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Abstract 

Background 

It is not a trivial step to move from single-cell RNA-seq (scRNA-seq) data production to data 

analysis. There is a lack of intuitive training materials and easy-to-use analysis tools, and 

researchers can find it difficult to master the basics of scRNA-seq quality control and 

analysis. 

  

Results 

We have developed a range of easy-to-use scripts, together with their corresponding Galaxy 

wrappers, that make scRNA-seq training and analysis accessible to researchers previously 

daunted by the prospect of scRNA-seq analysis. The simple command-line tools and the 

point-and-click nature of Galaxy makes it easy to assess, visualise, and quality control 

scRNA-seq data. 

  

Conclusion 

We have developed a suite of scRNA-seq tools that can be used for both training and more 

in-depth analyses. 
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Background 

The advent of RNA-seq has enabled a host of important discoveries in many biological areas 

such as gene expression, alternative splicing, comparative genomics, and gene annotation. 

Bulk RNA-seq, where a population of cells is used in every sample, usually provides copious 

amounts of RNA, but only measures the average expression level across that population. If 

different cell populations are included in a single sample, then information may be missed 

due to dominance of the transcription profile of one population against another. A decade 

ago, the development of single-cell RNA-seq (scRNA-seq) [1] made it possible to sequence 

the transcriptome of individual cells. This innovation opened the door to identification of 

novel cell types, uncovering regulatory pathways between genes, tracing the trajectories of 

distinct cell lineages, and pseudo-time reconstruction. 

  

Typically, reads generated from cells in scRNA-seq experiments are mapped to a reference 

genome and then an expression matrix, calculated from the number of reads that are 

allocated to each gene or transcript, is produced. There are a number of tools available for 

this process (or variations of it) that are widely used within the community [2-4]. 

  

Along with the advantages of scRNA-seq come a number of technical challenges. scRNA-

seq data is inherently ‘noisy’. Disruption or damage to the cell can result in the escape or 

degradation of nuclear DNA leaving predominantly cytoplasmic DNA in the cell. Further, 

inefficient RNA capture combined with amplification bias may distort gene expression 

profiles. This often results in ‘dropouts’, where genes are found to be at least moderately 

expressed in a few cells, but absent from most. 

  

A large array of tools are now available to address quality control (QC) and expression 

analysis in scRNA-seq data (e.g. [5-11]). 
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The Scater package [12] provides the ability to QC scRNA-seq data, providing methods for 

visualisation, filtering, and expression analyses, as well as being compatible with further 

downstream analysis tools. Like many of the other tools cited above, Scater requires at least 

some experience of the Linux command line or even more advanced experience of the R 

programming language [13]. Also, due to both the large amount of sequencing data that 

scRNA-seq may produce and the high computational resources required by many of the 

tools, specialised infrastructure such as High-Performance Computing (HPC) is often 

required to analyse such experiments. 

  

There is a lack of training resources for wet-lab scientists who want to carry out 

computational analyses of NGS data. Despite online resources for programming being quite 

plentiful along with a plethora of online help forums, resources focused on both training and 

analyses of biological data are few [14]. 

  

Galaxy is an open-source scientific workflow, data integration, and data analysis platform 

that aims to make life science research accessible to research scientists that do not have 

computer programming or systems administration experience [15]. Galaxy is available 

through well over one hundred public Galaxy servers, or can be easily integrated with 

existing HPC and cloud resources. 

Over 30 scientific groups involved in Galaxy-related training contribute to the Galaxy 

Training Network (GTN) (https://galaxyproject.org/teach/gtn/). The GTN provides online 

training materials as well as coordinating Galaxy training events worldwide [16]. 

 

  

Results 

  

Scater wrappers and workflows 
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Here we describe our Scater command-line wrappers, along with their integration into 

Galaxy and use on publicly-available Galaxy servers, for use as both an introduction to 

scRNA-seq data analyses and for more focussed downstream analyses. 

  

Using Scater v1.10.1 [12], we defined the most common and intuitive tasks researchers new 

to the field of scRNA-seq might carry out in their analyses and created generic tools to 

accomplish these tasks. Typically, one would read in an expression matrix, calculate some 

metrics on the data, visualise the data and then filter out low quality cells or unexpressed 

genes. Then a further round of metrics would be calculated and visualised to assess the 

impact of the previous filtering steps. This visualise-filter-visualise iteration can be continued 

until a user is happy they have retained only high-quality data. The next step would be to 

look for confounding factors in the data, such as batch effect, by clustering the data and 

plotting it in relation to experimental meta-data, or any other non-biological variables that 

might have an effect on the final data. Such factors could include which plate each cell was 

generated on, the sequencing run, extraction date, lab technician, batch, replicate, etc. 

Using methods from the Scater platform, along with other bespoke analysis and plotting 

methods, we have interpreted these tasks into a number of easy-to-use command line 

scripts, which requires only the most basic familiarity with the command line. Further, these 

scripts may be integrated into the Galaxy platform by using the Galaxy wrappers developed 

alongside the scripts. We also provide the inbuilt Scater data as a range of input files for 

users to input and test the methods below. 

  

The basic workflow is as follows: 

Step 1. The user inputs the data (a sample x gene read-count matrix), along with other meta-

data such as the experimental annotation and any control genes (often ERCC spike-ins or 

the names of the mitochondrial genes). This is then loaded into Scater and a number of 

quality control metrics are automatically calculated on the data. The output from this is a 

Loom file (http://loompy.org/), an HDF5-based format which is designed to efficiently store 
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large omics datasets. These Loom files are then used as the input for all subsequent steps 

in the workflow. 

