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Abstract 
 
Upstream open reading frames (uORFs) are important tissue-specific cis-regulators of protein 
translation. Although isolated case reports have shown that variants that create or disrupt 
uORFs can cause disease, genetic sequencing approaches typically focus on protein-coding 
regions and ignore these variants. Here, we describe a systematic genome-wide study of 
variants that create and disrupt human uORFs, and explore their role in human disease using 
15,708 whole genome sequences collected by the Genome Aggregation Database (gnomAD) 
project. We show that 14,897 variants that create new start codons upstream of the canonical 
coding sequence (CDS), and 2,406 variants disrupting the stop site of existing uORFs, are 
under strong negative selection. Furthermore, variants creating uORFs that overlap the CDS 
show signals of selection equivalent to coding missense variants, and uORF-perturbing variants 
are under strong selection when arising upstream of known disease genes and genes intolerant 
to loss-of-function variants. Finally, we identify specific genes where perturbation of uORFs is 
likely to represent an important disease mechanism, and report a novel uORF frameshift variant 
upstream of NF2 in families with neurofibromatosis. Our results highlight uORF-perturbing 
variants as an important and under-recognised functional class that can contribute to penetrant 
human disease, and demonstrate the power of large-scale population sequencing data to study 
the deleteriousness of specific classes of non-coding variants. 
 
Introduction 
 
Upstream open reading frames (uORFs) are ORFs encoded within the 5’ untranslated regions 
(5’UTRs) of protein coding genes. uORFs are found upstream of around half of all known 
genes1, and are important tissue-specific cis-regulators of translation. Active translation of a 
uORF typically reduces downstream protein levels by up to 80%1. There are strong signatures 
of negative selection acting on these elements, with fewer upstream start codons (uAUGs) 
present in the human genome than would be expected by chance1–3. In addition, the start 
codons of uORFs have been shown to be the most conserved sites in 5’UTRs1, supporting the 
importance of uORFs in the regulation of protein levels.  
 
In humans, translation is initiated when the small ribosomal subunit, which scans from the 5’ 
end of the mRNA, recognises an AUG start codon4. The likelihood of an AUG initiating 
translation is dependent on local sequence context, and in particular the degree of similarity to 
the Kozak consensus sequence5,6. uORFs can inhibit translation through multiple mechanisms. 
For some genes, uORFs may be translated into a small peptide which can directly inhibit 
translation by interacting with and stalling the elongating ribosome at or near the uORF stop 
codon, creating a ‘roadblock’ for other scanning ribosomes7,8. It is also possible for this small 
peptide to have a distinct biological function9; however, in general uORFs do not show strong 
evidence for conservation of their amino acid sequence2,10. For other genes, translation from a 
uAUG appears to be sufficient to inhibit translation of the downstream protein, with the small 
uORF peptide only produced as a by-product.  
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Mechanisms of leaky scanning (whereby a scanning ribosome may bypass an uAUG), re-
initiation (where the small ribosomal subunit remains bound to the mRNA and translation is re-
initiated at the canonical AUG), and the existence of internal ribosome entry sites (from which 
the ribosome can start scanning part-way along the RNA), can all act to attenuate inhibition by 
uORFs, adding to the complexity of translational regulation10–12. Termination at a uORF stop 
codon can also trigger the nonsense-mediated decay pathway, further magnifying the inhibitory 
effects of uORFs11,13. To date, studies of translational regulation by individual uORFs have 
mainly been restricted to model organisms. 
 
Recently, large scale studies have assessed the global translational repression ability of 
uORFs: in vertebrates, uORF-containing transcripts are globally less efficiently translated than 
mRNAs lacking uORFs, with this effect mediated by features of both sequence and structure2.  
Similarly, polysome profiling of 300,000 synthetic 5’UTRs identified uORFs and uAUGs as 
strongly repressive of translation, with the strength of repression dependent on the surrounding 
Kozak consensus sequence14.  
 
Although 5’UTRs are typically not assessed for variation in either clinical or research settings, 
having been excluded from most exome capture target regions, there are several documented 
examples of variants that create or disrupt a uORF playing a role in human disease1,15–21. These 
studies have focused on single gene disorders or candidate gene lists, often when no causal 
variant was identified in the coding sequence. No study to date has characterised the baseline 
population incidence of these variants. 
 
Here we describe a systematic genome-wide study of variants that create and disrupt human 
uORFs, and characterise the contribution of this class of variation to human genetic disease. 
We use the allele frequency spectrum of variants in 15,708 whole-genome sequenced 
individuals from the Genome Aggregation Database (gnomAD)22 to explore selection against 
variants that either create uAUGs or remove the stop codon of existing uORFs. Finally, we 
demonstrate that these variants make an under-recognised contribution to genetic disease. 
 
Results 
 
uAUG-creating variants are under strong negative selection 
 
To estimate the deleteriousness of variants that create a novel AUG start codon upstream of the 
canonical coding sequence (CDS), we assessed the frequency spectrum of uAUG-creating 
variants observed in gnomAD (Figure 1a). We identified all possible single nucleotide variants 
(SNVs) in the UTRs of 18,593 canonical gene transcripts (see Methods) that would create a 
new uAUG, yielding 562,196 possible SNVs, an average of 30.2 per gene (Figure 1b). Of these, 
15,239 (2.7%) were observed at least once in whole genome sequence data from 15,708 
individuals in gnomAD (Supplementary Figure 1a), upstream of 7,697 distinct genes. 
 
