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Abstract

Understanding 3D genome structure requires high throughput, genome-wide approaches. However, assays for all vs. all
chromatin interaction mapping are expensive and time consuming, which severely restricts their usage for large-scale
mutagenesis screens or for mapping the impact of sequence variants. Computational models sophisticated enough to
grasp the determinants of chromatin folding provide a unique window into the functional determinants of 3D genome
structure as well as the effects of genome variation. 
A chromatin interaction predictor should work at the base pair level but also incorporate large-scale genomic context to
simultaneously capture the large scale and intricate structures of chromatin architecture. Similarly, to be a flexible and
generalisable approach it should also be applicable to data it has not been explicitly trained on. To develop a model with
these properties,  we designed a deep neuronal network (deepC) that  utilizes  transfer learning to accurately predict
chromatin interactions from DNA sequence at megabase scale. The model generalizes well to unseen chromosomes and
works across cell types, Hi-C data resolutions and a range of sequencing depths. DeepC integrates DNA sequence
context on an unprecedented scale, bridging the different levels of resolution from base pairs to TADs. We demonstrate
how this model allows us to investigate sequence determinants of chromatin folding at  genome-wide scale and to
predict the importance of regulatory elements and the impact of sequence variations.
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Introduction

Mammalian  genomes  regulate  gene  expression  through  an  intricate  network  of  cis regulatory  elements,  such  as
enhancers, that can act over more then a million base pairs of DNA sequence. Enhancers have to physically interact
with their target promoters to facilitate gene expression1,2. The accessible landscape of every regulatory element is in
turn dictated by the three-dimensional genome organization, a hierarchical structure of insulated domains which vary
between cell types and stages of development3,4. Genomic variants that alter chromatin architecture can lead to drastic
misexpression5,6. Understanding chromatin architecture thus provides the basic scaffold for investigating the molecular
mechanisms and predicting the functional implications of sequence and structural variants in health and disease.
Dissecting  the  factors  underlying  the  formation  and  maintenance  of  genome  structure  requires  high  throughput,
genome-wide  approaches.  However,  assays  for  mapping  chromatin  interactions  genome-wide  such  as  Hi-C7,  are
expensive and time consuming. Extremely deep sequencing is required to map the chromatin architecture of a single
cell  type  at  high  resolution.  This  severely  restricts  the  usage  for  large-scale  mutagenesis  screens  to  identify  the
functional elements that underlie genome folding or for mapping the impacts of sequence or structural variants. 
Computational models sophisticated enough to grasp the genomic determinants of chromatin folding would allow us to
perform large-scale experiments  in silico.  The ideal  chromatin interaction predictor  should:  1)  be sequence based,
allowing us to map the determinants of chromatin folding and predict the impact of variation down to the base pair
level; 2) incorporate large scale chromatin context, as window to window based approaches will miss key contextual
information  such  as  interjacent  insulators;  3)  be  high  resolution,  to  capture  the  intricate  structures  from insulated
neighborhoods to megabase scale topologically associated domains (TADs); and 4) generalize well to unseen data,
confirming the learned predictive features and improving confidence in variant effect predictions. 
Although  promising  methods  have  been  published,  none  addresses  all  these  aspects  simultaneously  in  a  single
framework. Methods that use information at the base pair level do not capture large scale continuous context and rather
focus on window to window based predictions8–10. Methods that integrate a large genomic context do so by coarse
segregation into genomic features11–13 or polymer beads14–16, thus compromising on the base resolution. 
Here we present deepC, a deep neuronal network approach that can accurately predict Hi-C chromatin interactions from
DNA sequence at megabase scale. DeepC uses Hi-C data to train a sequence based model that generalizes well to
unseen data such as hold out chromosomes not used in training or validation. DeepC predicts chromatin folding at large
scale and high resolution, bridging the gap from base pairs to TADs. We show that deepC works across cell types,
learning cell type specific chromatin interactions. DeepC is applicable to a variety of Hi-C sequencing depths and can
be used to fine map chromatin interactions even from low resolution Hi-C.
We validate deepC predictions with high resolution NG Capture-C17 at over one hundred loci. We then demonstrate
how deepC allows us to investigate sequence determinants of chromatin folding at genome-wide scale and base pair
resolution. We employ deepC to perform a genome-wide in silico screen, estimating changes in chromatin interactions
upon deletion of every potential regulatory element. This allows us to dissect the average importance of promoters,
enhancers and boundary elements and show the importance of  all  three of these elements in accurately predicting
genome folding. Additionally, we demonstrate deepC’s utility for interpreting the effect of sequence and structural
variants on chromatin architecture.
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Results

A Deep Neural Network accurately predicts chromatin structure from DNA sequence. 

