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Mathematical formulation of Pareto optima in monotone regulatory phenotypes 

We consider the environments 𝐸(𝑛) (n = 1, ..., N), each corresponding a vector 𝑆(𝑛) of inputs signals 

(𝑠1
(𝑛)

, . . . , 𝑠𝐾
(𝑛)

) and a monotone regulatory network which transforms each input vector 𝑆(𝑛) into a certain 

level 𝑃(𝑛) of the phenotype. Given the monotonicity of the network, the output 𝑃(𝑛) is an increasing (resp. 

decreasing) function of 𝑠𝑘
(𝑛)

for the indexes k in the subset I+ (resp. I-). The natural partial order on ℝ𝐾 

induces a partial order "≥ " between the 𝑃(𝑛) values defined as follows: 𝑃(𝑢)  ≥ 𝑃(𝑣) if and only if for 

every k in I-, we have 𝑠𝑘
(𝑢)

≤ 𝑠𝑘
(𝑢)

, and for every k in I+, we have 𝑠𝑘
(𝑢)

≥ 𝑠𝑘
(𝑢)

. Additionally, depending on 

the phenotype being beneficial or deleterious, we consider a fitness optimization objective being 

respectively the maximization or minimization of 𝑃(𝑛). 

 

We have devised a graph algorithm which allows to compute efficiently (in polynomial time) an exact 

closed form of the Pareto front of this optimization problem under partial order constraints as reported 

in [S1]. The steps of the algorithm are exemplified in Supplementary Fig. 1. The problem is represented 

as a directed graph, where each vertex u corresponds to the phenotype level 𝑃(𝑢) in the environment 

𝐸(𝑢), and an edge between from vertex u to vertex v indicates 𝑃(𝑢)  ≥ 𝑃(𝑣). To each vertex, we attribute 

one of the four following states: 

1. "descending" if 𝑃(𝑢) should be minimized; 

2. "ascending" if 𝑃(𝑢) should be maximized; 

3. "trade-off" if the vertex results from the fusion of a descending and an ascending vertices; 

4. "bound" if the vertex results from the fusion of a vertex representing the minimum or the 

maximum possible value of 𝑃(𝑢). 

 

The solution to the problem is found by an algorithm applied to the graph of the partial order between 

the 𝑃(𝑛) values, where the vertex states are attributed according to fitness objectives. At each step of 

the algorithm, a pair of vertices {U,V} is fused (corresponding to imposing 𝑃(𝑢)  = 𝑃(𝑣)), according to the 

rules described below, applied recursively to the graph, until there is no ascending or descending vertex 

left: 

- Perform a transitive reduction of the graph. 

- Find an ascending (or resp. descending) vertex V which is pointed to (resp. which points to) no 

other vertex of the same state. 

- For each vertex U which points to (resp. is pointed by) V, create a new graph resulting from the 

fusion between U and V, the state of this vertex being "bound" if U is a "bound", or " trade-off" 

in any other case. 

 

We have shown in [S1] that the terminal graphs of the recursion are exact and minimal 

parameterizations of each face of the Pareto front. They consists of convex sub-spaces of ℝ𝑁 defined 

by the partial order relations (given by a terminal graph) between sets of variables all equal to each 

other (the 𝑃(𝑢) values which are grouped in a same vertex). The union of all these subspaces is the 



Pareto front. The number of vertices of each terminal graph provides the dimension of the 

corresponding face.  

 

Application to signal integration networks 

 

The full envelope of the accessible fitness, as depicted in main text Figure 3, has been obtained by 

computing all the extremal regulatory phenotypes compatible with the partial order (Supplementary 

Figure 2). Given that the accessible domain of regulatory phenotypes is convex, the envelope of the 

domains can be computed by interpolating their extremal phenotypes. The envelope in the space of 

fitness values is then the image 𝐹(𝑃(1), . . . , 𝑃(𝑁)) =  (𝐹1(𝑃(1)), . . . , 𝐹𝑁(𝑃(𝑁))), where each 𝐹𝑛 is either the 

F+ or the F- function of Fig. 2b depending on whether the environment 𝐸(𝑛) contains respectively 

chloramphenicol or sucrose. 
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Construct/strain Marker Comment 

Networks 
pNetwork-WT Kanamycin Wild-type (WT) network (purple Fig. 2d, grey dot Fig. 3b) 
pNetwork-M1 Kanamycin Mutant network (blue Fig. 2d) 
pNetwork-M2 Kanamycin Mutant network (red dot Fig. 3c)  
pNetwork-M3 Kanamycin Mutant network (orange dot in Fig. 3d) 

   
Reporters 

pPlacI
Q-lacZω Ampicillin Used to measure the networks output in cis from the 

populations that survived the selection by a LacZ assay 
pPlac-lacZ Ampicillin Used to measure the networks output in trans from the 

populations that survived the selection by a LacZ assay 
pPtrc-eYFP Ampicillin Used to measure the networks output of the chosen 

isolates by an orthogonal fluorescence assay 
pPLtetO1-lacI-mCherry Ampicillin Used to measure only the TetR output in the WT and 

mutant networks 

 

Supplementary Table 1: Constructs used in this study. The network encoding plasmid vectors were 

co-transformed with one of the reporter vectors to measure the output of the networks. 