We compared the mutability adjusted proportion of singletons (MAPS) score, a measure of the 
strength of selection acting against a variant class23, for uAUG-creating SNVs to other classes 
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of coding and non-coding SNVs (see methods). As negative selection acts to prevent 
deleterious variants from increasing in frequency, damaging classes of variants have skewed 
frequency spectra, with a higher proportion appearing as singletons (i.e. observed only once in 
the gnomAD data set),23 reflected in a higher MAPS score. Whilst all observed UTR SNVs have 
an overall MAPS score almost identical to synonymous variants, uAUG-creating SNVs have a 
significantly higher MAPS score (permuted P<1x10-4; Figure 1c), indicating a considerable 
selective pressure acting to remove these from the population. 
 
We next evaluated subsets of uAUG-creating variants predicted to have distinct functional 
consequences. In addition to creating distinct uORFs, uAUGs may result in overlapping ORFs 
(oORFs) where the absence of an in-frame stop codon within the UTR results in an ORF that 
reads into the coding sequence, either in-frame (elongating the CDS), or out-of-frame (Figure 
1a). uAUG-creating variants that form oORFs have a significantly higher MAPS score than 
uORF-creating variants (permuted P<1x10-4), and equivalent to missense variants in coding 
regions (Figure 1d; Supplementary Figure 1a).  
 
We also investigated the context of uAUG-creating variants and find that uAUGs created within 
50 bp of the CDS have higher MAPS than those created further away (permuted P=0.0042), 
although this may be driven by the higher propensity of these variants to form oORFs. We did 
not observe a significantly greater MAPS score for uAUG-creating variants arising on a 
background of a strong Kozak consensus, though we observe a trend in this direction (Figure 
1e). 
 
Given that uAUGs are expected to dramatically decrease downstream protein levels, we 
hypothesised that uAUG-creating variants would behave similarly to pLoF variants and thus be 
more deleterious when arising upstream of genes intolerant to LoF variation. Indeed, we show a 
significantly higher MAPS score for uAUG-creating SNVs upstream of genes which are most 
intolerant to LoF variants (top sextile of LOEUF score22; 3,193 genes) when compared to those 
that are most tolerant (bottom sextile; permuted P<1x10-4; Figure 1c).  
 
Next, we calculated MAPS for uAUG-creating variants arising upstream of 1,659 genes known 
to cause developmental disorders (DD; confirmed or probable genes from the Developmental 
Disease Gene to Phenotype (DDG2P) database). While uAUG-creating variants upstream of all 
DD genes do not show a signal of selection above all observed uAUG-creating variants, the 
MAPS score is significantly inflated when limiting to 279 DD genes with a known dominant LoF 
mechanism (permuted P=0.0012; Figure 1f). 
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Figure 1: uAUG-creating variants have strong signals of negative selection, suggesting 
they are deleterious. (a) Schematic of uAUG-creating variants, their possible effects and how 
the strength of the surrounding Kozak consensus is determined. (b) The number of possible 
uAUG-creating SNVs in each of 18,593 genes, truncated at 200 (159 genes have >200). In total 
we identified 562,196 possible uAUG-creating SNVs, an average of 30.2 per gene (dotted line), 
with 883 genes having none. (c-f) MAPS scores (a measure of negative selection) for different 
variant sets. The number of observed variants for each set is shown in brackets. MAPS for 
classes of protein-coding SNVs are shown as dotted lines for comparison (synonymous - grey, 
missense - orange, and predicted loss-of-function (pLoF) - red point and red dotted line) (c) 
While overall UTR variants display a selection signature similar to synonymous variants, uAUG-
creating variants have significantly higher MAPS (indicative of being more deleterious; permuted 
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P<1x10-4). Variants are further subdivided into those upstream of, or within genes tolerant 
(green dot) and intolerant (blue dot) to LoF22, with uAUG-creating variants upstream of LoF 
intolerant genes showing significantly stronger signals of selection than those upstream of LoF 
tolerant genes (permuted P=5x10-4). pLoF variants are likewise stratified for comparison. (d) 
uAUG-creating variants that create an oORF or elongate the CDS show a significantly higher 
signal of selection that uORF-creating variants (P<1x10-4; oORF created - out-of-frame oORF 
and CDS elongated combined). (e) The deleteriousness of uAUG-creating variants depends on 
the context into which they are created, with stronger selection against uAUG-creation close to 
the CDS, and with a stronger Kozak consensus sequence. (f) uAUG-creating variants are under 
strong negative selection upstream of genes manually curated as haploinsufficient26 and 
developmental disorder genes reported to act via a dominant LoF mechanism. Abbreviations: 
CDS - coding sequence; uAUG - upstream AUG; uORF - upstream open reading frame; oORF - 
overlapping open reading frame; MAPS - mutability adjusted proportion of singletons; pLoF - 
predicted loss-of-function; DDG2P - Developmental Disease Gene to Phenotype. 
 
 
Variants that disrupt stop codons of existing uORFs also show a signal of strong selection 
 
As uAUG-creating variants that form oORFs have a significantly higher MAPS score than those 
with an in-frame UTR stop codon, we hypothesised that variants that disrupt the stop site of 
existing uORFs should also be under selection (Figure 2a). These stop-removing variants could 
either be SNVs that change the termination codon to one that codes for an amino acid, or 
frameshifting indels within the uORF sequence that cause the uORF to read through the normal 
stop codon. If there is no other in-frame stop codon before the CDS will result in an oORF. 
 
We identified all possible SNVs that would remove the stop codon of a predicted uORF 
(n=169,206; see methods), and calculated the MAPS score for 2,406 such variants observed in 
gnomAD. Stop-removing SNVs have a nominally higher MAPS score than all UTR SNVs 
(permuted P=0.030). This difference is greater when specifically considering stop-removing 
SNVs which are upstream of LoF intolerant genes (permuted P=0.0012), result in an oORF 
(permuted P=2x10-4), or where the uORF has either prior evidence of translation (documented 
in sorfs.org24; permuted P=0.0049), or a strong/moderate Kozak consensus (permuted P=7x10-

4; Figure 2b-e). 
 