A model for accurate predictions of chromatin interactions from DNA sequence needs to meet two challenges dictated
by the nature of chromatin folding. The model must include large-scale context but do so at base pair resolution to
simultaneously capture large-scale structures such as TADs and smaller regulatory elements on the scale of 10s to 100s
of bps and their intricate interplay.
To integrate these aspects, we built on a convolutional neuronal network architectures that have proven powerful for
predicting  chromatin  features  from  ~  1  kb  DNA  sequence18,19 (Figure  1A).  We  combined  this  with  a  dilated
convolutional network that excels at integrating large-scale context20,21. Our final model, deepC, operates on megabase
scale DNA input while maintaining the input resolution at the single base pair.
When optimizing the network architecture and data encoding (Figure 1B, Supplementary Figure 1A), we found two
factors crucial  for successful learning and generalization: First, we normalize the proximity signal in Hi-C data by
percentile normalizing the interactions stratified over different genomic distances (Supplementary Figure 1B, for details
see methods). Effectively this skeleton encoding reveals the informative longer range interactions underlying Hi-C data.
Second, we found a two-step training process to yield much better results (Fig 1A, Supplementary Figure 2). We first
train a convolutional neural network to predict a compendium of chromatin features (eg, open chromatin regions, CTCF
binding site  etc.).  We then use the hidden layers  of  the trained network to seed the first  layers  of our chromatin
interaction network.  The full  network then simultaneously optimizes the initial  layers and learns to combine them
through  the  dilated  convolutional  layers  to  predict  chromatin  interactions.  This  can  be  conceptualized  as  transfer
learning, where the network learns to recognize chromatin features from DNA sequence first and then learns to use the
learned underlying sequence patterns and combine them over large distances for chromatin interaction prediction. We
observed fast convergence when seeding with a pre-trained chromatin feature network.
DeepC achieves accurate predictions over hold out chromosomes (Figure 1C). The average distance stratified Pearson
correlation between the Hi-C skeleton and deepC prediction is ~ 0.44 and ~ 0.62 when applying a small mean filter on
the noisy skeleton data (Figure 1D).  This is  comparable to orthogonal methods that  predict  chromatin interactions
directly from cell type specific chromatin features11–13, although genome folding prediction from sequence is a much
more difficult task.
Visually,  deepC yields smooth but intricate predictions that  resolve the hierarchical  nature of  TADs and insulated
domains at high resolution. This resolution is only matched by Hi-C data with very deep sequencing depth (GM12878
primary ~ 3.6 B reads). When we apply deepC to less deeply sequenced Hi-C data (e.g. K562 ~ 1.3 B reads), the
predicted  resolution  surpasses  that  of  the  used  Hi-C  data  itself,  effectively  fine  mapping  Hi-C  interactions
(Supplementary Figure 3). 
We applied deepC over seven cell types with different sequencing depths22 (Supplementary Figure 4) and across Hi-C
binning sizes (Supplementary Figure 5). Using sub-sampling experiments we show that deepC works robustly over less
deeply sequenced Hi-C and may be used to boost their resolution (Supplementary Figures 6, 7). Importantly, deepC is
able to learn tissue specific chromatin interactions (Supplementary Figure 8). Furthermore, the combination of skeleton
transformation and the smoothness of deepC predictions allows us to call domain boundaries at higher resolution then
possible from raw Hi-C data using an insulation score based approach (Supplementary Figure 9, see Methods).

Validation of high-resolution domain structure

To validate  the  deepC  predicted  Hi-C structures  and  derived  boundaries,  we performed  NG Capture-C from 220
viewpoints in two cell types (GM12878 and K562). NG Capture-C probes the chromatin interactions from viewpoints
of interest  at  high resolution and sensitivity,  allowing us to validate deepC’s fine grained domain predictions.  We
specifically target loci where deepC predictions show more detail then the corresponding Hi-C data. Half the viewpoints
were chosen from validation and test chromosomes that have been held out from training. We targeted 81 CTCF sites to
see specific looping events and 139 sites within insulated domains but avoiding active elements,  to detect domain
boundaries. 
NG Capture-C does resolve the interaction domains and specific interactions within at greater detail then the Hi-C
skeleton or deepC predictions (Supplementary Figure 10). However, we observe good agreement between NG Capture-
C tracks and the predicted Hi-C structure (Figure 2A). The domain boundaries predicted from deepC overlap with
spikes  in  the  CTCF  capture,  corresponding  to  CTCF  loops  and  spikes  and  drops  in  the  intra  domain  capture,
highlighting  the  interaction  domain  boundaries.  To  quantify  this,  we  called  domain  boundaries  from  the  deepC
predictions at high resolution and we observe a clear enrichment of distance normalized NG Capture-C signal over the
predicted boundaries (Figure 2B). This enrichment was seen in both types of viewpoints and was strongest in the CTCF
captures due to the strength of CTCF to CTCF loops. 
Using virtual4C, we can predict the interaction profiles of our capture viewpoints from Hi-C data and deepC predictions
(Supplementary Figure 10). When we correlate the NG Capture-C profiles with the virtual4C maps derived from Hi-C
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skeleton and the deepC predictions respectively, we find good correlation (Figure 2C). This was robust across training,
test and validation chromosomes and across A and B compartments (Supplementary Figure 11). However, virtual4C
does not predict the high resolution NG Capture-C profile perfectly. This is true regardless if the virtual4C was derived
from the Hi-C skeleton or the deepC predictions. Remarkably, both methods are competitive although deepC makes
these predictions from sequence rather then sampling from actual chromatin interaction data requiring billions of reads.

Predicting the impact of variation on chromatin structure 

Genomic variants, such as structural variations can alter gene expression by rewiring regulatory interactions such as
enhancer – promoter contacts1,23,24. Such variants and their associated links to gene dysregulation have been shown to be
drivers of severe phenotypes and disease6,25,26.
DeepC allows us to predict the impact of sequence variation. DeepC’s base pair resolution and large-scale context allow
us to  predict  the impact  of  single nucleotide variants  and indels  as  well  as  larger  structural  variants  in  the  same
framework. In Figure 3A we demonstrate the predicted impact of deleting a single CTCF site. DeepC predicts the
merging of subTADs and formation of new subTAD boundaries at different CTCF sites. Calculating the difference
between the predicted chromatin structures we can summarize the predicted impact of a mutation into a single score. 
A long standing question has  been which functional  elements  within the genome underlie  the patterns  of  genome
folding seen in data such as Hi-C and NG Capture-C. To investigate this we used deepC to perform a serial in silico
deletion of all active elements genome wide to determine their importance to chromatin interactions (Figure 3B). As
expected, we find CTCF sites as well as enhancers and promoters with proximal CTCF binding to have the strongest
average impact. Interestingly, we find promoter deletions to have on average a stronger impact then enhancer deletions.
Within promoters and enhancers respectively, we find the ones strongly marked by activity associated histone marks to
have a stronger predicted impact. Our observations match with insights from orthogonal methods, that found CTCF
binding  and  cell  type  specific  active  chromatin  marks12,13,  and  CTCF binding  and  RNA expression11,  to  be  most
predictive of chromatin interactions, respectively. Considering the fidelity of the deepC predictions this suggests that
the patterns of 3C genome folding seen in methods such as Hi-C arise from the interplay of the activities of enhancers
and promoters as well as CTCF bound sites. 

