within the PSUs yielded slightly lower 176

RMSEs than their aggregation. 177

COR bar plots based on stratified random sampling of the predictors and averaged 178

predictors are a shown in Fig 6. For both species, the COR value increased as the 179

administrative level of the input data became coarser. REG PSUs produced higher 180

correlations than the corresponding IRR PSUs and the overall models, showing also less 181

variability among the bootstraps. The choice of the sampling methods did not affect the 182

results strongly, but random sampling showed apparently higher variability between 183

individual bootstraps. 184

Fig 5. Root Mean Square Error (RMSE). RMSE computed between predicted
densities and observed chickens densities a) averaged sampling b) random sampling;
RMSE computed between predicted densities and observed ducks densities c) averaged
sampling d) random sampling.

Fig 6. Pearson’s r. Pearson’s r coefficient computed between predicted densities and
observed chickens densities a) averaged sampling b) random sampling; Pearson’s r
coefficient computed between predicted densities and observed ducks densities c)
averaged sampling d) random sampling.

Downscaling precision 185

CORdown, the Pearson’s r coefficient between the predicted and observed densities at 186

village level are shown in Fig 7. Models of duck distribution had higher correlations than 187

the chickens models. Contrary to the internal precision of the model, smaller PSUs had 188

higher Pearson’s r values than larger ones. The shape of the PSUs produced comparable 189

results in terms of Pearson’s r values. Random sampling produced higher Pearson’s r 190

values compared to average sampling, which generally had a lower variability among 191

model runs. A table summarising the evaluation of model runs is found in S1 Table. 192

Fig 7. Downscaling precision. Pearson’s r coefficient between predicted densities
and observed densities at village level: a) chickens; b) ducks. Random sampling (rp),
averaged sampling (av).

Discussion 193

Overall MAUP bias 194

Our model predicted poultry density patterns and value distribution similar to the 195

observed densities, confirming the validity of the methodology [19]. As expected, 196
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chickens were dispersed at high densities across the whole country, while ducks were 197

constrained to wetlands used for double-crop rice production [20,27,28]. 198

The scale of the training data affected the output maps goodness-of-fit. On average, 199

duck models showed higher downscaling precision and higher accuracy and precision 200

compared to chickens. Swift, Liu and Uber [47] and Swift et al. [14] reported that a 201

spatially clustered phenomenon aggregated using various size and shapes of areal units 202

is less affected by MAUP compared to a randomly distributed phenomenon. Because of 203

that, when the clustered structure of the observed point pattern is preserved, MAUP 204

bias is considerably reduced. Moreover, Swift et al. [14] also showed that aggregating 205

the independent variable using an areal unit shape related to its spatial structure reduce 206

the effect of MAUP, in their case it worked for simulated data only. To aggregate 207

empirical data, choosing a priori areal unit shape that preserves the spatial structure 208

and reduces the MAUP may be challenging, and in the context of data disaggregation, 209

may be impossible. But, in the context of data disaggregation, the MAUP bias may be 210

smaller if the spatial units are able to capture the spatial variability of the phenomenon 211

at hand. Recently Tuson et al. [48] proposed a theorethical and statistical framework to 212

address the MAUP trying to detect a minimal geographical unit of analysis. Though 213

promising, in our case the minimal geographical unit of analysis is determined by the 214

minimal administrative level available, making the results dependent on the units used. 215

MAUP scale effect 216

Qualitatively, fine resolution training data produced predictions with a more detailed 217

spatial pattern compared to coarser resolution training data. For what concerns the 218

effect of scale on the internal precision of the model, better model precision and 219

accuracy was reached by models trained with coarser resolution input data, contrary to 220

what Van Boeckel et al. [20] found. These apparently contradictory results can be 221

explained considering that Van Boeckel et al. [20] used different modelling approaches 222

and that their goodness-of-fit were computed under a different rationale. In particular, 223

whilst our goodness-of-fit metrics were computed between validation PSUs and 224

predicted pixel values aggregated at the respective PSUs areas, Van Boeckel et al. [20] 225

computed goodness-of-fit metrics between validation and predicted value at point level. 226

Though the RMSE and COR trends are not in accordance with this previous study on 227

Thai poultry, our results are consistent with their findings in terms of RMSE and COR 228

ranges. More importantly, our results reflect the general trend described by Gehlke and 229

Biehl [6], where correlation coefficients tend to increase as the number of areal units 230

representing the data decreased, as a consequence of the data smoothing properties 231

associated with the aggregation process. 232

MAUP zone effect 233

Comparing COR and RMSE results at the same scale, REG PSU produced slightly 234

higher mean values and less variability between model runs than IRR ones (S1 Table). 235

In our case Pearson’s r is the statistic most affected by the zone effect, but still it 236

appeared marginal in comparison to the effect of scale, as observed also by Swift et 237

al. [14] for simulated data. Recently, [18] investigated the effects of MAUP using 238

landscape heterogeneity as a proxy of species richness. They highlighted how the use of 239

irregularly shaped eco-geographic area units (watersheds) performed better than 240

arbitrary square units, probably because in their case eco-geographic areas better 241

capture species diversity spatial variability. Though our REG PSU based on the ASR of 242

the IRR PGU showed higher precision scores, our design remains affected by ecological 243

fallacy, as both administrative levels and PSU shapes may be indepedentend of the 244

phenomena investigated and not effectively describe the environmental and social 245
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envelope of farm distribution in geographical space [11,49]. On this point, Fox et al. [49] 246

suggest that combining reasonable assumptions to empirical data and spatial analysis 247

may help to develop functional boundaries around the individual level investigated. 248