As the power of MAPS is limited by the small number of stop-removing variants in each 
category observed in gnomAD, we performed a complementary analysis investigating base 
level conservation at all uORF stop sites using PhyloP25. A significantly greater proportion of 
uORF stop site bases have PhyloP scores >2 (12.2%) compared to UTR bases matched by 
gene and distance from the CDS (10.8%; Fisher’s P=1.8x10-17; Figure 2f). This proportion is 
significantly higher where there is evidence supporting translation of the uORF (18.9%; Fisher’s 
P=3.6x10-83) or when removing the stop would result in an oORF (either in-frame or out-of-
frame; 17.2% and 17.4% respectively; Fisher’s P=3.0x10-25 and 2.6x10-47 respectively). 
Furthermore, a greater proportion of stop site bases have PhyloP scores >2 when the uORF 
start codon has a strong or moderate Kozak when compared to a weak Kozak consensus 
(12.7% vs 10.9%; Fisher’s P=5.5x10-10; matched UTR bases P=0.88; Figure 2i).  
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Figure 2: uORF stop codons are highly conserved and stop-removing variants show 
strong signals of negative selection. (a) Schematic of uORF stop-removing variants, their 
possible effects, and how the strength of the surrounding Kozak consensus is determined. (b-e) 
MAPS scores (a measure of negative selection, as in Fig. 1c) for different variant sets. The 
number of observed variants for each set is shown in brackets. MAPS for classes of protein-
coding SNVs are shown as dotted lines for comparison (synonymous - black, missense - orange 
and predicted loss-of-function (pLoF) - red point and red dotted line). (b) Stop-removing SNVs 
have a nominally higher MAPS score than all UTR SNVs (permuted P=0.030). Variants are 
further subdivided into those upstream of, or within genes tolerant (green dot) and intolerant 
(blue dot) to LoF22, with pLoF variants likewise stratified for comparison. Stop-removing SNVs 
with (c) evidence of translation (documented in sorfs.org) and (d) that create an oORF have 
signals of selection equivalent to missense variants. (e) A significantly higher MAPS is 
calculated for stop-removing variants where the uORF start site has a strong or moderate Kozak 
consensus when compared to those with a weak Kozak (permuted P=7x10-4). (f-j) Since MAPS 
is only calculated on observed variants, we extended our analysis to look at the conservation of 
all possible uORF stop site bases, reporting the proportion of bases with phyloP scores > 2. All 
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coding bases are shown as a purple dotted line for comparison. (f) The stop sites of predicted 
uORFs are significantly more conserved than all UTR bases matched on gene and distance 
from the CDS (Fisher’s P=1.8x10-17). uORF stop bases are most highly conserved when (g) the 
uORF has evidence of translation, (h) the variant results in an oORF, (i) the uORF start site has 
a strong/moderate Kozak consensus, and (j) upstream of curated haploinsufficient genes and 
developmental genes with a known dominant LoF disease mechanism. Abbreviations: CDS - 
coding sequence; uORF - upstream open reading frame; oORF - overlapping open reading 
frame; MAPS - mutability adjusted proportion of singletons; pLoF - predicted loss-of-function; 
DDG2P - Developmental Disease Gene to Phenotype. 
 
 
The increased power of this analysis enables us to convincingly demonstrate that uORF stop 
sites upstream of (1) LoF intolerant genes, (2) genes manually curated as haploinsufficient26, 
and (3) developmental disorder genes with a dominant LoF mechanism, are all highly 
conserved. Stop sites upstream of genes in these groups have 21.9%, 29.6% and 31.6% of 
bases with PhyloP >2, respectively (Fisher’s P=8.2x10-250, 4.7x10-43 and 1.4x10-52 compared to 
all stop site bases, respectively; Figure 2j), suggesting that removing these stop sites is likely to 
be deleterious. 
 
Disease-causing variants represent the most deleterious uORF variant types and highlight 
specific genes that are sensitive to uAUG-creating and uORF stop-removing variants 
 
We searched the Human Gene Mutation Database (HGMD)27 and ClinVar28 for uORF-creating 
or -disrupting variants, identifying 39 uAUG-creating and four stop-removing (likely) 
pathogenic/disease mutations in 37 different genes. All four stop-removing variants disrupt 
uORFs with uAUGs in a strong or moderate Kozak consensus and result in an oORF 
overlapping the CDS (Supplementary Table 2). Compared to all possible uAUG-creating 
variants in these 37 genes, the 39 reported disease-causing uAUG-creating variants 
(Supplementary Table 1) are significantly more likely to be created into a moderate or strong 
Kozak consensus (binomial P=3.5x10-4), create an out-of-frame oORF (binomial P=1.1x10-5), 
and be within 50bp of the CDS (binomial P=3.9x10-7; Figure 3a). These results further illustrate 
the power of MAPS to identify variant classes most likely to be disease-causing. 
 