Probing sequence determinants of chromatin folding at base pair resolution

The base pair resolution of our model allows us to interrogate the sequence determinants of chromatin folding up to
megabase scale at the base pair level. Using deepC we can calculate the relative importance of every base pair for
predicting chromatin interactions up to a megabase away. This importance score, called saliency, quantifies how much
the chromatin interaction prediction would change,  if  we change a single base pair.  Explicitly,  the saliency score
measures the gradient of the chromatin interaction predictions with respect to the sequence input.
The IKZF2 locus (Figure 4A, B) exemplifies the saliency patterns we observe genome-wide (Figure 4B). The saliency
peaks sharply at CTCF sites, but we also find broad saliency peaks frequently located underneath promoter regions. In
comparison, enhancers only show strong saliency enrichment when they are co-localized with CTCF sites (Figure 4C).
Since a high saliency score can tag existing determinants for chromatin folding as well as potentially influential regions
upon mutation, we also observe saliency peaks under unbound potential CTCF motifs. When we visualize the saliency
score at base pair resolution we recover CTCF and other transcription factors binding motifs. Interestingly, when we
compare the saliency scores derived from the GM12878 and the K562 model (Figure 4B, D), at genes with differential
expression,  namely  IKZF2 strongly  expressed  in  EBV transformed  lymphocytes  and  TAL1 strongly  expressed  in
erythroid cells, their promoter regions show differential saliency enrichment.
As bases with high saliency scores mark important positions for chromatin architecture, we hypothesized that they are
likely to affect gene expression. To test this, we retrieved GM12878 cell type specific eQTLs ( GTEx v7). We selected
the ~5000 eQTLs that are located in open chromatin (DNase-seq) and or CTCF sites (CTCF ChIP-seq, ENCODE) and
are thus likely to lie in regulatory elements. These eQTLs have significantly higher saliency scores than SNPs randomly
re-sampled from open chromatin and CTCF sites (Figure 4E).  Practically,  the saliency score fine maps accessible
elements with respect to impact on chromatin architecture.

Discussion

Mammalian chromatin architecture unfolds at megabase scale constraining distal regulatory interactions within TADs
and smaller insulated domains4,5,27. Ultimately, chromatin interactions are encoded in the DNA sequence through an
intricate interplay of protein binding sites and other sequence determinants. Bridging the gap from the single base pair
level to large-scale chromatin interactions is a key challenge for understanding chromatin architecture and it’s interplay
with gene regulation28,29. We developed deepC as our approach to traverse this gap. DeepC is the first sequence based
deep learning model that predicts chromatin interactions from DNA sequence within the context of the megabase scale
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of  the  genome.  We believe  this  large  scale  context  integration is  crucial  for  predicting chromatin interactions,  to
determine their sequence determinants and for interpreting the impact of sequence variations. 
Other sequence-based methods8,9 only predict  interactions between two DNA windows. This approach neglects the
influence of surrounding and interspersed elements. For example, the presence of a strong (TAD) boundary in between
windows that dictates the chromatin interaction landscape of the locus will be missed. Recent methods also predict
chromatin interactions from cell type specific chromatin features, such as CTCF and histone modification ChIP-seq,
DNase-seq  and  RNA-seq.  These  methods  capture  the  chromatin  features  between  two  interaction  windows  by:
averaging them10,12; or by capturing the number, distance and orientation of chromatin features such as CTCF through
careful  feature  engineering11.  However,  these  methods  are  not  sequenced  based,  limiting  their  ability  to  map  the
determinants of chromatin folding at high resolution. To predict the impact of smaller sequence variants these models
must  also  map the  variant  impact  on  chromatin  features  through experiments  or  preceding  predictive  models.  In
contrast,  deepC offers  an end-to-end training and  prediction approach.  Polymer  models  have also shown a strong
potential for predicting the impact of structural variations on chromatin folding16. However, the underlying polymer
model is optimized for every chromosome, based on the corresponding Hi-C data rather than from sequence and so
predicts the impact of a variation on the same region used to train the polymer model. Thus, polymer models try to
answer a different question, because they do not attempt to generalize to unseen regions. Furthermore, polymer models
learn  to  encode  chromatin  as  string  of  beads  representing  DNA  windows,  potentially  down to  the  resolution  of
individual factor binding sites but not DNA sequence. Predicting the impact of single nucleotide variants and small
indels would thus require intermediate models.
Our current deepC models learn to predict chromatin interactions of a single cell type at a time. Therefore comparisons
between models, such as between cell types, need to distinguish between stochastic variability in the training process
and biologically meaningful cell type specific features.  To facilitate the discovery and interpretation of tissue specific
factors of chromatin folding, we work towards a single generalized network that encodes cell type identity and learns to
predict chromatin interactions across tissues in a single process. Although, using megabase DNA context encoded at
base  pair  resolution  is  unprecedented,  deepC  does  not  yet  capture  interactions  greater  than  the  megabase  scale.
However,  this limitation purely reflects current computational  limits and inevitable improvements in hardware and
further optimizing our model architecture will allow deepC to use larger sequence context in the same framework. In
addition, we found deepC models to yield substantially better predictions, when being pre-seeded with hidden layers
optimized to predict a compendium of chromatin features in a first training phase. Although these layers are refined in
the  second,  chromatin  interaction,  training  phase,  the  network  remains  biased  towards  recognizing  the  sequence
determinants of chromatin features included in the first phase. Predictive sequences for chromatin features not included
or potential sequence determinants that directly influence chromatin folding may still be learned by reusing and refining
existing hidden  layers,  but  are  learned  in  a  less  efficient  manner. We believe that  future improvements  in  model
architecture as well as data availability will allow us to address these limitations in a more efficient manner.
We believe deepC will prove to be valuable tool for dissecting the 3D regulatory genome code. We provide trained
deepC models for seven cell types. Users can utilize these models to help fine map chromatin interactions, interrogate
the features and sequence determinants of chromatin folding and predict the impact of variation  in silico. Users can
further train deepC models on new Hi-C data to derive novel cell type models.
We demonstrated some of the diverse use cases for employing deepC. Our genome wide deletion screen of potential
regulatory elements confirmed that CTCF site deletions to be most likely to cause strong chromatin interaction changes.
Furthermore, deepC indicates both promoters and enhancers to contribute to genome folding even in the absence of
CTCF.  Interestingly,  we  identified  promoter  deletions  to  have  a  higher  predicted  effect  then  enhancer  deletions.
Comparing enhancers and promoters respectively, we find the deletions of elements associated with active chromatin
marks to have higher predicted impacts. Our observations are in line with findings from orthologous methods, that find
CTCF binding, open chromatin, active histone marks and RNA-seq to be most predictive10–13,16.  Interestingly deepC
consistently  predicts  domain  like  structures  with  frequent  and  pronounced  stripes  rather  then  distinct  point  wise
interactions.  Moreover,  deepC  highlights  active  regulatory  elements  to  be  important  for  predicting  chromatin
interactions, even when they are not co-localized by CTCF binding sites. These observations support a loop extrusion
mediated model of chromatin folding 15 over a model of pair wise chromatin interactions. Furthermore, we fine mapped
the sequence determinants of chromatin architecture at base pair resolution and linked this information with effects on
gene expression.
We believe deepC presents a valuable tool for interrogating chromatin architecture that will facilitate future research.
Furthermore,  deepC  represents  an  important  step  towards  predictive  models  of  gene  regulation  that  integrate  the
intricate and long ranged chromatin landscape of mammalian genomes.
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Methods 

