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1. Introduction 

1.1 The Challenge of High Dynamic Range (HDR) Luminance for 
Human and Machine Vision 

Resilient and intuitive machine vision is a critical capability for autonomous 
teaming and is therefore key to multiple Army modernization priorities, yet the 
real-world complexity of this challenge is persistently underestimated because 
vision feels so effortless. Vision is an inherently ambiguous process of estimating 
and predicting the true 3-D world from a 2-D retinal image, and the apparent ease 
of vision is belied by the fact that nearly half of the brain is devoted to visual 
processing. Depending on the context of a visual scene, almost any luminance can 
appear as any shade of gray. This is because the luminance of the brightest and 
darkest areas can vary by a factor of up to 1 billion to 1 (Fig. 1), whereas the surface 
reflectance information that is useful for estimating object shape and identity 
typically varies by a factor of only 20 to 1 (i.e., 4% to 80% of the light illuminating 
the surface (Gilchrist et al. 1999). Even slight (<0.5%) changes in illumination, as 
due to variations in atmospheric haze or sun position, can produce large (50%) 
average changes in luminance in a natural scene; for example, due to cast shadows, 
foliage, and anisotropic reflectance effects such as microshadows (Moore 2010; 
Foster and Amano 2019). Large dynamic changes, such as from flare effects and 
wind blowing on the leaves in a forest canopy (Marathe et al. 2017), can disrupt 
navigation and targeting algorithms that are over-reliant on texture patterns and on 
static luminance and illumination to compute optic flow. For autonomous ground 
vehicles, navigation is problematic because luminance normalization is not yet 
solved for recognizing distant targets (e.g., potholes, buried explosives) under 
multiple layers of optic flow, especially at high speed and under degraded and novel 
conditions. These pose serious longstanding challenges to the real-world credibility 
and acceptability of autonomous maneuver and targeting, with potentially 
catastrophic consequences, for example, from false positive and false negative 
misclassifications. 
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Fig. 1 A) Two examples of HDR luminance in naturalistic scenes: cockpit view (left) and 
view of a cave opening (right). They are examples of commonly encountered environments 
where combinations of indoor and outdoor luminance can exceed 10,000-to-1 max-to-min 
luminance ratio. The scene at top right is a blended image across multiple exposures, 
illustrating our ability to see multiple targets (3 uniforms and 1 car) across vast luminance 
differences in the same view. Actual views of these scenes appear even more vivid because of 
the brain’s luminance normalization processes. B) Standard dynamic range 8-bit cameras are 
highly dependent on exposure, and machine vision systems that are highly dependent on 
texture patterns can easily miss targets due to under- or overexposure. Exposure examples are 
at 10× increments. 

For efficient and resilient recognition behavior, the human visual system has many 
automatic mechanisms to estimate reflectance and 3-D shape, as demonstrated by 
myriad examples of brightness illusions (Adelson 2000; Motoyoshi et al. 2007; 
Bach 2019). Our understanding of these mechanisms, as quantified by models of 
normalization and visual salience, is limited because it is based on studies using 
displays with standard dynamic range (SDR) luminance (100-to-1 luminance ratio 
between the brightest and darkest pixels). Recent reports show that key theories, 
such as Wallach’s ratio rule that the apparent lightness of a surface depends on the 
ratio of its luminance to the background, break down at HDR luminance (over 
10,000-to-1 luminance ratio). To investigate and understand these mechanisms, and 
thereby improve the real-world performance of vision models, it is necessary to 
develop research platforms that include HDR displays. 

To achieve illumination resilient recognition, biological visual systems gradually 
transform the retinal image from a luminance-based representation to reflectance-
approximated feature-based representations (Zhou et al. 2000; Janssen et al 2001; 
Wachtler et al. 2003; Roe et al. 2012). Evidence from anatomy, electrophysiology, 
and behavior show that this is supported by a hierarchy of over 30 visual cortical 
areas that combine recurrent and lateral processes with feedback mechanisms for 
contextual normalization (Ramsden et al. 2001; Tanigawa et al. 2005). The brain 
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areas that support normalization are highly specialized, including specific domains 
for luminance and color processing within multiple visual cortical areas including 
the primary visual cortex (Area V1, the first brain area to receive input from the 
retina and thalamus) (Schroeder et al. 1998; Conway et al. 2007; Wang et al. 2007; 
Lim et al. 2009; Kremkow et al. 2016). The circuitry underlying these processes is 
less understood, but there is evidence for tight coupling between processes for 
luminance/color and processes for form perception, including feedback circuitry 
from the last stage of the visual “form” pathway to V1 (Ts’o et al. 2001; Clavagnier 
et al. 2004; Hung et al. 2007, 2010). Rather than simply remapping the color 
histogram or normalizing an image for nearby luminance, automatic mechanisms 
are thought to depend on factors such as co-linearity, co-planarity, junctions, 
feature grouping, and transparency issues such as smoke and rain (Zucker et al. 
1988; Anderson 1997; Adelson 2000). Biologically driven models are increasingly 
capable of explaining visual illusions (Blakeslee and McCourt 2004; Li 2011) and 
predicting gaze patterns based on saliency (Borji 2018; Kummerer et al. 2017), but 
they are data-limited to SDR images and require HDR experimentation to extend 
their generalizability to real-world vision. 

1.2 HDR Research to Understand Vision under Real-World 
Illumination 

Historically, the unavailability of HDR displays has been a primary impediment to 
understanding how the brain processes real-world luminance, underlying a major 
gap between biological and machine vision. Early efforts to understand HDR vision 
were based on hand-constructed scenes (Zdravković et al. 2012; Brémond et al. 
2010), and it was only recently that computerized displays became available for 
more-sophisticated studies. A few studies have used custom-developed stacked 
liquid crystal displays (LCDs) for HDR, but such systems are difficult to replicate 
and lack sufficient spatial resolution and uniformity for our studies. Commercial 
and research displays are typically limited to less than 1000-to-1 luminance contrast 
ratio and 8- to 10-bit depth (i.e., 256 to 1024 shades of gray). 

Here we describe the setup, calibration, and precision testing of a system with more 
than 100,000-to-1 luminance contrast ratio and pseudo 11-bit depth (2048 shades 
of gray), enabling the study of the visual system’s HDR luminance normalization 
processes. We also describe two studies we conducted with this system to 
understand how luminance dynamics affect visual letter acuity and how luminance 
and surround context together affect target discrimination. For the letter acuity 
study (Fig. 2A), our system allowed us to present smaller letters by avoiding 
potential spatial misalignment and inhomogeneity of stacked LCD displays. We 
extended a previously developed computerized Logarithm of the minimum-angle-
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of-resolution (LogMAR) letter acuity test with (standard) static luminance (Stewart 
et al. 2006) by adding HDR luminance dynamics. Specifically, we tested the effect 
of bright (25× to 100× luminance) flashes on the acuity of dark letters at different 
background and letter luminance contrasts, as might be encountered when 
switching gaze between outside viewing and reading an instrument panel. In 
addition to being an easily understood measure tied to standard LogMAR acuity 
testing, this approach could also be useful to investigate medical phenomena such 
as age-related decline in pupil accommodation. 