This analysis highlights disease genes where aberrant translational regulation through uORFs is 
an important disease mechanism. Previous analysis of the NF1 gene in 361 patients with 
neurofibromatosis identified four 5’UTR variants as putatively disease-causing29. While uAUG 
creation was proposed as the mechanism behind two of these variants, we now show that the 
other two variants both disrupt the stop codon of an existing uORF, resulting in an oORF which 
is out-of-frame with the CDS. This existing uORF has two start sites, both with strong Kozak 
consensus, and has prior evidence of active translation24. In figure 3b, we show these four 
variants along with an additional six stop-removing and ten uAUG-creating variants that would 
be predicted to also cause neurofibromatosis through the same mechanism if observed. In 
addition to these sixteen SNVs, indels that create high-impact uAUGs (oORF creating with 
strong/moderate Kozak consensus) or that cause a frameshift within the sequence of the 
existing uORF, resulting in an oORF, would also be predicted to cause disease. 
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Figure 3: The role of uAUG-creating and uORF stop-removing variants in disease. (a) The 
proportion of 39 uAUG variants observed in HGMD and ClinVar (red bars) that fit into different 
sub-categories compared to all possible uAUG-creating SNVs (grey bars) in the same genes 
(n=1,022). Compared to all possible uAUG-creating variants, uAUG-creating variants observed 
in HGMD/ClinVar were significantly more likely to be created into a moderate or strong Kozak 
consensus (binomial P=3.5x10-4), create an out-of-frame oORF (binomial P=1.1x10-5), and be 
within 50 bp of the CDS (binomial P=3.9x10-7). (b) Schematic of the NF1 5’UTR (light grey) 
showing the location of an existing uORF (orange) and the location of variants previously 
identified in patients with neurofibromatosis29 in dark red (uAUG-creating) and black (stop-
removing). uAUG-creating variants are annotated with the strength of the surrounding Kozak 
consensus in brackets (“s” for strong and “m” for moderate). All four published variants result in 
formation of an oORF out-of-frame with the CDS. Also annotated are the positions of all other 
possible uAUG-creating variants (light red; strong and moderate Kozak only), and stop-
removing variants (grey) that would also create an out-of-frame oORF. (c) Schematic of the NF2 
5’UTR (grey) showing the effects of the -65-66insT variant. The reference 5’UTR contains a 
uORF with a strong Kozak start site. Although the single-base insertion creates a novel uAUG 
which could be a new uORF start site, it also changes the frame of the existing uORF, so that it 
overlaps the CDS out-of-frame (forms an oORF). We predict this is the most likely mechanism 
of pathogenicity. 
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A second example is IRF6, where three uAUG-creating variants have been identified in seven 
patients with Van de Woude syndrome30,31. These variants all arise in the context of a strong or 
moderate Kozak consensus and result in an out-of-frame oORF. There are nine additional 
possible uAUG-creating variants that would be predicted to yield the same effect in IRF6 
(Supplementary Figure 2), suggesting it would be prudent to screen Van de Woude patients 
across all twelve sites. 
 
Identifying genes where perturbing uORFs is likely to be important in disease 
 
To guide the research and clinical identification of uAUG-creating and stop-removing variants 
(referred to collectively as uORF-perturbing variants), we set about identifying genes where 
these variants are likely to be of high importance. Investigating 17,715 genes with annotated 
5’UTRs and at least one possible uORF-perturbing variant, we first identified 4,986 genes where 
uORF-perturbing variants are unlikely to be deleterious: genes with existing oORFs 
(strong/moderate Kozak or evidence of translation), with predicted high-impact uORF-perturbing 
SNVs of appreciable frequency in gnomAD (>0.1%), with no possible high-impact uORF-
perturbing SNVs, or that are tolerant to LoF (see methods; Supplementary Figure 3a). 
Interestingly, these genes include 453 LoF intolerant (14.2% of most constrained LOEUF 
sextile) and 163 curated haploinsufficient or LoF disease genes (14.6%). Of the remaining 
12,729 genes considered, 3,191 (25.1%) are LoF-intolerant, known haploinsufficient or LoF 
disease genes and hence are genes where uORF-perturbing variants have a high likelihood of 
being deleterious (Figure 4a). Despite only 18.0% of all classified genes falling into this high 
likelihood category (19.0% of all UTR bases when accounting for UTR length), 79% of uORF-
perturbing variants in HGMD and ClinVar are found upstream of these genes (Fisher’s 
P=1.6x10-9; Figure 4b). 
 
There are 296 genes that have at least 10 possible high-impact uORF-perturbing SNVs, and for 
which LoF and/or haploinsufficiency is a known mechanism of human disease (either curated as 
haploinsufficient, curated as acting via a LoF mechanism in DDG2P or with ≥10 high-confidence 
pathogenic LoF variants documented in ClinVar), including both IRF6 and NF1. We predict 
these to be a fruitful set to search for additional disease-causing uORF-perturbing variants 
(Supplementary Table 3; Supplementary Figure 3b). To aid in the identification of uORF-
perturbing variants we have created  plugin for the Ensembl Variant Effect Predictor (VEP)32 
which annotates variants for predicted effects on translational regulation (available at 
https://github.com/ImperialCardioGenetics/uORFs). 
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Figure 4: Identifying genes where uORF creating or disrupting variants are are likely to 
have a role in disease. Genes were split into three distinct categories representing a ‘low’, 
‘moderate’ and ‘high’ likelihood that uORF-perturbing variants are important. Low likelihood 
genes include those with existing oORFs, common (>0.1%) oORF creating variants in gnomAD 
or that are tolerant to LoF. Those in the high likelihood category are remaining genes that are 
LoF-intolerant or where haploinsufficient or LoF is a known disease mechanism (see methods). 
(a) The number of genes in each of the three categories. (b) The number of uAUG-creating and 
uORF stop-removing variants in HGMD upstream of genes in each category. Although only 
18.0% of all classified genes fall into the high likelihood category (19.0% of all UTR bases when 
adjusting for UTR length), 79% of uORF-perturbing variants identified in HGMD and ClinVar are 
found upstream of these genes (Fisher’s P=1.6x10-9). 
 