Chromatin feature data. As chromatin feature compendium the ENCODE30 and Roadmap31 chromatin data utilized in
DeepSEA18 were used. Narrow peak calls (hg19) for 918 experiments were downloaded. The data was supplemented
with additional erythroid linage data. Five sets of ATAC-seq data from Corces et al.32, two DNase-seq experiments
published earlier33 and ten ATAC-seq and one CTCF ChIP-seq experiment from in house erythroid differentiations
were used.  All  data used are listed in Supplementary Table 1.  All  additional  data,  was aligned to hg19 using the
NGseqBasic pipeline34. Peaks were called with macs2 (default parameters, -q 0.01). The peak signals were aggregated
following the procedure described in Zhou et al.18. In brief, the genome was split into 200 bp bins. All peak calls were
intersected with these bins. If a bin overlaps a peak call to at least 50 % (100bp), the bin is labeled as belonging to that
dataset class. A peak can have as many classes as peak calls used. All genomic bins that do not intersect with at least
one peak call were discarded. Only autosomes were used for all analysis.

Hi-C data. The publicly available, deeply sequenced Hi-C data from Rao et al.22 was used. The available 5 and 10 kb
resolution  intra  chromosomal  contacts  maps  of  8  cell  lines  were  downloaded and  normalized  using  the  provided
KRnorm factors. In addition, the primary GM12878 replicate was realigned from raw fastqs using HiCPro 35. HiC-Pro
was run with default parameters but modified to allow for minor multi-mapping in duplicate regions such as globin
genes.  Bowtie2 was run with the -k option set  to 3 and filtering reads with more then 2 multimapping positions.
Effectively this mimics a bowtie (v1) run with flag -M 2 set. The passing reads were filtered for valid interactions and
contact  matrices  built  and  ICE  normalized  using  the  HiC-Pro  default.  For  the  sub  sampling  analysis,  the  valid
interactions from the realigned, primary GM12878 set  were sub sampled to achieve 1 billion, 100 million and 10
million valid interactions, respectively.

Hi-C encoding for deep learning. The genome was divided into bins matching the bin size of the respective Hi-C data
resolution used for training (1 kb, 5 kb , 10kb). For every stretch of DNA of size 1 Mb + bin size bps (e.g. 1005000 for
5kb bins), the chromatin interactions associated with the window were assigned as squares in a vertical zig-zag pole
over the center of the sequence window (see Supplementary Figure 1A). Every square encodes the Hi-C interactions
observed between two bin sized windows of increasing distance (up to 1 Mb away). By sliding the large DNA stretch
over a chromosome with a bin sized increment, this encoding recovers the chromosome wide Hi-C map up to an
interaction distance of 1 Mb. 
The Hi-C interaction signal was normalized to remove the linear distance dependence. The resulting signal can be
regarded  as  the  skeleton  underlying  the  Hi-C signal.  The  Hi-C signal   is  normalized  using  a  distance  stratified,
percentile normalization adapted for the unique nature of Hi-C data. The Hi-C data is percentile normalized across a
chromosome separately for every interaction distance in bin sizes. It is of particularly interested to resolve high levels of
Hi-C interactions at high resolution and only a low percentage of chromatin interactions is expected to yield strong
interactions at larger distances for example the corners of TAD triangular structures. The percentile normalization was
designed better resolve these high interaction levels at larger distances by using uneven percentiles in a pyramid like
scheme (from low to high: 2x 20 %, 4 x 10 %, 4x 5 %, see Supplementary Figure 1B). The identifier of the respective
pyramid percentile (1 – 10) was stored. The chromatin interaction network was then trained to predict the pyramid
percentile identifier as a regression problem (see below). 