For the HDR target discrimination study (Fig. 2B), our aim was to investigate 
contextual mechanisms for luminance normalization by testing for interactions 
between orientation and HDR luminance processing. Based on recent reports on 
HDR luminance normalization (Radonjic et al. 2011; Allred et al. 2012) and on 
single neuron receptive field properties in V1, we speculated that at least a  
10,000-to-1 contrast ratio and better than 0.06° pixel resolution (see Methods, 
Section 2) would be required to observe HDR-specific interactions between 
luminance and orientation processing in our task. This requirement is beyond the 
capabilities of SDR displays but is well within the 100,000-to-1 contrast ratio and 
0.02° pixel resolution capability of our HDR display system.
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Fig. 2 A) Dynamic Luminance Visual Acuity Task (Task 1), a variant of the classic 
LogMAR chart. We manipulated background luminance and letter contrasts and added a 
background flash preceding letter onset; (top left) two examples of the letter arrays presented 
to participants, shown at letter Weber contrast levels of 0.999 and 0.25; (bottom left) 
timecourse of the flash and letter presentations. B) Schematic of the HDR Luminance Target 
Discrimination Task (Task 2), a two-alternative forced choice task in which the subject 
reported the orientation of the central target (highlighted in green) as one of two Gabors 
having higher contrast; (top right) example of the 5 × 5 Gabor array; (bottom right) 
timecourse of adapting uniform background, array, and target presentations and keypresses. 

Previous reports of contextual orientation effects found that flankers drive a 
facilitating response (making a co-oriented target easier to detect) if the targets were 
low contrast, and this was initially attributed to horizontal fibers linking V1 neurons 
that prefer the same orientation (Ts’o et al. 1986). However, at higher contrast a  
co-oriented target becomes more difficult to detect than an orthogonal target, an 
effect that is consistent with suppression of the target visibility or assimilation of 
the target to surrounding co-oriented patterns, possibly due to feedback from higher 
pattern-sensitive cortical areas. Both of these phenomena have also been attributed 
to the balance of local recurrent excitatory and inhibitory mechanisms in V1, but 
they have thus far only been investigated for static luminance displays and uniform 
patch luminance (Polat and Sagi 1993, 2006; Li 1998, 2011; Polat et al. 1998; Chen 
and Tyler 2001, 2002; Chen et al. 2001).  

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/718437doi: bioRxiv preprint 

https://doi.org/10.1101/718437


 

6 

We reasoned that in naturalistic vision, our gazes often shift across regions with 
large (100×) differences in luminance. How does the visual system normalize 
quickly, perhaps even predictively (peri-saccade), across large luminance changes, 
and can we discover such a normalizing mechanism, for example, linking 
luminance and form vision, by observing how shape perception is altered when 
shifting one’s gaze from light to dark areas of the visual scene during visual search? 
Would strong darkening lead to contextual facilitation, even for high-contrast 
targets, or suppression/assimilation? Also, would the contextual effect be driven by 
the brightest flankers, consistent with models of recurrent excitation/inhibition and 
divisive or subtractive normalization, or would the effects be driven by the flankers 
that are most similar in luminance to the target, consistent with assimilation or 
feedback from higher brain areas? To answer these questions, we took the novel 
approach of combining 1) a luminance transition of 1×, 10×, or 100×, 2) the 5 × 5 
array pattern of recent HDR luminance studies (Radonjic et al. 2011), and 3) 
oriented lines (“flankers”) that surround the target and affect target visibility 
(classic contextual orientation effects discovered with static SDR displays (Chen 
and Tyler 2002), and we measured how these contextual HDR luminance 
manipulations affect orientation discrimination of a central target.  

2. Methods 

2.1 Subjects 

Nine subjects (six male) 18 to 70 years old with normal or corrected-to-normal 
binocular color vision participated in all experiments. Potential subjects were 
excluded if they self-reported that they, their parents, or their siblings had 
photosensitive epilepsy, or that they previously had head trauma or other disorders 
thought to be associated with excitatory/inhibitory balance (epilepsy, 
schizophrenia, autism, depression, attention deficit hyperactivity disorder, etc.) 
(Jiang et al. 2013), atypical brain development, or used mind-altering drugs in the 
past week. Potential subjects were also screened via the Canadian Longitudinal 
Study on Aging – Epilepsy Algorithm (Keezer et al. 2014). All experiments were 
conducted in the MIND lab at the CCDC Army Research Laboratory at Aberdeen 
Proving Ground, Maryland, according to a protocol approved by the Army’s 
Human Research Protection Program.  
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2.2 Vision Screening 

Prior to beginning experimental tasks, subjects were screened for normal or 
corrected-to-normal (at least 20/40) visual acuity and normal color vision via a 
Titmus i500 Vision Screener (Lipin-Dietz 2012). 

2.3 HDR Display and Eye Tracking 

All images were projected from a JVC DLA-RS600U 4K Reference Projector 
(software version u83.2, PS version 100310) and displayed biocularly on an HD 
projection screen (Fig. 3; Da-Lite 37700V Cinema Contour screen with HD surface, 
“HD Progressive 1”, gain = 1.10 at 0° and 1.00 at 20°, half angle = 85°, gloss at 
75° = 24, color shift at 60° = 3%). To maximize the contrast ratio, the projector was 
set to the smallest zoom and the following settings: Color Profile “Reference”, 
Color Temp “6500K”, Gamma “D”, MPC Level 4K e-shift “ON”, Original 
Resolution “Auto”, Enhance “0”, Dynamic contrast “0”, Smoothing “0”, NR “0”, 
Blur Reduction Clear Motion Drive “High”, Motion Enhance “Off”’, Contrast “0”, 
Brightness “0”, Color “20”, Tint “–5”, Input “HDMI-1”, Source “1080p 60”, Deep 
Color “12 bit”, and Color Space “RGB” (red-green-blue). Although the projector, 
graphics card, and HDMI cable supported 12-bits-per-channel bit depth, the overall 
system was software-limited to 10.7-bit depth. Images spanned 1920 × 1080 pixels 
in resolution (48.7 × 27.3 cm, w × h) and were observed from a chinrest-stabilized 
viewing distance of 78 cm, thus spanning 38.6° × 20.5° viewing angle with pixel 
size 0.020° × 0.019°. Gaze and pupil size were tracked monocularly via an infrared 
eye tracker (EyeLink 1000 Plus), synchronized via Lab Streaming Layer software 
(Swartz Center for Computational Neuroscience, UCSD) (Kothe 2014). To 
maintain a constant peak luminance in the visual field, all tasks included static 400-
cd/m2 “light anchors” (Gilchrist et al. 1999) sized 1° × 1° at the four corners of the 
screen. 
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Fig. 3 Layout of projector, screen, eye tracker, and chinrest 