Sampling methods effect 249

The choice of the sampling methods of the predictors did not affect RMSE and both 250

correlation coefficients. The mean value of our evaluation indices were stable and the 251

variability observable in Fig 5,6,7 is likely more related to variability between model 252

runs rather than to the choice of the sampling methods. 253

Downscaling precision 254

The downscaling precision statistic was affected mainly by the scale rather than by the 255

zone or sampling methods. The ranges are generally narrow, considering scale, zone and 256

sampling effect. The downscaling precision as expressed by CORdown increase with 257

higher resolution of the training data. In fact, Robinson et al. [24] computed the 258

goodness-of-fit metrics of their downscaling models comparing the predicted values to 259

the observed data at the highest administrative level (a similar approach to what we did 260

here for the CORdown), using a real census livestock dataset as we did. Accordingly to 261

our findings, they underlined how the statistical model trained on smaller 262

administrative units got better accuracy and precision in the disaggregation of 263

administrative units. These findings suggest that, if possible, data should be collected 264

at the finest spatial resolution available to train the model. 265

The question of how to select the spatial scale of the prediction according to the 266

available detail of aggregated data remains. The choice of the spatial scale of analysis 267

influences the understanding of the geographical patterns [50]. When downscaling it is 268

thus crucial to understand whether the polygons’ area within each administrative level 269

could influence the disaggregated results. For instance, considering the frequency 270

histogram of the District’s areas (S1 Fig), we do not know how larger polygons affect the 271

downscaling precision. From one perspective, adding larger polygons would include more 272

environmental heterogeneity in the model and would allow the model to discriminate 273

better between suitable and unsuitable area. However, since smaller polygons suit best 274

in terms of downscaling precision, larger polygons could add noise to the spatial 275

distribution of the response variable. It is unlikely that geometry of one set of areal 276

units would match any measured phenomena exactly as it is and as it would occur for a 277

simulated pattern [14], but new approaches combining geostatistics and Bayesian 278

hierarchical models (e.g. [51–53]) are promising tools to address the MAUP effects. 279

Conclusion 280

Within the GLW framework, we assessed the MAUP effects on the downscaled 281

predictions starting from different aggregated response variable scales. We focused on 282

the predictive rather than the explanatory power of the model, unlike numerous studies 283

on MAUP focused on its effects on parameter estimates or p-values (e.g. [54–57]). The 284

goal of the downscaling methodologies is not only to compare and interpret the 285

pixel-wise absolute value per se, but also to detect and represent well the spatial 286

variation and pattern of the phenomena investigated. Since absolute values and trends 287

are different, the choice of CORdown was made under the rationale to look for the scale 288

that best preserves the observed value, allowing at same time to detect the existent 289

spatial trends. 290
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GLW is an efficient approach to disaggregate census data to predict spatial 291

distribution of livestock. Scale, rather than shapes and sampling methods, appears to 292

affect downscaling precision, suggesting that the finest administrative level should be 293

sought to train the model. Moreover, MAUP effects appear weaker on a spatially 294

constrained dataset rather than a more spatially homogenous one, as already shown for 295

simulated data. 296

Carrying a sensitivity analysis and reporting the various results obtained from 297

different sets of aggregation and zoning systems helped to adequately addressed the 298

MAUP issue and to understand how much it affected the predictions. Understanding 299

the magnitude of the bias introduced in the data due to the aggregation is crucial to 300

inform spatial scientist on the often-ignored effect of data aggregation and to provide 301

robust spatial prediction to policy maker. MAUP effect on aggregated data is 302

unavoidable and only individual level data can avoid it [14,58]. 303

As already stated by previous authors(e.g. [14, 47,59], sensitivity to aggregation 304

should be analysed in any spatial study in order to correctly interpret complex results 305

and disseminate clear and robust maps. 306

Supporting information 307

S1 Fig. Polygon sampling units areas’ histograms. Polygon sampling units 308

areas’ histograms used to estimate RMSE and COR different polygon areal sizes. The 309

red bars represent the Average Spatial Resolution (ASR) of the polygons, while the blue 310

lines are the polygon area classes chosen: a) 0-500 km2, 500-1000 km2 and >1000 km2
311

are the Districts area classes used, ASR = 3.11 km, b) 0-100 km2, 100-200 km2 and 312

>200 km2 are the Sub-Districts area classes used, ASR = 8.33 km, c) 0-10 km2, 10-20 313

km2 and >20 km2 are the Villages area classes used, ASR = 23.60 km. 314

S2.1 Fig. Observed and Predicted Log10 chickens values histogram inside 315

bbox1. The blue lines represent the mean value. 316

S2.2 Fig. Observed and Predicted Log10 ducks values histogram inside 317

bbox 1. The blue lines represent the mean value. 318

S3 Fig. Observed and Predicted Log10 poultry values inside bbox 2. a) 319

chickens, b) Ducks. 320

S3.1 Fig. Observed and Predicted Log10 chickens values histogram inside 321

bbox 2. The blue lines represent the mean value. 322

S3.2 Fig. Observed and Predicted Log10 ducks values histogram inside 323

bbox 2. The blue lines represent the mean value. 324

S4 Fig. Observed and Predicted Log10 poultry values inside bbox 3. a) 325

chickens, b) Ducks. 326

S4.1 Fig. Observed and Predicted Log10 chickens values histogram inside 327

bbox 3. The blue lines represent the mean value. 328

S4.2 Fig. Observed and Predicted Log10 ducks values histogram inside 329

bbox 3. The blue lines represent the mean value. 330

July 23, 2019 9/14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/721159doi: bioRxiv preprint 

https://doi.org/10.1101/721159
http://creativecommons.org/licenses/by/4.0/


S1 Table. Summary table of models’ goodness of fit and downscaling 331

precision. 332
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