Deep neural network architectures.  For predicting chromatin interactions with deep learning, we found a two step
training  process  with  transfer  learning  (Supplementary  Figure  2)  to  yield  substantially  better  results.  First  a
convolutional  neural  network  was  trained  to  predict  chromatin  features  from 1  kb  of  DNA  sequence,  using  the
compendium of 936 datasets described above. A general introduction into the use of convolutional neural networks for
genomics applications can be found in36,37.  The principle network architecture was adapted from DeepSEA18.  Five
convolutional layers were used (instead of 3 as in DeepSEA). ReLU was used activation function, followed by 1D max
pooling and dropout at every convolutional layer. The five pooling layers were designed to pool a total of 1 kb into a
single entry along the sequence axis. This greatly reduces the number of parameters to learn in the final, fully connected
layer.  Sigmoid activation was used for the fully connected layer to output an individual probability for each class
(multi-label classification). The network parameters were trained by minimizing the sum of the binary cross entropies
using the ADAM optimizer in batches of 100. Hyperparameters were optimized by grid search. For details on the final,
best performing hyperparameters see Supplementary Note. We did not find batch normalization to benefit convergence
speed or robustness in our setting.
In the second step a chromatin interaction network was used to predict Hi-C interaction from DNA sequence. The
chromatin interaction network takes as input  1 Mb + 1x Hi-C bin size [bp], (e.g. 1005000 for a 5 kb bin network). The
first  module  consists  of  five  convolutional  layers,  with  ReLU,  max  pooling  and  dropout.  Dimensions  and
hyperparameters for this stage were equal to the chromatin feature network. The hidden weights were initialized by
seeding with the weights of the trained chromatin feature network from step one. 
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The second module is a series of nine dilated, gated convolutional layers with residuals (see Supplementary Notes).
Following  PixelCNN38 and  WaveNet20,  gated  convolutional  layers  require  training  double  the  amount  of  filter
parameters, but have the potential of modeling more complex functions through their multiplicative units, similar to
LSTMs.  The  residual  units  allow  information  to  propagate  more  easily  through  the  network  without  having  to
necessarily pass through convolutions39. The dilation rates were chosen to reach the full sequence context in the last
layer. GPU memory limited us to using a batch size of 1. The dilated layers were followed by a fully connected layer.
The output of the fully connected layer are the predicted interaction strengths (in units matching the pyramid percentile
normalization). The model was trained with ADAM to minimize the mean square error between the outputs and the true
percentiles. Hyperparameters not dictated by the seeding procedure were optimized using grid search. 
 
Training the deep neural networks. For both training procedures the data were split into training, validation and test
set based on chromosomes. For the chromatin feature network chr11 and 12 were used for for validation and chr15, 16
and 17 for  testing.  For the  chromatin  interaction  network,  to  increase  the  number  of  training  examples  the  same
validation chromosomes were used but only chr16 and 17 were used as test chromosomes. All models were trained on
NVIDIA Titan V cards. Fully training the chromatin feature network required 14 epochs. The training set order was
reshuffled after every epoch.
To minimize the amount of times large chunks of DNA sequence have to be loaded into memory the network is trained
on one  chromosome at  a  time.  Within  a  chromosome,  the  order  in  which  training  batches  are  drawn is  random.
Interestingly, we observed that the chromatin interaction network, when seeded with the pre-trained weights in the first
convolutional filters, converges quickly, after training on ~ 3 - 6 chromosomes and only marginally improves after
training for an entire epoch or longer. Models were trained for one full epoch as we have not observed significant
improvement after training for longer and the limited batch size as well as the network complexity make training slow.

Predicting  chromatin  interactions  and  estimating  interaction  changes.  Using  a  trained  model  the  chromatin
interactions of a region of interest or of the entire hold out test chromosomes can be predicted from sequence. By
modifying the input sequence the chromatin interaction changes caused by a sequence variants can be predicted. For
calculating differences in chromatin interactions, the chromatin interactions over the reference sequence was predicted
for every position that is within 1 Mb (plus 1x Hi-C bin size) of the sequence variant. This matches the respective
models spatial reach. The reference sequence is then modified to match the sequence variant of interest. After predicting
the chromatin interactions over the variant sequence, the difference is quantified by calculating the absolute difference
between reference and variant prediction. Then the mean of the absolute difference over all covered interaction tiles
(bin sized interaction windows) can be calculated. This is straight forward for single or multiple base pair substitutions
as long as the same number bases between reference and variant match up. For variants like deletions, there are to
options for modeling the variant. 1) The reference sequence can be deleted. This requires to add a matching number of
additional base pairs (e.g. at the downstream end) to maintain the total sequence length for the model. This has the
benefit of modeling the actual variant sequence and captures effects at the breakpoints, e.g. creating a new binding site.
The drawback is that all chromatin interaction predictions are downstream of the variant  are “moved” towards the
center. For larger deletions (~ >100 bp), this has the effect of creating a shadow of chromatin interaction changes. In
variants that have a strong effect  on chromatin structure, the shadow effect is small compared to the distinguishable
variant effect that we are actually interested in. In contrast, in variants that don’t seem to have a predicted impact, the
shadow effect is the only observable feature. 2) Alternatively, the affected bases can be changed to N’s instead of
deleting them. This removes the shadow effect  but may loose breakpoint  effects.  The same principle translates to
insertions. In practice, the only difference we observe between both approaches is for visualization with the shadow
only being present when using method 1). See Supplementary Figure 12 for an example impact of choosing a deletion
mode. For estimating the impact of a deletion and for the genome wide deletion screen below approach 1 was used. To
remove the shadow effect, approach 2 was used for visualizing the impact of larger deletions.

Distance Stratified Correlation. We can calculate the correlation between the Hi-C skeleton and the deepC predicted
interaction on the hold out test chromosomes. For calculating the correlation between Hi-C maps, e.g. from replicates,
without accounting for the distance dependence signal leads to inflated correlation values40. To mitigate this effect, it is
possible to stratify the correlation over the distance between interacting regions40,41. The Hi-C skeleton transformation
employed already accounts for the distance dependence in terms of DNA polymer proximity. Nevertheless, we still
might observe differences between predictive performance at different linear distance. For example, a model might be
better  at  predicting  short  ranged  or  intermediate  contacts  over  long  ranges  ones.  To  monitor  such  behavior,  the
correlation between the model predictions and the Hi-C skeleton was stratified over linear distance in bins matching the
encoded bin size. The Pearson correlation coefficient was calculated between the Hi-C skeleton percentile tag (1 – 10)
and  the  predicted  regression  score.  Note  that  the  skeleton  percentiles  are  discrete,  while  the  regression  score  is
continuous. The Hi-C skeleton is noisy even at very deep sequencing depths (e.g. GM12878). Therefore a small mean
filter was employed using a 5x5 bin window to smooth the skeleton. The distance stratified correlation was calculated
between the prediction and the raw or the smoothed skeleton respectively.
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Selection of Validation Capture probes. A total of 220 viewpoints was selected for validating the deepC predictions.
We specifically selected genomic locations where the Hi-C data and deepC predictions differed in detail or where the
structures deepC predicted where only very faintly noticeable in Hi-C data. Two sets were designed, one targeting
CTCF sites and one set targeting intra domain viewpoints that lie within a distinct Hi-C/deepC domain but are not
intersecting with any potential functional elements. In total, 81 CTCF sites and 139 intra domain viewpoints were
selected.  Capture  probes  were  designed  using  CapSequm  (http://apps.molbiol.ox.ac.uk/CaptureC/cgi-
bin/CapSequm.cgi), filtering out repetitive probe regions as described in the online documentation. For the final probe
design see Supplementary Table 2.