Images were displayed at 60 Hz and pseudo 11 bits (10.7 bits, i.e., 11 bits red, 
11 bits green, but only 10 bits blue, because all the color information needed to fit 
into 32 bits) precision via a framebuffer procedure using Psychtoolbox 3.0 (Kleiner 
et al. 2007) for GNU/Linux X11 software (version 3.0.14; build date: 2017 May 8), 
running under MATLAB 64-bit version 2016b on Ubuntu 16.04 (seen by 
Psychtoolbox as Linux version 4.4.0-31-generic). Because 11-bit precision in 
Psychtoolbox 3.0 requires graphics cards supporting the AMD Hawaii PRO GL 
(DRM 2.43.0 / 4.4.0-31-generic, LLVM 3.8.0) (Kleiner 2017) (i.e., the Radeon/Fire 
cards of the “Sea Islands” family [after 2014]), we used the AMD FirePro W8100 
graphics card. We validated a second system running OSX and a FirePro W5100 
graphics card. We also tested other graphics cards outside the “Sea Islands” family 
(VisionTek RADEON R9 280X, MSI Twin Frozr III, and Nvidia Quadro) and 
found that, as expected, they were limited to 8 or 10 bits per channel (bpc). We 
used the Psychtoolbox                      command 
PsychImaging(‘AddTask’,‘General’,‘EnableNative11BitFramebuffer’) to disable 
and bypass the hardware’s Gamma color lookup table (“clut”) and switch  the 
framebuffer into 11-bpc mode. We applied an 11-bit grayscale Gamma correction 
by measuring the luminance via a spectrophotometer (Photo Research PR-745) at 
over 75 luminance indices, averaging across two to five repeated measurements per 
index, and applying log-linear interpolation. The resulting linearized Gamma 
spanned a range of 636.4 (u,v = 0.1953, 0.3199; 
x,y = 0.3200, 0.3494, 6037K) to 0.006055 cd/m2, for a maximum contrast ratio of 
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more than 100,000 to 1 in a single image (static projector iris; we did not assess the 
manufacturer’s stated capability of 1.5M contrast ratio with dynamic iris). 

2.4 Projector Calibration 

We calibrated the projector by measuring the luminance of a uniform full screen at 
over 75 luminance color indices (setting the RGB guns to equal values), averaging 
across multiple measurements per color index. The photometer sampled from the 
projector screen, rather than directly from the projector output, and this difference 
might explain why we did not observe the projector manufacturer’s specified 
maximum contrast ratio of 150,000 to 1. To reduce the noise effects of drift, we 
allowed the projector to warm up for 30 min before calibration, and we repeatedly 
measured at each color index before moving to the next color index. We used 
different photometer settings depending on the light level, measuring smaller 0.5° 
diameter and 2-nm-wide samples for the brightest indices and larger 2° diameter 
and 4-nm-wide samples (and ~15 s averaging per sample) for the darkest indices. 
To ensure that the calibration was correct for the entire range, we measured more 
samples at the steepest parts of the curve (e.g., 0.01 to 0.05 cd/m2) and near 
inflection points. We log-linearly interpolated the luminance for indices that were 
not measured, and the resulting Gamma curve is plotted in Fig. 4A. We observed a 
rightward shift of approximately150 color indices in this Gamma curve on the OSX 
platform (Mac Pro 3.2, model A1289, server mid-2010 family), which resulted in 
more dark pixels for the lowest color indices and a smaller range of ceiling effect, 
but otherwise no change to the Gamma curve. All experiments were based on the 
Ubuntu platform. The curve shows a steep rise in luminance for the lowest indices 
and a ceiling effect, resulting in an effective range of luminances from 0.006055 to 
636.4 cd/m2 (uncorrected color indices from 16 to 1728). This range spans mesopic 
vision (0.001 to 3 cd/m2, when both cones and rods are required to support vision) 
to the lower end of photopic vision (10 to 108 cd/m2), consistent with seeing in 
mixed indoor/outdoor environments and in twilight (e.g., nighttime street and 
outdoor lighting and aviation lighting). 
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Fig. 4 Luminance calibration and 11-bit precision check. A) Luminance calibration on the 
Ubuntu system with an AMD FirePro W8100 graphics card. B) Precision check on an OSX 
system and an AMD FirePro W5100 graphics card. Calibration curves were horizontally 
shifted but otherwise identical across the two systems. 

2.5 Projection Luminance Precision 

To our knowledge, we are the first to validate the 10.7-bits-per-channel precision 
of Psychtoolbox 3 via careful photometer measurements, due to lack of suitable 
display hardware at developer sites. We optimized for both display precision and 
photometer sensitivity by testing a range of uncorrected color indices (uniform 
RGB gun values) ranging from 1100 to 1120, at nearly three-quarters of the 
maximum luminance capability and the smoothest part of the Gamma curve. We 
measured five repeated samples per color index, completing measurements at each 
color index before moving on to the next to avoid slow drift effects on repeated 
measurements. The averaged measurements generally increased steadily, 
consistent with 10.7-bit precision, without obvious stairstepping that would 
indicate 10-bit precision or lower. 

2.6 Display Timing Delay 

To measure the timing offsets and precision between the MATLAB task control 
timestamps and when the images were actually updated on the projection screen, 
we ran a test block (398 trials) with a photodiode pointed toward the projector, 
positioned in the background part of the image just below the 5 × 5 array. The 
output of the photodiode was sent to Lab Streaming Layer via a custom Arduino 
device. Comparing the timestamp of when the code was executed to display the 
blank screen, to the time at which the photodiode registered the increase in 
luminance, showed an average projector display lag of 137 ± 2.8 ms. A similar 
comparison, this time for the blank’s offset (background darkening immediately 
followed by array and target onsets) showed an average lag of 162 ± 4.9 ms. We 
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speculate that this difference of 24.4 ± 1.5 ms, just over one video frame at 60-Hz 
frame rate, is related to two additional MATLAB image updates for the array and 
target sent at blank offset. Both of these average lags were incorporated when 
forming epochs in the electroencephalography (EEG) data.  