 

Mutants PN25 tetR/protein lacI/protein 

pNetwork-M1, 

purple  

 Fig. 2d 

- G128C/Trp43Ser G531A/synonymous 

- C132T/synonymous C1001T/Thr334Met 

- C149G/Ala50Gly - 

- G214T/Gly72Trp - 

- C568A/Leu190Ile - 

pNetwork-M2, 

red dot  

Fig. 3c 

- C132T/synonymous G285A/synonymous 

- C145G/Arg49Gly G325T/Ala109Ser 

- C271Δ/Leu91Δ C900T/synonymous 

- T272Δ/Leu91Δ - 

- A273Δl/Leu91Δ  - 

pNetwork-M3 

orange dot  

Fig. 3c 

A-36G C132T/synonymous G285A/synonymous 

- C145G/Arg49Gly G325T/Ala109Ser 

- C271Δ/Leu91Δ C900T/synonymous 

- T272Δ/Leu91Δ - 

- A273Δ/Leu91Δ - 

- T355A/Phe119Ile - 

- G549T/Glu183Asp - 

 

Supplementary Table 2: Genotypes of the studied networks. The network encoding plasmid vectors 

were isolated from the E. coli MC1061 strain and subjected to Sanger sequencing. Only one mutations 

occurred in the promoter regions (PN25). 

  



 

 

 

 

Supplementary Fig 1. Pareto front parameterization by graph contractions. To illustrate the 

generality of the graphical simplification of a partial order with fitness objectives, we consider here an 

example problem with 6 rather than 4 different phenotypes. The initial problem is represented on the 

left, leads to the solution on the right after a number of edge contraction as described in the 

Supplementary Information text. At each step, the node to be merged with another node has a dotted 

contour. In this example, we see that, in the initial problem, some nodes are confronted to a trade-off 

with multiple other nodes (ex: P2 is in conflict with P5 and P4). The algorithm allows to minimize the 

number of such alternative node fusions and find a minimal but exhaustive representation of the full 

Pareto front. Here, ultimately, the front has dimension 2 despite the fact that 3 pairs of nodes are in 

conflict in the initial problem (P3-P5, P2-P5, and P2-P4). The analysis thus shows that the P2-P5 conflict 

is embedded in the other conflict resolutions (consistently, the situation P2=P5 is represented in the 

terminal graph on the right, as the two middle nodes are allowed to collapse, but not cross). 

 

 



 

Supplementary Fig 2: Determination of fitness domain from extremal regulatory phenotypes. a) 

Partial order constraints. b) Extremal regulatory phenotypes compatible with the partial order, defining 

the corners (‘regulatory archetypes’) of the accessible phenotype space. c) Mapping and projection of 

the accessible fitness space, obtained by taking the image of the phenotype domain by the fitness 

functions defined in Fig. 2b and the selective pressures defined in Fig. 3a. 

 

 

 



 

Supplementary Fig 3: Euclidian distance to optima in the 4 dimensional fitness space. a) 

Distribution of Euclidian distance of the mutants after the first round of selection (black dots of Fig. 3b). 

Orange bars: distance of the mutants to the Pareto front (orange line in Fig. 3b). Green bars: distance 

to the absolute fitness maximum (green dot in Fig. 3c). b) Same as a, but for the mutants of Fig. 3c. 

  



 

 

Supplementary Fig 4: Mapping of mutations of onto the structures of LacI (PDB 1Z04) and TetR 

(PDB 1QPI) bound to their respective double-stranded operator sequences. The mutations 

mentioned in supplementary Table 1 that have a consequence on the amino-acid residues are 

highlighted in space-filling model. Top: blue response of the mutant of Fig. 2d, also referred to as 

‘network M1’. Bottom: mutants of Figures 3. Red spheres are mutations obtained after the first round 

(red dot in Fig. 3c, also referred to as ‘network M2’) and orange after the second (orange dot in Fig. 3c, 

also referred to as ‘network M3’). 



 

 

 

Supplementary Fig 5. Fitting of the WT and intermediates selected after the first and second 

rounds of selection in Fig. 3. Dots are experimental measurements (with standard errors over the 

mean) and lines the fit obtained according the Methods with the parameters of Table 1. The top row 

(red) are measurements of the mCherry reporter (normalized by the maximum over all experiments), 

which are a proxy for LacI expression levels, as a function of dox. The other rows (black) are the output 

level of the final cascade component (as measured with a YFP reporter). 

 