A novel uORF frameshift variant as a cause of neurofibromatosis type 2 
 
We analysed targeted sequencing data from a cohort of 1,134 unrelated individuals diagnosed 
with neurofibromatosis type 2, which is caused by LoF variants in one of these prioritised genes, 
NF2. We identified a single 5’UTR variant in two unrelated probands in this cohort 
(ENST00000338641:-66-65insT; GRCh37:chr22:29999922 A>AT) that segregates with disease 
in three additional affected relatives across the two families. This variant could act through two 
distinct uORF-disrupting mechanisms. While the insertion does create a new uAUG (in the 
context of a moderate Kozak consensus) an in-frame stop codon after only three codons would 
suggest only a weak effect on CDS translation. However, the NF2 UTR contains an existing 
uORF with prior evidence of translation24 and a strong Kozak consensus. The observed 
insertion changes the frame of this existing uORF, causing it to bypass the downstream stop 
codon and create an out-of-frame oORF (Figure 3c). This oORF is predicted to lower translation 
of NF2, consistent with the known LoF disease mechanism, however, functional follow-up is 
required to confirm this hypothesis. 
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Discussion 
 
We used data from 15,708 whole human genomes to explore the global impact of variants that 
create or perturb uORFs in 5’UTRs, which can lead to altered translation of the downstream 
protein. We show that creating a new uORF and hence initiating translation from an uAUG is an 
important regulatory mechanism. Our data suggest that the major underlying mechanism of 
translational repression by uORFs is likely to be through competitive translation, since it is 
unlikely that novel peptides produced by uAUG-creating variants will be functional, and the most 
deleterious types of uAUG-creating and stop-removing variants are those that form oORFs. 
 
Selective pressure on strongly translated uORFs has maintained features that promote re-
initiation and prevent constitutive translational repression. Specifically, existing uORFs are 
selected to be short, further from the CDS, and to lack strong Kozak sequences2. This is in 
agreement with our results, which show a strongly skewed frequency spectrum for observed 
variants predicted to strongly inhibit translation, and an over-representation of these deleterious 
variants in disease cases. 
 
We have defined a new category of variants, high-impact uORF-perturbing variants, a subset of 
which are likely to act as LoF by severely impacting translation. This class contains 145,398 
possible SNVs (110,357 uAUG-creating and 35,041 stop-removing) across the genome, which 
are predicted to form oORFs from an uAUG with a strong or moderate Kozak consensus, or 
with prior evidence of translation. Of these, 3,213 (2.2%) are observed in the whole genome 
sequence data from gnomAD. In addition, uAUG-creating insertions and deletions or frameshifts 
that transform existing uORFs into oORFs would also be predicted to have a high impact. 
 
Whilst uORF-perturbing variants resulting in constitutive translational repression are likely to 
have LoF effects, the complex mechanisms of translational regulation including leaky scanning, 
re-initiation, and the existence of internal ribosome entry sites makes it difficult to confidently 
predict the functional consequences of individual variants. Even variants predicted to be of high-
impact may only result in partial LoF, reducing power to identify significant signals of selection. 
Confident interpretation of variants for a role in disease will require functional studies to assess 
the downstream impact of these variants on protein levels and/or additional genetic evidence, 
such as de novo occurrence or segregation with disease. It will also be interesting to study the 
impact of uORF-perturbing variants causing partial LoF on coding variant penetrance and their 
role in common disease phenotypes. 
 
Even at a sample size of 15,708 individuals, we had limited power to observe uORF-perturbing 
variants, given their very small genomic footprint. Despite this, we identified specific genes such 
as NF1, NF2, and IRF6, where uORF perturbation appears to be an important disease 
mechanism. In anticipation of future studies with much larger cohorts of WGS cases, we have 
identified a set of genes where there is a high likelihood that this mechanism will contribute to 
disease. This will also be useful for rare disease diagnosis, where even if WGS is undertaken 
this class of pathogenic variation is likely not evaluated and under-diagnosed.  
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In this work, we used variant frequencies in a large population dataset to study the global impact 
of a specific class of non-coding variants with a predicted functional effect. Previous studies 
using non-coding constraint have focused on entire regulatory regions33 or concentrated 
exclusively on splicing34,35. These and other studies36 have concluded that signals of constraint 
and selection are likely confined to individual bases33 and diluted out when studying larger 
regions. Our results support this assertion; as the signal of negative selection associated with all 
UTR variants is not discernible from synonymous variants. We show the power of grouping 
individual non-coding bases by functional effect to identify subsets of variants with strong 
signals of selection. 
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Supplementary Table 1: uAUG-creating variants catalogued as disease mutations (DM) in 
HGMD1 or (Likely) Pathogenic in ClinVar2. All positions are in GRCh37. 
 

variant Kozak 
strength 

effect gene gene 
class 

distance 
to start 

clinvar PubMed 
IDs 

1-43424429-C-T Strong out-of-frame 
oORF 

SLC2A1 8 
(High) 

107   28378819 

1-209975332-G-T Moderate out-of-frame 
oORF 

IRF6 8 
(High) 

19   19282774 

1-209975361-T-A Moderate out-of-frame 
oORF 

IRF6 8 
(High) 

49   12219090 

1-209979367-C-T Strong out-of-frame 
oORF 

IRF6 8 
(High) 

151   19282774 

5-14871567-G-A Moderate CDS elongated ANKH 8 
(High) 

12   12297987 

5-36877266-C-T Weak uORF created NIPBL 8 
(High) 

95   17661813 

6-137143759-C-T Strong out-of-frame 
oORF 

PEX7 8 
(High) 

46 Phytanic_acid_storage_disease;P
athogenic;38871 

12325024 

7-107301244-A-G Moderate uORF created SLC26A4 8 
(High) 

62   19204907 

7-117120115-C-T Moderate out-of-frame 
oORF 

CFTR 8 
(High) 