2.7 Experiment 1: Dynamic Luminance Visual Acuity Task 

Visual acuity was measured via a modified Early Treatment Diabetic Retinopathy 
Study (ETDRS) Logarithm of the minimum-angle-of-resolution LogMAR chart 
presented via MATLAB, based on code modified from Stewart et al. 2006. An 
example of the letter display is shown in Fig. 2, Task 1. For each trial, a set of five 
letters was presented, pseudorandomly chosen from a predetermined pool of five-
letter sets that were balanced for difficulty. The set of letters was repeatedly 
presented for 0.1 s ON and 0.9 s OFF until the subject read the letters aloud and the 
experimenter recorded the number of correct letters (0 to 5). A block comprised 20 
trials, spanning letter sizes 3.125 to 50 minutes of arc (arcmin). On one block, dark 
letters (0.006 cd/m2) were presented against a background of 16 cd/m2. On four 
blocks, dark letters were presented against a uniform background of 4 or 16 cd/m2, 
at Weber contrasts of 0.43 and 0.25 for each background (e.g., for the 16 cd/m2 
background, the letters were 9.2 cd/m2 for 0.43 contrast and 12.1 cd/m2 for 0.25 
contrast). On five additional blocks, each presentation was preceded by a  
400-cd/m2 flash of duration 0.1 s (i.e., 25× or 100× the background luminance). 
The flashed blocks were presented first in order of decreasing background 
luminance and contrast followed by the nonflashed blocks in the same sequence. 

2.8 Experiment 2: HDR Luminance Target Discrimination Task 

Task 2 was a two-alternative forced-choice target discrimination task comprising 
five experimental blocks. Across all blocks, the target patch was always at a fixed 
luminance of 4 cd/m2. In three blocks, we tested different luminances of an adapting 
uniform background, including 4 cd/m2 (“HDR gray”, no change),  
40 cd/m2 (“HDR light gray”), and 400 cd/m2 (“HDR white”). We tested two 
additional control blocks, one consisting of a narrower SDR luminance range with 
a light gray adapting blank (“SDR” block), and the other approximating a classic 
condition with uniform background and uniform flanker orientation, with a light 
gray adapting blank (“Uniform” block). Blocks consisted of 400 trials each and 
were presented in the following order: Uniform, HDR light gray, SDR light gray, 
HDR gray, and HDR white. 

Within each block, stimuli consisted of 45° and 135° Gabors, 4 cycles/° (i.e., the 
bars have a thickness of 0.125°), and 1° full width at half maximum Gaussian 
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envelope, cropped to 1° × 1°, presented on a 5 × 5 array of 1° × 1° luminance 
patches. The spatial frequency of the Gabors is consistent with the stimulus 
preferences of single neurons in primary visual cortex with receptive fields at 3° 
eccentricity. The target was a contrast blend of Gabors at the two orientations, 
presented at the central patch, and subjects indicated via keypress the orientation of 
the stronger target Gabor (45° or 135°). The central patch luminance was  
4 cd/m2, and flanker patches evenly log-linearly spanned a luminance range from 
40 to 0.4 cd/m2 (10× to 0.1× the target patch luminance) for HDR conditions and 
from 12.6 to 1.26 cd/m2 (3.16× to 0.316× the target patch luminance) for the SDR 
condition. Each Gabor’s pixels spanned a range from 10× to 0.1× its flanker patch 
luminance, resulting in a peak contrast including Gabors of 10,000 to 1 (400 to  
0.04 cd/m2) for the HDR array and 1000 to 1 (126 to 0.126 cd/m2) for the SDR 
array. 

The target patch consisted of two Gabors (45° and 135°) at one of five possible 
contrast mixtures of 70%:30%, 60%:40%, 50%:50%, 40%:60%, or 30%:70%. 
These contrast mixtures were logarithmically applied to each full-contrast Gabor 
whose brightest and darkest pixels were 10 and 0.1 times its patch luminance, such 
that 50%:50% means that the brightest and darkest pixels of both Gabors are 3.2 
and 0.32 times their patch luminance. All Gabor patterns were well above the 
threshold contrast visibility for normal vision. At the minimum average luminance 
of 0.4 cd/m2, in a field of view 1° × 1° and a modulation frequency of 4 cyc/°, 
(Barten 2003) indicates a minimum visible contrast ratio of 1.03; for a field of view 
0.5° × 0.5°, the minimum visible contrast ratio of increases only to 1.06. 

We tested two orthogonalized conditions to determine whether the most influential 
flankers were the brightest flankers, or the flankers that were most similar to the 
target in luminance. Each 5 × 5 grid consisted of an inner ring of 8 patches and an 
outer ring of 12 patches. The flankers of interest were balanced within each ring, 
such that there was an equal number of co-oriented and orthogonal flankers, and 
their locations were spatially balanced in the horizontal and vertical directions to 
avoid highly asymmetric patterns. In the “brightest” condition, the flanker patches 
of interest were the 12 brightest patches. In the “similar” luminance condition, the 
flanker patches of interest were the 12 patches most similar in luminance to the 
target patch. For both conditions, we defined “Flankers condition A” as the case in 
which the Gabors at the patches of interest were tilted 45° and remaining patches 
tilted 135°, and vice versa for “Flankers condition B”. The five target mixtures were 
tested in all conditions. 

At the start of every trial, a black fixation cross appeared at the center of a blank 
screen (this adapting uniform blank screen is subsequently referred to as the 
“blank” screen). Participants hit the spacebar when they were ready to begin the 
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trial. This keypress did not advance the trial unless the blank screen had been on 
for a minimum of 500 ms. The keypress initiated a sequence that began with the 
offset of the blank screen and fixation cross, replaced by a black screen  
(0.006055 cd/m2). The 5 × 5 flanker array appeared 50 ms later (three video frames; 
the MATLAB trial timestamp for array onset was at 39 ms, synchronized to the 
timestamp for blank offset), and then the target Gabors 17 ms after that (one video 
frame, the MATLAB trial timestamp for target onset was at 67 ms). The target 
Gabors remained on the screen for 250 ms and then offset, leaving the flankers on 
the screen until the participant hit the left of right arrow keys to report whether the 
stronger target Gabor was oriented to the left or the right. After keypress, the blank 
screen reappeared after a 500 ms wait, ending the trial.  

2.8.1 Experiment 2 Behavioral Analysis 

Behavioral choices were fitted with a psychometric function based on a cumulative 
Gaussian distribution, using Psignifit software running in Python (Fründ et al. 
2011). Psignifit estimates a free guessing and lapse rate parameter 
(options.expType = “YesNo”) to fit the behavior via maximum likelihood. 
Compared with classic logarithmic fitting tools, Psignifit is thought to provide 
better confidence intervals by avoiding two critical assumptions of stability and 
binomial distribution, to account for factors such as learning, fatigue, and 
fluctuations of attention. 

To analyze the significance of the flanker-induced bias for each condition, we 
defined a significant behavioral effect, as cases where the 5%:95% confidence 
interval at the 50%-choose-“A” threshold of each curve did not cross the other 
curve, for the two curves from Flankers condition A and Flankers condition B. We 
analyzed this bias separately for the “brightest” and “similar” conditions and each 
of the blocks. For population analysis, we defined each subject’s bias as the 
difference in the two curves’ target mixtures at the 50%-choose-“A” threshold. We 
then applied a one-sample two-tailed t-test to examine the significance of this bias 
for each condition versus a null hypothesis of zero bias across the population. We 
also compared these biases across the “brightest” and “similar” conditions via  
two-tailed paired t-test. Significance tests were not corrected for multiple 
comparison. 