Cells,  cell  culture and fixation.  Human GM12878 lymphocyte cell  line,  were obtained from the NIGMS Human
Genetic Cell Repository at the Coriell Institute for Medical Research and cultured in RPMI 1640 supplemented with
15% FBS, 2mM L-Glutamine and 100U/ml Pen-Strep at 37 °C in a 5% CO2 incubator. K562 cells were supplied by the
WIMM transgenics facility. Cells were maintained in RPMI 1640 media supplemented with 10 % FCS at 37 ºC in a 5%
CO2 incubator. Both cell types were fixed and processed using the same protocol. Cells were resuspended at 1x106 cells
per ml and fixed at room temperature with 2% v/v formaldehyde for 10 minutes. Fixation was quenched with 120 mM
glycine. Cells were washed with ice cold PBS. Cells resuspended in cold lysis buffer (10 mM Tris, 10 mM NaCl, 0.2%
Igepal CA-630 and complete proteinase inhibitor (Roche)) and snap frozen to −80 °C.

Capture-C. 3C libraries were prepared as previously described17 with the following modifications: Centrifugation's
were performed at 500 rcf, thermomixer incubations were set to 500 rpm, and following ligation chromatin was pelleted
by centrifugation (15 min, 4ºC, 500 rcf) and the supernatant discarded. Double capture was performed as described
previously17 with biotinylated oligonucleotides (IDT xGen Lockdown Probes) in two pools (Supplementary Table 2)
with 3 pg of each oligonucleotide per 3C library.  The generated Capture-C libraries were sequenced using Illumina
sequencing platforms (V2 chemistry; 150-bp paired-end reads). To resolve even subtle changes in chromatin interaction
domains at high resolution, the libraries were deeply sequenced (GM12878  CTCF  - 128 M; GM12878 intra domain
-118 M reads; K562 CTCF – 302 M; K562 intra domain – 289 M reads).

Capture-C  analysis.  Capture-C  data  were  mapped,  quality  controlled  and  visualizing  using  CCseqBasicS
(https://github.com/Hughes-Genome-Group/CCseqBasicS) following the procedure described previously17.

Distance normalize Capture-C tracks. To compare them to the Hi-C skeleton, Capture-C tracks were normalized for
distance dependence per viewpoint. The number of interactions with each restriction enzyme fragment was extracted
and  the  distance  to  the  viewpoint  recorded.  The  interactions  were  then  normalized  for  the  total  number  of  cis
interactions for the respective viewpoint. Pooling this information across all viewpoints we observed that the distance
decay approximately follows a log – log linear trend when we split the data into three distance bins (close, intermediate
and far). The distance thresholds for these bins were empirically optimized for every Capture-C set (see Supplementary
Table 3), excluding everything closer then 2.5 kb to the respective viewpoint. The distance decay is then approximated
by three linear regression fits, one for each distance bin.  The distance normalized interactions were calculated per
viewpoint by dividing the observed cis normalized interactions with the expected interactions from the linear fit at the
respective distance.

Insulation score boundary calling. Interaction domain boundaries were called on the deepC predicted interactions
using an insulation score based approach that was adapted from the procedure described by Crane et al.42. Using the 5
kb bin sized data, the mean insulation score profile was calculated based on a 25 kb window to allow for a more
intricate boundary call. The first derivative, or delta vector, of the insulation score profile was approximated using a 1D
Sobel operator. Zero crossings in this delta vector represent local minima and maxima of the insulation score. Maxima
were discarded. The remaining boundaries were further filtered by calculating the approximation of the second derivate
of the insulation profile using the same procedure described above. The height of this delta2 vector reflects the change
in insulation score change, with sharper boundaries having a higher delta2 score. Boundaries with a delta2 score smaller
then 0.1 were removed and the remaining boundaries were stratified based on their delta2 score.

Distance normalized Capture-C signal over boundaries.  The mean normalized Capture-C signal over boundaries
called  from  deepC  interaction  predictions  was  calculated.  In  Capture-C  tracks  from  single  viewpoints,  domain
boundaries can be subtle and get harder to detect the further away from the viewpoint they are located.  We therefore
focused on interactions in a moderate distance to the viewpoint and excluded all interactions that are more then 1 Mb
away. The mean normalized Capture-C signal over predicted boundaries was visualized as profiles, that were stratified
for boundary sharpness using the delta2 score described above.
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A/B compartment call. Hi-C A and B compartments were called using the cscore approach43. The cscore orientation
corresponding to A and B compartments were assigned per chromosome based on the overlap with active chromatin
marks.

Virtual4C from Hi-C skeleton and deepC maps. By extracting all interacting windows with a viewpoint of interest,
Hi-C data can be transformed into virtual 4C profiles. For this work, virtual4C profiles were derived from the Hi-C
skeleton and the deepC predictions, thus yielding distance dependence normalized profiles. Virtual4C profiles from the
Hi-C skeleton  and  deepC predictions  were  compared  to  distance  normalized  Capture-C tracks  by  calculating  the
respective Pearson correlation of all interactions within 1 Mb from a given viewpoint. Note that the skeleton percentiles
are discrete, while the deepC score and Capture-C tracks are continuous. In comparison, virutal4C profiles from the
skeleton are relatively sparse even at deep sequencing depth.

Saliency score. The saliency was calculated as the gradient of the model output, the predicted chromatin interactions,
with respect to the sequence input. The saliency score was calculated at bp resolution. At a single step the saliency score
relates to the vertical interaction pole on the center of a given sequence window. The sequence window is then moved
in bin sized steps and the saliency is averaged over all sequence windows (sized 1 Mb + bin size) that include the
respective base pair. For easy of visualization and interpretation the absolute value of the saliency score were used.
Saliency scores derived from the 5 kb resolution GM12878 and K562 model were used for visualization, respectively.