Step 2. The data is visualised using a range of plots to show information about each cell. 

The distribution of reads in each cell, the number of genes expressed in each cell, and a 

scatter plot of the number of reads versus the number of expressed genes are all plotted. 

Finally, the percentage of mitochondrial genes in proportion to the total number of genes 

expressed is also plotted (Figure 1). These visualisations provide insight into poor quality 

cells that have either low read counts, low gene counts, or high mitochondrial gene 

expression. 

Step 3. The data can now be filtered in two different ways. The user can decide to use 

information from the visualisations to, for example, remove cells that have low read count, or 

the user can use a PCA filtering method where cells calculated to be outliers are removed 

automatically. The input to this step (and in step 2 above) is the output from step 1. The 

output from this step is a new Loom file with the low-quality filtered-out cells removed. 

Step 4. The filtered data can now be visualised (as in step 2 above) to assess the filtering 

process carried out in step 3. These two steps can be carried out iteratively, steadily 

increasing the parameters until the user is satisfied they have only the highest quality cells 

remaining (Figure 2). 

Step 5. Once the user has a high-quality dataset, they can investigate any confounding 

factors in the data, such as batch effect. Any metric in the experiment annotation file may be 

plotted and variation in metrics or categories may be displayed by setting the size, colour or 

shape of the plotted points. 
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Figure 1. The plotting tools provide the ability to visualise the quality of each cell in the 

shape of histograms and scatter-plots. Here raw data, before being filtered is plotted. 

Typically, raw data will show a high number of cells with both low read counts (Read counts 

per cell) and low feature counts (Feature counts per cell). Low quality cells often have both 

low read and feature counts, depicted by the cluster of cells at the base of the x and y axes 

in ‘Scatterplot of reads vs features’. Lastly, the ‘% MT genes’ plot shows the proportion of 

reads mapping to mitochondrial genes. We can see that at least one cell has more than 75% 

of its reads mapped to mitochondrial genes, suggesting the cell was degraded. 
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Figure 2. Plotting of data after quality control. Most of the low-quality cells have been 

removed, leaving cells that have a high number of reads and features (genes in this case) 

and a low percentage of mitochondrial genes. Note that the tight cluster of cells at the base 

of the x and y axes in “Scatterplot of reads vs features” has now also disappeared. 

  

 

Methods 
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We present a 5-step workflow in our results above for which we use ‘ready-made’ Scater 

methods, along with our own bespoke methods. 

  

Data input 

When data is read in, a number of sanity checks take place in order to confirm that the 

minimum required information has been loaded and then further decisions are made 

depending on what additional information is loaded (e.g. have ERCC spike-ins been 

included in the data). This raw data is then used to calculate expression metrics using 

Scater’s ‘calculateQCMetrics’ method. The output is then saved as a Loom file. 

  

Plotting tools 

There are a number of plotting tools provided to the user. One such tool uses ggplot2 [17] to 

layout a panel of four plots containing a scatter-plot of mitochondrial gene expression, two 

histograms depicting read counts and feature counts (genes, transcripts, etc), and finally a 

scatter-plot of read-counts vs feature counts. An additional tool is provided that uses 

Scater’s inbuilt ‘plotExprsFreqVsMean’ method, which plots gene expression frequency 

against mean expression level, in order to examine the effects of technical dropout in the 

data. Finally, we provide a method to examine batch effect and other confounding factors in 

our QC’d data. Using Scater’s inbuilt methods, the high-quality data is firstly normalised. 

Next, a Principle Component Analysis (PCA) is applied to the normalised data, which is then 

plotted. Points on the plot can then be annotated in relation to any column heading in the 

experiment annotation file. Categorical data may be given a unique shape or colour, whilst 

points for continuous data may be given scaled sizes. For example, points on the PCA plot 

may be coloured by sample, shaped by batch and sized by total features. 

  

Filtering tool. 

We provide a filtering tool with 2 alternative methods. In the first one the user manually 

selects cut-off parameters (usually informed by the plotting tools above), above or below 
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which cells are removed if they do not reach the threshold. The metrics that can be filtered 

for are: the number of expressed genes, library size (calculated from the number of mapped 

reads), and percentage of reads mapped to mitochondrial genes. Cells failing these 

thresholds will be removed. The second method automatically removes cells that are 

categorised as outliers from PCA. This method works by identifying low-quality cells that 

have markedly different QC metrics from other cells. Both of the filtering methods are 

designed to be iterative and the user has the option to re-run filtering from raw data, or refine 

filtering from a previous filtering step. 

  

  

Summary. 

A large number of tools are available to analyse scRNA-seq data. Many of them require 

quite advanced computational skills and resources to run. These requirements make it 

difficult to firstly learn the basics of scRNA-seq analyses and then have the power to perform 

more complicated downstream analyses on typically large datasets. We have developed 

tools that make it easy to learn and run typical scRNA-seq quality control steps and 

analyses. These tools can be used either on the command line in an intuitive, iterative 

manner, or can be integrated into the Galaxy platform, which will allow further downstream 

analyses with other tools. 

  

  

Availability 

All our code and wrappers, complete with installation instructions, tool help and a typical 

workflow, are available under the MIT open-source license at 

https://github.com/galaxyproject/tools-iuc/tree/master/tools/scater and on the Galaxy 

ToolShed at https://toolshed.g2.bx.psu.edu/view/iuc/suite_scater/. The tools can also be 

freely used at the UseGalaxy.eu public server (https://usegalaxy.eu). 
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