2.8.2 Experiment 2 EEG Data Collection and Analysis  

EEG data were recorded from 64 active scalp electrodes using a Biosemi Active 
Two system. Electrodes were re-referenced offline prior to analysis to the average 
of two external electrodes placed on the left and right mastoids. Three participants 
had an online sampling rate of 2048 Hz while the remaining five had a sampling 
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rate of 512 Hz. All participants’ data were down-sampled to 512 Hz offline prior to 
analysis. A bandpass filter (0.1 to 40 Hz) was applied offline prior to analysis. 

We analyzed EEG data in Task 2 via a combination of custom MATLAB scripts 
and EEGLab functions (Delorme and Makeig 2004). To generate event-related 
potentials (ERPs), the continuous data were epoched into trials (–200 to 600 ms 
post blank offset or target onset depending on the analysis; see Results section). 
Each trial was then baseline-corrected by subtracting the average voltage in the  
–200- to 0-ms window from the entire waveform. We used EyeLink to track the 
movements of one eye (typically the right eye) at 1000 Hz. Trials in which the eye 
moved more than 2° during target presentation were excluded from analysis. 
Additionally, trials in which a given electrode’s amplitude exceeded 100 µV were 
also excluded. We limited the EEG analysis to trials in which the target was 
ambiguous (i.e., trials where the contrast mixture of the two Gabors was 40%:60%, 
60%:40%, or 50%/50%). These exclusion criteria resulted in an average of 152  
(SE = 28) usable trials per participant in the uniform block, 133 (SE = 26) in the 
HDR light gray block, 113 (SE = 28) in the HDR gray block, and 132 (SE = 21) in 
the HDR white block. 

3. Results 

3.1 Experiment 1: Dynamic Luminance Visual Acuity Task 

We examined how visual acuity for letters was degraded by challenging luminance 
conditions. The task is a computerized variant of the standard ETDRS LogMAR 
test (Stewart et al. 2006), in which subjects verbally report the identities of five 
letters appearing on each trial, with decreasing letter sizes across trials. The 
difference in our task was that we added a preceding background flash and modified 
the luminance and stimulus duration parameters to approximate the conditions of 
the subsequent target discrimination task (Task 2) to provide a comparison of the 
HDR target discrimination task and standard visual acuity tasks. Results of Task 1’s 
acuity measurements are shown in Fig. 5. The vertical axis shows acuity expressed 
as the LogMAR, and as the equivalent Snellen ratio, which shows the resolution of 
the test participant’s vision at 20 ft (numerator value) compared with the distance 
at which a person with normal vision would have the same line resolution ability 
(denominator). With normal vision, a Snellen score of 20/20, the minimum angle 
of resolution is 1 arcmin, corresponding to a LogMAR score of zero. 
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Fig. 5 Dependence of visual acuity on flash, background luminance, and text contrast 
(Task 1); N = 9 subjects 

As expected, acuity generally decreased as text contrast and background luminance 
decreased, but the details of the decrease depended on the parameters. When a 
background flash of 400 cd/m2 (25× and 100× the letter background for 16 and  
4 cd/m2 backgrounds, respectively) preceded each letter onset, some test subjects 
gained acuity and some test subjects lost acuity, but the average changed little. 

At a text Weber contrast of 99.9% and a steady background luminance of 16 cd/m2, 
the average acuity of test subjects was 0.02 LogMAR. When preceded by a 
background flash, average acuity improved nonsignificantly to 0 LogMAR. 
Decreasing the text contrast from 99.9% to 43%, while holding the background 
luminance at 16 cd/m2, acuity decreased to 0.35 LogMAR without flash and to  
0.31 LogMAR with flash. At a constant text contrast of 43% and further decrease 
in background luminance to 4 cd/m2, average acuity was 0.38 LogMAR without 
flash and 0.48 LogMAR with flash—a nearly significant (p = 0.07) degradation of  
0.1 LogMAR. At further reduced text contrast of 25%, with background luminances 
of 16 and 4 cd/m2, the addition of a flash significantly decreased acuity by 0.12 and 
0.14 LogMAR (p = 0.005 and 0.0002), respectively, to 0.58 and 0.70 LogMAR, 
corresponding to Snellen ratios of approximately 20/80 and 20/125.   
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Overall, these results show that the visual system is able to rapidly normalize for 
changes in luminance, such that flashes have negligible impact on letter acuity 
within 200 ms immediately following the flash, for flashes up to 25× the 
background luminance and text Weber contrast above 43%. At more challenging 
conditions of flashes 100× the background luminance and/or weaker text contrast 
of 25%, flashes induced a mild acuity loss of up to 0.14 LogMAR. However, even 
at the most challenging condition, the resulting acuity of 0.70 LogMAR indicates 
that the minimum angle of resolution is 5 arcmin (0.083°), well within the 0.125° 
receptive field size of simple cells in V1 and below the width of Gabor bands in our 
Task 2 stimuli. Thus, although flashes at 100× the background luminance can 
reduce visual acuity, sufficient acuity should remain to perform the Task 2 target 
discrimination task and to observe any luminance-related contextual effects.  

3.2 Experiment 2: HDR Luminance Target Discrimination Task 

Previous reports of contextual effects on target orientation discrimination were 
based on uniform flanker lines against a uniform, static background luminance. In 
the simplified classic example in Fig. 6A, a low-contrast central Gabor target is 
surrounded by two flankers at higher contrast, and the flankers are either co-aligned 
(left), or rotated orthogonally to the target (right). In this example, the right target 
is more visible than the left target because the left target’s visibility is suppressed 
by the surrounding co-aligned flankers (assimilation). Conversely, at even lower 
target contrast (not shown), the left target becomes more visible than the right target 
because of facilitation by the co-aligned flankers. In EEG recordings, flanker  
co-linearity also produced an increased midline occipital positive polarity between 
80 to 140 ms after stimulus onset, consistent with a mechanism in Area V1 (Polat 
and Norcia 1996; Khoe et al. 2004). This dichotomy of contextual facilitation 
versus suppression to static SDR stimuli has formed the basis of computational 
models of V1, based on a balance of recurrent excitation and inhibition (Chen and 
Tyler 2002; Li 2011). 
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Fig. 6 Stimulus design for HDR luminance target orientation discrimination task (Task 2).  
A) Example of classic suppression/assimilation effect when the central target is high contrast. 
The target in the left image is less visible because it is co-oriented with its flankers, whereas 
the target in the right image is more salient because it is orthogonal to its flankers.  
B) Schematic of example trial types for “Brightest condition” for Example 1. The brightest 
flankers (red lines) are oriented either 45° (Flankers “A”) or 135° (Flankers “B”). Only two 
of five possible target contrast mixtures are shown. For the “Similar” condition (not shown), 
the flankers that are most similar in luminance to the target would be highlighted in red and 
oriented either 45° (Flankers “A”) or 135° (Flankers “B”). C) Luminance distributions of 
target and 24 flankers. Flanker patches span 0.4 to 40 cd/m2 (0.04 to 400 cd/m2 full range 
including Gabors). 