35   21837768 

9-21974860-C-A Strong out-of-frame 
oORF 

CDKN2A 8 
(High) 

35 Hereditary_cancer-
predisposing_syndrome|Hereditar
y_cutaneous_melanoma|Melano
ma-
pancreatic_cancer_syndrome;Pat
hogenic;182414 

9916806 

9-130616761-G-A Moderate out-of-frame 
oORF 

ENG 8 
(High) 

128 Osler_hemorrhagic_telangiectasia
_syndrome;Pathogenic;407113 

21967607 

9-133327612-C-T Moderate out-of-frame 
oORF 

ASS1 3 
(Low) 

5 Citrullinemia_type_I;Likely_patho
genic;203632 

19006241 

11-5248280-C-T Moderate out-of-frame 
oORF 

HBB 8 
(High) 

29 beta_Thalassemia;Pathogenic;39
3702 

1717406 
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11-17409692-G-A Moderate out-of-frame 
oORF 

KCNJ11 3 
(Low) 

55   12364426 

14-55369403-G-A Moderate out-of-frame 
oORF 

GCH1 8 
(High) 

23   10825351 

17-29422056-G-A Moderate out-of-frame 
oORF 

NF1 8 
(High) 

272   27322474 

17-70117348-G-A Moderate out-of-frame 
oORF 

SOX9 8 
(High) 

185   28546996 

19-11200076-C-A Weak uORF created LDLR 8 
(High) 

149 Familial_hypercholesterolemia;Lik
ely_pathogenic;250946 

22698793 

19-11200127-C-T Moderate uORF created LDLR 8 
(High) 

99 Familial_hypercholesterolemia;Pa
thogenic;440535 

NA 

19-11200128-G-A Strong out-of-frame 
oORF 

LDLR 8 
(High) 

97 Familial_hypercholesterolemia;Lik
ely_pathogenic;430743 

NA 

19-11200202-AC-
A 

Moderate uORF created LDLR 8 
(High) 

22   25248394 

22-50523373-G-A Moderate out-of-frame 
oORF 

MLC1 8 
(High) 

43   25497041 

X-38211811-A-G Weak uORF created OTC 8 
(High) 

141 Ornithine_carbamoyltransferase_
deficiency;Likely_pathogenic;487
341 

NA 

X-49114969-C-A Moderate out-of-frame 
oORF 

FOXP3 8 
(High) 

8   16371377 

X-148579835-
ATG-A 

Moderate uORF created IDS 3 
(Low) 

124 Mucopolysaccharidosis,_MPS-
II;Pathogenic;10496 

1303211 

X-154250832-T-C Moderate out-of-frame 
oORF 

F8 8 
(High) 

7   22958177 

2-96931137-G-A Strong out-of-frame 
oORF 

TMEM127 7 
(High) 

19 Pheochromocytoma;Likely_patho
genic;126961 

21156949 

2-157189174-G-A Moderate uORF created NR4A2 7 
(High) 

310   19429166 

4-6271704-G-T Moderate out-of-frame 
oORF 

WFS1 7 
(High) 

44   27395765 
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5-147211193-G-A Moderate uORF created SPINK1 7 
(High) 

54   10835640, 
27171515, 
26228362, 
21610753 

7-143013247-C-A Strong out-of-frame 
oORF 

CLCN1 7 
(High) 

59   23771340 

12-121416385-C-
T 

Moderate uORF created HNF1A 7 
(High) 

188   10649494 

17-66508599-G-A Strong out-of-frame 
oORF 

PRKAR1A 7 
(High) 

97   12424709 

2-25387652-G-T Moderate out-of-frame 
oORF 

POMC 6 
(Mod) 

11 Proopiomelanocortin_deficiency;P
athogenic;13355 

9620771, 
27906547, 
23649472 

6-26087649-G-A Moderate out-of-frame 
oORF 

HFE 6 
(Mod) 

20   21175851 

22-19710933-C-G Moderate CDS elongated GP1BB 6 
(Mod) 

162 Bernard-
Soulier_syndrome,_type_B;Patho
genic;16041 

8703016 

11-299504-G-A Strong CDS elongated IFITM5 5 
(Low) 

15 Osteogenesis_imperfecta_type_5;
Pathogenic;37143 

22863190 

19-35773456-G-A Strong out-of-frame 
oORF 

HAMP 3 
(Low) 

25   15198949 

1-151372055-G-A Moderate CDS elongated PSMB4 4 
(Low) 

9 PROTEASOME-
ASSOCIATED_AUTOINFLAMMA
TORY_SYNDROME_3;Pathogeni
c;548956 

28848544 
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Supplementary Table 2: Stop-removing variants catalogued as disease mutations (DM) in 
HGMD1 or (Likely) Pathogenic in ClinVar2. 
 

variant Kozak 
strength 

effect gene gene 
class 

evidence of 
translation 

clinvar PubMed 
IDs 

4-159593534-A-G Strong out-of-frame oORF ETFDH 8 N   23628458 

8-21988118-T-C Moderate CDS elongated HR 8 Y Hypotrichosis_4;Pathogenic;7344 NA 

17-29422055-A-C Strong out-of-frame oORF NF1 8 Y   27322474 

X-68049525-T-C Strong out-of-frame oORF EFNB1 8 N   23335590 

 
 
Supplementary Table 3: Genes with ≥10 possible predicted high-impact uAUG-creating or 
stop-removing SNVs, and for which LoF and/or haploinsufficiency is a known mechanism of 
human disease (either curated as haploinsufficient, curated as acting via a LoF mechanism in 
DDG2P or with ≥10 high-confidence pathogenic LoF variants documented in ClinVar). 
 
https://github.com/ImperialCardioGenetics/uORFs/blob/master/data_files/SupplementaryTable3 
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Supplementary Figure 1: Observed numbers of uAUG-creating and stop-removing SNVs in 
gnomAD. 
 