Chromatin segmentation. GM12878 and K562 chromatin data were downloaded from the ENCODE data portal (see
Supplementary Table 4). Filtered alignments to hg19 were downloaded and replicates were merged. Peaks were called
using macs2 with default settings and -q 0.01. Deeptools was used to create bigwig coverage tracks. No normalization
was used. DNase-seq and CTCF ChIP-seq peaks were merged to a union set merging peaks within 10 bp of each other
(bedtools merge -d 10). Union peaks were formated to 600 bp elements centered on the peaks. Deeptools was then used
to extract the read coverage for each chromatin dataset over each peak union element. For this elements were extend to
1000 bps to better capture flanking histone modifications. Using the derived count matrix,  chromatin classes were
segmented using GenoSTAN running on the elements rather then entire chromosome stretches. The HMM model was
trained using the Poisson log-normal distributions. Twelve classes were fitted and merged into 11 classes based on
similarity of the chromatin signatures. The classes were manually curated and classified into promoter, enhancer and
CTCF sites with varying activity levels based on H3K27ac.

eQTL data analysis. EBV transformed lymphocyte specific eQTLs were retrieved from GTEx (v7 accessed from the
GTEx portal 01/03/2019). A union of DNase-seq and CTCF ChIP-seq peaks was created using bedtools merge. The
eQTL SNPs were filtered for intersection with the union of GM12878 open chromatin and CTCF peaks. Indels were
removed. A background SNP set was constructed by shuffling the eQTL SNPs on the respective same chromosome and
forcing them to stem from within the union peaks (bedtools shuffle -chrom -incl). Absolute saliency scores of the SNP
bases  derived  from the 5  kb resolution  GM12878 model  were  extracted.  Empirical  cumulative  distributions  were
derived and tested for significance using a two sample Kolmogorov-Smirnov test (R, ks.test, reshuffled SNP saliency
vs. eQTL set saliency, alternative hypothesis: “less”). 

Deletion screen.  Separately, GM12878 DNase-seq and CTCF ChIP-seq peaks were merged if multiple peaks were
found within 1500 bp of each other (bedtools merge -d 1500). Peaks were extended to at least 300 bp. All DNase peaks
that overlapped with CTCF peaks were removed. For every remaining CTCF and DNase site we predicted the impact of
deleting the respective site on chromatin interactions using the 5 kb GM12878 model. Chromatin classes were assigned
based on overlap with the GenoSTAN chromatin segmentation described above. 

Additional  software  and  packages   All  neural  networks  were  implemented  in  python  (v3.5)  and  tensorflow
(developed under 1.8.0; compatible with current latest stable version 1.14.0).

Additional Tools
• bedtools44

• deeptools (v2.4.2)45

• MACS (v2.0.10)46

• samtools (v1.3)47

Additional R packages
• cowplot (v0.6.2, https://github.com/wilkelab/cowplot)
• GenomicRanges – (v1.30.3)48

• GenoSTAN (STAN v2.6.0)49

• ggplot2 (v3.1.0)50

• RColorBrewer (v1.1.1-2, https://cran.r-project.org/web/packages/RColorBrewer/index.html)
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• rtracklayer (v1.30.4)51

• tidyverse (https://wwwwwwtidyverssrtrs4)
• zoo (v1.8.1)52

Additional Python libraries
• numpy (1.16.4)52

• h5py (v2.9.0, http://www.h5py.org) 
• pysam (0.15.2, https://github.com/pysam-developers/pysam)

Software availability

All  code  for  training  and  employing  deepC  networks  as  well  as  trained  models  are  available  under:
https://github.com/rschwess/deepC ; All code for training and employing chromatin feature networks is available under:
https://github.com/rschwess/deepHaem
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Figure 2. Capture-C validation of deepC predictions from 220 viewpoints. A) Example region with overlay of 

GM12878: Hi-C, skeleton and deepC prediction; NG Capture-C tracks, distance normalized NG Capture-C tracks and 

CTCF ChIP-seq track (red). Shown is a CTCF viewpoint (purple triangle) and an intra domain viewpoint (blue triangle) 

not overlapping with any active elements. Dotted lines are aligned to predicted boundaries for orientation. Dashed lines in 

distance normalized Capture-C tracks indicate the expected interaction value. B) Meta profile of the average NG Capture-

C signal over domain boundaries called from the deepC predicted interaction map at high resolution. Boundaries were 

classified based on their sharpness (see Methods). Only NG Capture-C interactions from viewpoints within 1 Mb of the 

respective boundary were used. C) Comparing the correlation between the validation NG Capture-C profiles and the 

virtual 4C profiles derived from the Hi-C skeleton (x-axis); and the deepC prediction map (y-axis) from all viewpoints in 

two cell types.
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Figure 3. Genome wide in silico deletion screen of open chromatin and CTCF binding sites. Using the GM12878 model, all 

open chromatin and CTCF binding sites were individually deleted in silico and the predicted impact on chromatin structure 

quantified. A) Example prediction of the impact of deleting a single CTCF site (purple triangle) on chromatin structure. Shown 

is the reference deepC prediction, the predicted interaction upon deletion and the difference between both maps. GM12878 

CTCF ChIP-seq and DNase-seq tracks are aligned underneath. The deepC prediction values were bounded between 2 and 8 for 

contrast. B) Summary of the predicted chromatin interaction differences between reference and variant. Differences were 

quantified as the mean absolute interaction difference per bin to bin interaction. Each deletion was classified based on the 

overlap with genome segmentation classes. Outliers not plotted.
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Figure 4. Mapping sequence determinants of chromatin folding at bp resolution. Overlay of deepC chromatin interaction 

prediction for GM12878 with matching chromatin data: DNase-seq and ChIP-seq for CTCF and chromatin marks. At gene scale 

(A) and promoter scale (B). Shown in green is the saliency score which is a proxy for the importance every base has in 

predicting the chromatin interactions of that region. The saliency score shows sharp peaks overlapping CTCF binding sites and 

broader peaks overlapping active gene promoters as seen on the meta plot of average saliency per chromatin element class (C). 