To understand and model contextual mechanisms of luminance normalization 
under real world luminance dynamics, we introduced two variations to the classic 
flanker task: 1) a preceding adapting background to mimic the luminance change 
across gaze shifts, and 2) a 5 × 5 array of luminance patches, spanning a 10- or  
100-fold difference in luminance, to mimic the conjunction of form and luminance 
in naturalistic scenes. This combination of adapting background, patches, and 
Gabors resulted in a total luminance range of up to 10,000 to 1.  

We tested this combination via a two-alternative forced choice task in which 
subjects report the orientation of the stronger of two Gabor targets shown at the 
center of the 5 × 5 array (Fig. 2B). By fitting the behavioral responses across target 
contrast mixtures with a psychometric function, we were able to determine whether 
the flankers induced a facilitatory or suppressive/assimilation effect under  
real-world luminance dynamics. Additionally, by manipulating the conjunction of 
patch luminance and patch orientation via two orthogonalized conditions, we were 
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able to test alternative hypotheses about normalization mechanisms that predict 
whether the brightest flankers, or the flankers that have most similar luminance to 
the target, would have stronger effect. 

To examine how contextual luminance and orientation combine to affect target 
discrimination, we manipulated the conjunction of luminance and orientation 
across the 5 × 5 array of patches. Fig. 6B illustrates schematic examples of such 
stimuli for the “brightest” condition in which the flankers of interest (indicated by 
red lines) are at the brightest patches. In the upper left example of Fig. 6B, 
corresponding to the stimulus example in Fig. 2B, the target mixture is 60%:40% 
(one of five possible target mixtures, 30%:70%, 40%:60%, 50%:50%, 60%:40%, 
70%:30% A:B) and the Flanker condition is “A”, so that both the target and the 
flankers of interest are tilted to the right (45°). The comparison condition with the 
identical target mixture is Flanker condition “B” (lower left), in which the flankers 
of interest are tilted to the left (135°). Fig. 6C (top) illustrates this comparison of 
Flankers A (red open circle) versus Flankers B (blue open circle) orientations for 
the “brightest” condition, sorted by patch luminance. The “A”s indicate 45° 
flankers, the “B”s indicate 135° flankers, and the red squares indicate the flankers 
of interest (the brightest patches, in this condition). If the flanker effect is driven by 
the brightest flankers, we would expect to see a difference in the target report 
between these two conditions Flankers A versus Flankers B in the “brightest” 
condition. The same direction of bias should be present across a range of target 
mixtures, including when the target mixture is 40%:60% (upper and lower right 
examples in Fig. 6B). 

Conversely, if the flanker effect is driven by the flankers that are most similar in 
luminance to the target, the effect would cancel out in the “brightest” condition 
(flankers near the target luminance are both co-oriented and orthogonal). The 
flanker effect would only be observed in the “similar” condition, in which the 
flankers of interest are at the 12 patches most similar to the target in luminance 
(Fig. 6C bottom).  

An example of the behavioral results is shown for one subject “VO” in Fig. 7. As 
expected, the subject tended to choose “A” (45° target) when the target contrast 
mixture was 60%:40% or 70%:30%, and choose “B” (135° target) when the target 
contrast mixture was 30%:70% or 40%:60%, indicating that the subject is generally 
able to correctly perceive the target’s dominant orientation. The psychometric 
function did not significantly differ for the Flankers A (red circles) and Flankers B 
conditions (blue circles) for the “brightest” condition (Fig. 7A, B, and C), across 
all three adapting blank luminance levels 400, 40, and 4 cd/m2, indicating that the 
brightest flankers failed to bias behavioral choice. 
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Fig. 7 Subject VO’s behavioral results on reporting the orientation of the target Gabor 
broken out by block and condition. Red lines and data refer to thresholds when the flanker 
Gabors of interest (the brightest flankers for panels A–C, or the flankers most similar to the 
target in luminance for panels D-F) are tilted to the right (45°, Flankers “A”); blue lines and 
data refer to thresholds when the flanker Gabors of interest are tilted to the left (135°, 
Flankers “B”). Error bars show 5%–95% confidence intervals based on Psignifit. 

Conversely, the flankers induced a significant bias on target choice behavior in the 
“similar” condition, when the flankers of interest were at the 12 patches most 
similar in luminance to the target. The effect was facilitatory; there was a bias in 
the subject’s response toward the orientation of the flankers of interest, as indicated 
by the leftward shift of the red curve (increased likelihood to choose “A” when the 
flankers of interest are 45°) and the rightward shift of the blue curve (increased 
likelihood to choose “B” when the flankers of interest are 135°) in Fig. 7D and 7E. 
This flanker-induced bias was significant for the two brightest adapting screen 
luminances, 400 and 40 cd/m2 (p < 0.01 and p < 0.05, respectively), but it was not 
significant for the lowest adapting screen luminance, 4 cd/m2 (i.e., where the 
luminance at the target patch was unchanged [Fig. 7F]). In the “Uniform” condition 
(Fig. 7G), when all flankers had the same orientation and the same 4-cd/m2 patch 
luminance with a 40-cd/m2 adapting blank, the subject’s report was significantly 
biased away from the flanker orientation, consistent with suppression or 
assimilation (p < 0.01).   

Another subject, AH, also showed a flanker-induced bias toward facilitation that 
was significant in both the “brightest” and “similar” conditions for the 400-cd/m2 
“HDR white” adapting blank (Fig. 8A and 8D; p < 0.01 in both cases). The strength 
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of this threshold bias, a difference of 35.5% target contrast mixture at the  
50%-choose-“A” threshold in the “brightest” condition, is illustrated by the fact 
that even when the target mixture is 70% “B” (30% “A”), the subject chose “A” 
60% of the time under Flanker condition “A”, and the subject chose “B” 97% of 
the time under Flanker condition “B”. Conversely, when the target was 70% “A”, 
the subject chose “B” 45% of the time (chose “A” 55% of the time) under Flanker 
condition “B”, and chose “A” 90% of the time under Flanker condition “A”. As 
with subject VO, subject AH also showed a facilitatory bias for the “similar” 
condition with the 40 cd/m2 “HDR light gray” adapting blank (Fig. 8E) and no 
significant bias in the remaining HDR conditions (Fig. 8B, 8C, and 8F). However, 
unlike subject VO, subject AH showed no bias in the “Uniform” condition. 

 

Fig. 8 Subject AH’s behavioral results on reporting the orientation of the target Gabor 
broken out by block and condition. Red lines and data refer to conditions when the flanker 
Gabors of interest are tilted to the right (45°, Flankers “B”); blue lines and data refer to 
conditions when the flanker Gabors of interest are tilted to the left (135°, Flankers “B”). 