 
 
 
Supplementary Figure 2: Schematic of the 5’UTR of IRF6 showing the location of uAUG-
creating variants identified by de Lima et al. (bright red) and all other possible uAUG-creating 
SNVs (faded red) which would be created into a strong or moderate Kozak consensus and form 
an out-of-frame oORF. The strength of the Kozak consensus is shown in brackets (“s” for 
strong, “m” for moderate). 
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Supplementary Figure 3: Identifying genes where there is a high likelihood that uORF-
perturbing variants will be deleterious. (a) Plot of all 18,593 by category (see methods) coloured 
by unknown (dark grey), low (light grey), moderate (orange) and high likelihood (dark red) that 
uORF-perturbing variants will be deleterious. (b) Genes in class 8 (not classified with a ‘Low’ 
likelihood and where LoF and/or haploinsufficiency is a known mechanism of human disease) 
with ≥20 possible high-impact uAUG-creating and stop-removing SNVs. 
 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/543504doi: bioRxiv preprint 

https://doi.org/10.1101/543504
http://creativecommons.org/licenses/by/4.0/


Methods 
 
Ethics statement 
 
We have complied with all relevant ethical regulations. This study was overseen by the Broad 
Institute’s Office of Research Subject Protection and the Partners Human Research Committee, 
and was given a determination of Not Human Subjects Research. Informed consent was 
obtained from all participants. 
 
Definition of 5’UTRs 
 
The start and end positions and sequence of the 5’UTRs of all protein-coding genes were 
downloaded from Ensembl biomart (Human genes GRCh37.p13) and filtered to only include 
canonical transcripts. Genes with no annotated 5’UTR on the canonical transcript were 
removed. 
 
Identification and classification of uAUG-creating variants 
 
Reading through each UTR from start to end (5’ to 3’), we identified all instances where a SNV 
would create an ATG. We recorded the positions of all possible stop codons (TAA, TGA and 
TAG) and annotated each uAUG-creating variant with whether or not there was an in-frame stop 
codon within the UTR. To annotate the strength of the Kozak consensus into which the uAUG 
was formed we assessed the positions at -3 and +3 relative to the A of the AUG, known to be 
the most important bases for dictating strength of translation. If both the -3 base was either A or 
G and the +3 was G, Kozak was annotated as ‘Strong’, if either of these conditions was true, 
Kozak was deemed to be ‘Moderate’ and if neither was the case ‘Weak’. uAUG-creating 
variants were also annotated with the distance to, and the frame relative to the coding sequence 
(CDS).  
 
Identification and classification of uORF stop-removing variants 
 
Existing uORFs were defined as the combination of an ATG and in-frame stop codon (TAA, 
TGA or TAG) within a UTR. Each predicted uORF was annotated with the positions of all 
alternative downstream in-frame stop codons within the UTR and with the frame relative to the 
coding sequence. The Kozak strength of each uORF was defined as outlined above for uAUG-
creating variants. Where multiple uAUGs converge on the same stop codon, the uORF is 
annotated with the strongest Kozak consensus. To identify uORFs with prior evidence of 
translation we downloaded all human small open reading frames (sORFs) from sorfs.org, a 
public repository of sORFs identified in humans, mice and fruit flies using ribosome profiling 
[Olexiouk et al. 2015]. Predicted uORFs were marked as having prior evidence if the annotated 
stop codon matched an entry from sorfs.org. 
 
Stop-removing variants were identified as SNVs that would change the base of a stop codon to 
any sequence that would not retain the stop (i.e. did not create another of TAA, TGA or TAG). 
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Calculating MAPS 
 
For each set of variants we computed the mutability adjusted proportion of singletons, or MAPS. 
The basis of this approach has previously been described23. Briefly, for each substitution, 
accounting for 1 base of surrounding context (e.g. ACG -> ATG), we calculated the proportion of 
all possible variants (-3.9885 < GERP < 2.6607, 15x < gnomAD coverage < 60x) that are 
observed in intergenic/intronic autosomal regions in a downsampled set of 1000 gnomAD 
whole-genomes. For C>T changes at CpG sites, variant proportions are calculated separately 
for three distinct bins of methylation. These proportions are then scaled so that the weighted 
genome-wide average is the human per-base, per-generation mutation rate (1.2e-8). The 
creation of these context-dependent mutation rates is more fully described in our companion 
paper22.  
 
To determine the transformation between these mutation rates and the expected proportion of 
singletons, for each substitution and context (and methylation bin for CpGs), we regress the 
mutation rates against the observed proportion of singletons for synonymous variants. We use 
synonymous as a relatively neutral class of variants which should not be subject to any biases 
being investigating in UTRs, but that are distinct from bases used to define the model.  
 
For a given list of possible variants, annotated with gnomAD allele counts using Hail 
(https://hail.is), we take only those that are observed in gnomAD and annotate each with the 
transformed mutation rate given the variant context (which now corresponds to the expected 
chance this site will be a singleton), and sum these values across the entire variant list to give 
an expected number of singletons. Variants are excluded if they are outliers on coverage in 
gnomAD (15x < coverage < 60x), were found on the X or Y chromosome, or were filtered out of 
the gnomAD whole genomes.  
 
Finally, this expected number of singletons is compared to the number of sites that are 
observed as singletons in gnomAD, to estimate MAPS. 
 
𝑀𝐴𝑃𝑆 =  (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠 −  𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠) / 𝑡𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 

 
Confidence intervals were calculated using bootstrapping. For a list of n observed variants, n 
variant sites are sampled at random with replacement and used to calculate MAPS. This is 
repeated over 10,000 permutations before the 5th and 95th percentiles of the resulting MAPS 
distribution are taken as confidence intervals. 
 