Resolving the saliency score at base pair resolution (B) highlights CTCF motifs and general transcription factor binding motifs 

(regions within dotted lines, CTCF site right and top, promoter left and bottom). When subtracting the saliency scores derived 

from the K562 deepC model from the GM12878 model (grey) the IKZF2 promoter shows enriched saliency signal in GM12878. 

The reverse is true for the TAL1 promoter in the K562 model (D). This matches the tissue specific expression patterns of IKZF2 

and TAL1. Note that CTCF sites show a difference in the tissue specific saliency score because both models have been trained 

independently. E) GTEx derived eQTLs specific for GM12878 cells that intersect with GM12878 open chromatin sites are 

enriched for higher deepC saliency scores compared to an equally sized, reshuffled set of SNPs within open chromatin. This 

difference is significant (one sided Kolmogorov–Smirnov Test). It suggests that eQTLs are enriched for SNPs at positions that 

influence 3D structure.
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Supplementary Figures
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Supplementary Figure 1. Scheme for encoding Hi-C data for deep learning. A) For a given window of length 1 Mb + 1x 

the bin size, the binned Hi-C data is recorded on a vertical (zig zag) pole centered in the center on the window, where each 

square represents the pairwise interaction strength of the bins. This is extracted as the target output vector for the given 

window. By moving the window over a chromosome this records all Hi-C interactions up to a genomic distance of 1 Mb 

between the bins. B) The Hi-C interactions are percentile binned in a genomic distance stratified manner. For every genomic 

distance, in steps equal to the bin size, the Hi-C signal is split into unequal percentiles ranging from 20 % bottom to 5 % top. 

The percentiles are attributed the values 1 to 10 yielding the Hi-C skeleton. The unequal percentile sizes ensure a finer 

distinction of the differences at the high Hi-C interaction value range, while minor differences in the low interaction value 

range are squished. Effectively, this procedure reduces the linear distance driven proximity signal and enhances domains and 

domains boundaries. 
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Supplementary Figure 2. Comparison of deepC training with and without transfer learning. Training a deepC model with 

the same architecture but without pre-seeding the lower convolutional layers with the deepHaem model results in the 

emergence of triangular structures. Their positioning however is does not match with the Hi-C structures. In contrast, with pre-

seeding the predicted domains overlap well with the Hi-C skeleton.
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Supplementary Figure 3. DeepC GM12878 and K562 example. Shown is a ~ 7 Mb region on chr17 one of the test 

chromosomes.
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Supplementary Figure 4. DeepC across 6 tissues. Shown are the Hi-C data and deepC prediction overlay. The number of 

 valid Hi-C contacts per data set is recorded. Shown is a region ~ 7 Mb on the validation chromosome chr17. 
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Supplementary Figure 5. Training deepC at different bin sizes. Shown are pairs of Hi-C skeleton and deepC prediction at 

different bin size resolutions, all on validation chromosome 17.
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Supplementary Figure 6. Effect of sub sampling HiC contacts on deepC predictions. We sub sampled the valid contacts of 

the realigned GM12878 HiC data (primary replicate with ~36 B reads yielding ~ 26 B valid contacts) to 1 B, 100 M and 10 M 

valid contacts, respectively. We then trained a deepC net at 10 kb resolution. For comparison, the cell type with the least 

amount of sequencing in Rao et al., HMEC is sequenced to ~538 M reads yielding ~395 M valid contacts.
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Supplementary Figure 7. Effect of sub sampling HiC contacts on deepC predictions, detail with correlation. Distance 

bins are in multiples of the respective resolution, here 5kb. A) Detail of data shown in Supplementary Figure 6 above. B) 

The average Pearson correlation between the 1 B contact and the 100 M contact derived deepC prediction on validation 

chromosomes chr16 and chr17 was distance stratified. The correlation is stronger for shorter distances (~ < 500 kb 

corresponding to distance bin 50) and drops for long ranged interactions. This suggests that deep sequencing better resolves 

long ranger interactions enabling deepC to learn to predict them more accurately. In contrast, shorter ranged interactions 

and smaller domains are resolved sufficiently for training and prediction. 
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Supplementary Figure 8. Tissue Specific deepC predictions. DeepC predicts sub TAD structure matching the tissue 

specific CTCF signals in K562. The subTAD is present in K562 HiC data.
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Supplementary Figure 9. Insulation score based boundary calling. To map domains at high resolution we adapted the 

insulation score based calling method from Crane et al. 2015. We calculate the moving, mean insulation score (ins) using a 

window of 25 kb. We then calculate the approximation of the first and second order derivative (delta) and (delta2). Zero 

crossings in delta were identified and filtered on the a delta2 strength thresholds reflecting maxima in (ins) and the strength 

of boundaries as the change of change in insulation score (the sharpness).  
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Suppl. Figure 10. Virtual 4C vs. Capture-C. Shown are the Hi-C skeleton and the deepC prediction. From a viewpoint of 

interest, here a CTCF site (purple dot), we can derive a virtual 4C profile (grey) from the skeleton or the prediction 

respectively. The black line indicates a smoothed profile. The blue dot represents an intra domain viewpoint from which we 

captured as well (data not shown). We compare the virtual 4C profiles against the distance normalized Capture-C track (red) 

by calculating the Pearson correlation coefficient between the profiles. 
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Suppl. Figure 11. Stratifying virtual4C correlations. Shown is the Pearson correlation of the distance normalized Capture-C 

data with the virtual4C derived from the Hi-C skeleton and the deepC prediction map respectively for 220 viewpoints. The 

viewpoints have been stratified over A) location on train, test and validation set chromosomes and B) overlap with A and B 

compartments. No significant bias from these aspects can be observed. 
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Supplementary Figure 12. Effect of in silico deleting vs introducing N’s. Example of two in silico deletions spanning 

100 bps each. Compared are the impact of deleting the respective sequence or replacing the sequence with a matching 

number of N’s. In major impact variants the shadow created by the shifting of the sequence downstream of the deletion is 

negligible. In low impact variants the shadow becomes the dominating feature.
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