Across subjects, there was a strong flanker-induced bias toward facilitation when 
the adapting screen was much brighter than the Gabor display (i.e., there was a 
strong bias to report targets as co-oriented with the flankers of interest) (Fig. 9). At 
the brightest adapting blank of 400 cd/m2 (100× brighter than the target patch,  
HDR white”, this flanker-induced facilitation was strong and significant for both 
the “brightest” and “similar” conditions (threshold bias = 12.0 ± 12.1 and  
14.8 ± 7.2, p = 0.018 and p = 0.0003, respectively), and there was no significant 
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difference between these two conditions, indicating that both the brightest flankers 
and the flankers similar to the target in luminance contributed to the facilitation. 

 

Fig. 9 Population results for Gabor orientation discrimination.  For the Uniform condition, 
connected squares in left and right columns show results of split trials, indicating the precision 
of the measurement for each subject. 

The effect was titrated by the magnitude of the luminance change. When the 
adapting screen was only 10× brighter than the target patch (“HDR light gray”), the 
flanker-induced facilitation was significant for the “similar” condition (threshold 
bias = 3.1 ± 3.1, p = 0.016), but this bias was abolished in the “brightest” condition, 
indicating that it was not driven by the brightest flankers (–1.2 ± 4.0, p = not 
significant [n.s.]). This difference between “similar” and “brightest” conditions was 
significant (p = 0.034, two-tailed paired t-test). 

When the adapting screen was the same luminance as the target patch (“HDR 
gray”), there was a weak but significant bias toward suppression in the “brightest” 
condition (–1.7 ± 1.8, p = 0.022), consistent with previous reports of suppression 
to high-contrast targets at static luminance. This bias was abolished in the “similar” 
condition (–0.06 ± 3.0, p = n.s.), but the difference between conditions was not 
significant. 

Could these effects have been observed with an SDR display? We tested an “SDR 
light gray” condition in which the array patch luminances spanned only 12.6 to  
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1.26 cd/m2 (3.16× to 0.316× the target patch luminance, a 10× range), versus 40 to  
0.4 cd/m2 (10× to 0.1× the target patch luminance, a 100× range) in the HDR array. 
As with the “HDR light gray” condition, there was a significant flanker-induced 
facilitation in the “similar” condition (1.9 ± 1.0, p = 0.0013), but this effect was 
abolished in the “brightest” condition (–0.5 ± 2.5, p = n.s.). The difference between 
these two conditions approached significance (p = 0.053). Thus, the effect was 
much weaker under SDR but consistent with the results under HDR. 

Across subjects, the “uniform” condition resulted in a wide variation of individual 
biases (–1.0 ± 9.4), ranging from significant facilitation (18.0, p < 0.01) to 
significant suppression (–11.8, p < 0.01). The bias was not due to noise in the 
measurement, as randomly splitting the trials resulted in almost no change to 
individual biases (Fig. 9, pairs of connected squares). The direction of this 
individual bias did not appear to be related to the magnitude of facilitation in the 
HDR and SDR conditions. The wide range of individual biases under the “uniform” 
condition contrasts with the narrower range of biases in the HDR conditions, and 
especially the SDR light gray “similar” condition (1.9 ± 1.0). It also contrasts with 
previous reports of target suppression to static uniform flankers, indicating that our 
addition of the adapting light gray blank has substantially altered the conditions to 
produce unexpected behavior. We speculate that the blank, although only 10× 
brighter than the target patch and the same amplitude as the flanker Gabors, may 
increase ambiguity and enable the emergence of strong priors, based on the 
subjects’ false expectation of a relationship between the target and flankers. 

Only data from the HDR white, HDR light gray, HDR gray, and uniform conditions 
were used in the EEG analysis. The grand average ERP waveforms, time-locked to 
the offset of the blank screen, are shown in Fig. 10. Upon visual inspection the 
initial positive deflection post blank offset showed graded amplitude and latency 
depending on the magnitude of luminance decrement after the blank, with largest 
amplitude and shortest latency for the largest luminance change. To assess the 
significance of this difference, we used a leave-one-out jackknife analysis method 
(Ulrich and Miller 2001). We measured peak amplitude as the maximum amplitude 
of the waveform within a 0- to 150-ms time window post blank offset, and the 
latency was the time at which the component reached 50% of that peak amplitude. 
A repeated measures analysis of variance (ANOVA), with corrected F-value to 
account for the decreased variability in the jackknife method, found no significant 
difference between the peak amplitudes across conditions, F(3,7) = 0.34, p = 0.79. 
However there was a significant difference in peak latency across conditions,  
F(3,7) = 16.56, p < 0.001.  
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Fig. 10 Top: Grand average waveforms for the uniform and HDR blocks (luminance 
difference included in parentheses) calculated from early visual area electrodes (O1, O2, and 
Oz). Note that waveforms here are time locked to the blank screen offset. Bottom: Same graph 
as top but with the 0- to 200-ms post blank screen offset time window expanded. 

The critical comparison, however, was between trials where participants reported 
the target as having an orientation that was congruent or incongruent with the 
background flankers (Fig. 11). To analyze this difference, epochs time-locked to 
the onset of the target were used, and a difference waveform was calculated by 
subtracting the incongruent waveform from the congruent waveform. Previous 
work using a similar subtraction method for static uniform flankers had found a 
significant difference in the 80- to 150-ms window post target onset (Khoe et al. 
2004). Based on those results, we analyzed the same time window to test for a 
difference between conditions. We used the same jackknife method with a 
corrected F-value, repeated measures ANOVA as described previously. We 
observed no significant flanker effect on ERP amplitude in any condition, whether 
pooled across “brightest” and “similar” conditions or analyzed separately, and no 
significant difference between conditions, F(3,7) = 0.93, p = 0.44.  
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Fig. 11 A) Congruent (dotted lines) and incongruent (solid lines) plotted for the uniform 
(black), HDR light gray (green), HDR gray (blue), and HDR white (red) blocks. B) Difference 
waves (congruent minus incongruent) for each block. 