P-values we calculated using the same bootstrapping approach but for each permutation MAPS 
was calculated for each of the two variant sets of interest, A and B. The P-value was defined as 
the proportion of permutations where MAPS of B was less than MAPS of A. 
 

𝑃 =  𝛴 [(𝑀𝐴𝑃𝑆(𝐵)−𝑀𝐴𝑃𝑆(𝐴))  <  0] / 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 
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For coding variants, MAPS was calculated using the predicted impact on the canonical 
transcript. 
 
Using PhyloP to assess base-level conservation 
 
Per-base vertebrate PhyloP scores were extracted from the Combined Annotation Dependent 
Depletion (CADD) version v1.4 GRCh37 release files and used to annotate lists of all possible 
coding, UTR and uORF stop bases. To remove biases due to gene context and distance from 
the coding sequence, we created a set of matched UTR bases which comprised the 3 bases 
immediately upstream and downstream of the stop. Conserved bases were defined as those 
with PhyloP >= 2. We also checked for a significant difference between the entire distribution of 
scores using a Wilcoxon rank sum test for all stop-removing compared to matched UTR bases 
(P=8.1x10-9). 
 
Identifying disease gene lists 
 
Developmental disease genes were downloaded from The Developmental Disorders Genotype-
Phenotype Database (DDG2P) on the 6th October 2018. We included only genes categorised 
as ‘confirmed’ or ‘probable’. Genes with a known dominant LoF mechanism were identified 
using the ‘allelic requirement’ and ‘mutation consequence’ annotations. 
 
Genes intolerant and tolerant to LoF variants were identified using data from Karczewski et al. 
201922. Genes were ordered by their loss-of-function observed/expected upper bound fraction 
(LOEUF) scores and the top and bottom sextiles were categorised as tolerant and intolerant 
respectively. 
 
We downloaded data from The Clinical Genome Resource (ClinGen) Dosage Sensitivity Map on 
21st January 2019 (https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/). Genes manually 
curated as haploinsufficient were defined as those with a score of 3 (sufficient evidence). In 
addition, we added genes curated as severe or moderately haploinsufficient by the MacArthur 
lab (https://github.com/macarthur-lab/gene_lists/tree/master/lists). 
 
Searching for uORF-perturbing variants in HGMD and ClinVar 
 
Lists of all possible uAUG-creating and stop-removing SNVs were intersected with all DM 
variants from HGMD pro release 2018.1 and all ClinVar Pathogenic or Likely Pathogenic 
variants from the August 2018 release (clinvar_20180805.vcf). In addition, we created a list of 
all possible 1-5bp deletions that would create an uAUG, annotated as described for SNVs 
above, and also searched for these variants. We did not investigate small insertions or deletion 
>5bps due to the inhibitory number of possible variants.  
 
Sub-classifying genes 
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uAUG-creating variants were classified as ‘high-impact’ if they are formed into a high or 
moderate Kozak consensus and if they either form an oORF or result in transcript elongation. 
Stop removing variants were similarly classified as ‘high-impact’ if the original uORF start site 
has a strong or moderate Kozak and/or the uORF is documented in sorfs.org and the variants 
results in a oORF or a transcript elongation. 
 
Genes were divided into nine categories according to the following logic. 
Class 0 - genes with no annotated 5’UTR on the canonical transcript 
Class 1 - genes with no possible uAUG-creating or stop-removing SNVs identified 
Class 2 - remaining genes with no possible SNVs of predicted high-impact 
Class 3 - remaining genes where the UTR has a high-confidence oORF (strong/moderate 
Kozak or documented in sorfs.orf) indicating creating a second would be of low-impact 
Class 4 - remaining genes where one or more identified high-impact SNVs have AF > 0.1% in 
gnomAD (genomes AC>15) 
Class 5 - remaining genes that are intolerant to LoF variants 
Class 8 - remaining genes curated as haploinsufficient by ClinGen or the MacArthur lab, curated 
as acting via a loss-of-function mechanism in DDG2P or with >=10 high-confidence Pathogenic 
LoF variants in ClinVar (known LoF disease genes) 
Class 7 - remaining genes intolerant to LoF variants or with >=2 high-confidence Pathogenic 
LoF variants in ClinVar 
Class 6 - all genes not classified into any other class 
 
The nine gene classes were grouped into three categories corresponding to low (classes 2,3,4 
and 5), moderate (class 6) and high (classes 7 and 8) likelihood that high-impact uORF-
perturbing variants would have a deleterious effect. 
 
Sequencing of individuals with neurofibromatosis type 2 
 
A cohort of 1,134 unrelated individuals with neurofibromatosis type 2 were recruited to the 
Centre for Genomic Medicine at St Mary’s Hospital, Manchester. All patients were sequenced 
across the NF2 gene. Two individuals were identified to carry a single 5’UTR variant 
(ENST00000338641:-66-65insT; GRCh37:chr22:29999922 A>AT). Both carriers were 
confirmed to have no variants in SMARCB1 or LZTRA1 and no coding variants in NF2. The -66-
65insT variant segregated with disease in 3 affected siblings in one family and in affected parent 
and child in another. 
 
Software/data availability 
 
To aid in the identification of uORF-perturbing variants we have created a VEP plugin which 
annotates variants for predicted effects on translational regulation. This script is freely available 
at https://github.com/ImperialCardioGenetics/uORFs. All possible uAUG-creating and stop-
removing SNVs for canonical Gencode transcripts along with likelihood classifications for all 
genes are also available for download at https://github.com/ImperialCardioGenetics/uORFs. 
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