4. Conclusion  

These results advance our capability to develop resilient and intuitive real-world 
machine vision, by discovering HDR luminance normalization mechanisms 
associated with primary visual cortex. We developed an HDR display research 
platform with improved characteristics of more than 100,000-to-1 contrast ratio and 
pseudo 11 bits, versus standard SDR displays that are typically limited to  
1000-to-1 contrast ratio and 8–10 bits. This advance allowed us to discover new 
phenomena linking contextual mechanisms to luminance normalization and target 
discrimination. We showed for the first time that abrupt darkening (as would occur 
during gaze shifts) induces facilitation, even for high-contrast targets. The effect 
was titrated by the magnitude of the luminance change. Surprisingly, the effect was 
driven by flankers with similar luminance to the target, whereas classic mechanisms 
such as divisive or subtractive normalization predict that the effect should be driven 
by the brightest flankers. We also showed that the effect required an HDR stimulus 
to be observed, and was much weaker (but significant) under SDR. We showed that 
the classic case of suppression by uniform flankers becomes surprisingly 
ambiguous, with large individual variations toward both facilitation and 
suppression, with the simple addition of a 10× darkening. We showed that such 
large luminance changes manifest as shorter latency ERP deflections, although we 
were unable to observe differences in ERP amplitude related to flanker  
co-orientation. In addition we showed that letter acuity is not substantially altered 
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by a preceding flash, except under the most challenging conditions, and we tied this 
back to the standard LogMAR test of visual acuity. Together, these results provide 
the framework necessary to construct computational vision models that leverage 
biology’s substantial advantages in handling high-dynamic range images. 

5. Discussion 

An ongoing challenge to Army modernization is how to develop autonomous 
teammates that can function in the real world for effective teamwork. Recent 
advances in machine vision, based on deep neural networks (DNNs) trained on 
large SDR photographic and synthetic databases, have resulted in substantial 
improvements in automatic target recognition capability, but a substantial problem 
remains of unexpected misclassifications, which limit machine vision credibility 
and require too many user interventions to be practicable. For example, a recent 
report showed that DNNs trained on ImageNet photographs are over-reliant on 
texture for object classification, and are easily fooled by synthetic images in which 
object surfaces are replaced by other textures (Baker et al. 2018; Geirhos et al. 
2018). Whereas biological vision has many mid-level processes to support resilient 
generalization, such processes are absent in DNNs. This is evidenced by the limited 
ability of DNNs to explain brain activity in many visual areas and by the ongoing 
challenge to resolve the disjunction between machine versus human patterns of 
classification errors. A strategy to resolve this capability gap is to incorporate 
biological resilience into machine vision. 

Our work on HDR luminance normalization aligns with this strategy by building 
on biology’s advantage in normalizing HDR images, with the aim of building tone-
mapping and saliency models that can feed into DNNs to improve overall 
performance. We took the approach of focusing on contextual processing in V1, 
which has been well explored for the case of static SDR images and is supported 
by a large body of work in human and animal behavior, anatomy, and physiology, 
and we advanced it toward real-world application by adding HDR luminance 
dynamics consistent with gaze shifts in naturalistic scenes. We report unexpectedly 
strong behavioral results that show contextual facilitation following abrupt 
darkening, even for high-contrast targets, and an unexpected phenomenon of 
contextual luminance-similarity-dependent facilitation that is consistent with 
traditional Gestalt theories of grouping. Both of these results challenge models 
based on recurrent excitation and inhibition that would predict stronger effects from 
the brightest flankers. Our future work will be to incorporate these results into 
computational modeling, based on both recurrent excitation/inhibition modeling 
and on saliency modeling. 
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The behavioral results in the target discrimination task highlight limitations of 
classic laboratory-based approaches to studying biological vision, namely the 
limited generalizability to real-world dynamics. By simply widening the luminance 
range and adding an abrupt luminance change, we observed novel phenomena 
(facilitation to high-contrast targets, and flanker effects driven by luminance 
similarity to the target) that are not predicted by previous models of contextual 
effects. Under the HDR gray condition (no luminance change), we reproduced the 
classic suppression effect. However, the flanker effect became highly variable 
across subjects in the uniform condition in which we added a novel 10× darkening, 
leading to the unexpected observation of both facilitation and suppression across 
different subjects to identical stimuli. This supports the inherent ambiguity of vision 
and the role of top-down prior expectations or beliefs on individual variability in 
behavioral performance. 

EEG data were analyzed to pinpoint when in the visual processing pipeline the 
effect of the luminance change caused the behavioral effect seen here. The EEG 
components time-locked to the offset of the blank screen showed the expected trend 
of earlier onset latency when the luminance change between the blank and array 
screen was larger. This result was expected, as the greater the luminance change, 
the more salient the transition. Increasing saliency of visual input has previously 
been shown to elicit earlier onset in components linked to attentional processes 
(Töllner et al. 2011). Our data did not, however, replicate previous findings that 
target-flanker orientation congruency modulates the ERP amplitude (Khoe et al. 
2004). We found no such congruency effect on ERP amplitude in our task. This 
difference in results is perhaps unsurprising given the differences in the task used 
in previous work and that used here. One such difference is that in the previous 
study, Khoe and colleagues only presented participants with two flanker Gabors of 
the same orientation. By contrast, our stimuli had a dense array of Gabors in both 
congruent and orthogonally incongruent orientations, to optimize for behavioral 
analysis. This increase in complexity of the visual input may have introduced more 
noise into the EEG data, data known to have a low signal-to-noise ratio (Luck 
2014), and therefore made the signal difficult to detect through traditional analyses. 
Moreover, the task was very different in this experiment compared with the 
previous study. Previously a detection task was used, where participants had to 
report whether a Gabor was presented. In the current work, participants are tasked 
with determining which of two Gabors has the higher contrast. This may bring in 
an additional decision-making component to the task that is not there when 
participants are only required to report the presence or absence of stimulus.  

The generalizability of these results is limited by several factors. First, our display 
range of 100,000 to 1 is still well below the 109-to-1 range of some natural scenes. 
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However, scenes that exceed 100,000-to-1 luminance range are likely to span very 
wide fields-of-view and may involve staring at a light source such as the sun, and 
a display with such capability could be damaging to the eye. By capturing a 
substantial portion of both mesopic and photopic ranges, our display captures the 
key transition between indoor and outdoor illumination that poses some of the most 
common HDR luminance challenges. Another limitation is that in our target 
discrimination task, the subject maintained fixation while the luminance changed, 
whereas such luminance changes typically occur across gaze shifts in a static scene. 
An important difference is that in gaze shifts the visual system has presaccadic 
information about the luminances at the target postsaccade. It is unknown whether 
this would alter our behavioral results, so a future plan is to repeat this experiment 
under controlled free-viewing, where the subject shifts his/her gaze from bright to 
dark regions in a static image. Finally, another factor limiting the generalizability 
of these results is that these experiments were conducted with individual test 
subjects, whereas optimal teaming behavior may require that the machine vision 
encompass both human capabilities and super-human capabilities. Depending on 
constraints such as size, weight, and processing power, it may not be optimal from 
a teaming framework for the machine vision to exactly match biological vision. 
However, we would argue that in most expected use cases of autonomy, where the 
drone or vehicle is mostly autonomous at the front line, reducing the frequency of 
required user interventions means that the largest sources of misclassification 
failure should be rooted out. A common denominator of many failures is improper 
normalization of the visual input, so tackling this issue, while taking advantage of 
DNN advances for later processing, efficiently leverages ongoing advances in 
biological and machine vision. 
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