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1 Details of the model

The main definitions of the model are given in the Materials and Methods section of the main text. Here we
compute the ribosomal current J and the local ribosome density ρi using two approximate approaches: the
mean-field approximation developed in Ref. [1] and initiation-limited approximation developed in Refs. [2, 3].

The theory summarised in this section constitutes the foundations of NEAR, whose procedure is given in
Section 2.

1.1 Inhomogeneous TASEP in the mean-field approximation

We define Ji to be the flux of ribosomes going from codon i to codon i+ 1, as

Ji =


αP (τ2 = 0, . . . , τ`+1 = 0), i = 1

kiP (τi = 1, τi+` = 0), i = 2, . . . , L− `
kiP (τi = 1), i = L− `+ 1, . . . , L

The conservation of density requires that
dρi
dt

= Ji−1 − Ji.

In the stationary state dρi/dt = 0 and thus Ji = J is constant across the transcript. In the mean-field
approximation, correlations between ribosomes are ignored, which leads to the following system of equations
for J and ρi [1]

J = α

(
1−

∑̀
s=1

ρ1+s

)
(1a)

J = kiρi
1−

∑`
s=1 ρi+s

1−
∑`

s=1 ρi+s + ρi+`

, i = 2, . . . , L− ` (1b)

J = kiρi, i = L− `+ 1, . . . , L. (1c)

A closed-form expression for ρi as a function of α and k2, . . . , kL is not known. However, it is straightforward
to express the ratio ki/α as a function of the local densities:

ki
α

=

(
1−

∑`
s=1 ρ1+s

)(
1−

∑`
s=1 ρi+s + ρi+`

)
ρi

(
1−

∑`
s=1 ρi+s

) , i = 2, . . . , L− ` (2a)

ki
α

=
1−

∑`
s=1 ρ1+s

ρi
, i = L− `+ 1, . . . , L. (2b)

We will use these expressions as a starting point for the nonlinear least-squares minimisation procedure in
Section 2, which is the core of NEAR.

1.2 Inhomogeneous TASEP in the initiation-limited approximation

Recently we introduced a method for computing J , ρi and ρ by expanding P (C) in the initiation rate α [2, 3],

P (C) =

∞∑
n=0

cn(C)αn.

Since P (C) must sum to 1 the coefficients cn(C) must obey

∑
C

cn(C) =

{
1 n = 0

0 n ≥ 1
, (3)

The biggest advantage of the power series method is that many coefficients cn(C) are in fact equal to zero. If
N(C) denotes the number of ribosomes in a configuration C then

cn(C) = 0 if N(C) > n.

This non-trivial result follows from a graph-theoretical interpretation of Markov chains applied to the TASEP.
The method then delineates how to compute the coefficients cn(C) recursively starting from n = 0, see Refs.
[2, 3] for more details.
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The initiation-limited approximation amounts to replacing the series P (C) with a finite sum,

P (C) ≈
K∑

n=0

cn(C)αn, (4)

In this work we compute coefficients up to and including the third order (K = 3), which we present in detail
below. From the result in Eq. (1.2) it follows that for K = 3 we need to look at configurations with at most
three ribosomes. These are C = ∅ (no ribosomes), C = Ai (one ribosome at codon i), C = AiAj (two ribosomes
at codons i and j) and C = AiAjAk (three ribosomes at codons i, j and k).

1.2.1 Zero and first order

According to Eq. (1.2) c0(C) = 1 if C = ∅ and is equal to 0 otherwise,

c0(C) =

{
1, C = ∅
0, otherwise

This is equivalent of saying that if translation initiation is not allowed (α = 0), then the transcript will become
completely empty with probability 1.

For n = 1 (first order), c1(C) 6= 0 only if C contains at most one particle. The corresponding coefficients
c1(∅) and c1(Ai) are equal to

c1(∅) = −
L∑

i=2

1

ki
, (5a)

c1(Ai) =
1

ki
, i = 2, . . . , L. (5b)

These coefficients yields the following expressions for J and ρi in the first-order approximation

J = α (6)

ρi =
α

ki
. (7)

Since at the first order at most one particle occupies the lattice, this is equivalent to neglecting interference
between ribosomes. We emphasise that the first order relation between rates and densities given in Eq. (7) is
widely used in the interpretation of ribosome profiling.

1.2.2 Second order

For n = 2 (second order), c2(C) 6= 0 only if C contains at most two particles. The equations for c2(C) are more
complicated than for c1(C) and must be solved numerically. Before we write down the equations, we introduce
Kronecker delta function δij and unit step function θ(i) defined as

δij =

{
1 i = j

0 i 6= j
θ[i] =

{
1 i ≥ 0

0 i < 0
. (8)

The equations for two-particle coefficients c2(AiAj) then read

c2(AiAj) =
δi,2

e0(AiAj)
c1(Aj) +

θ[i− 3]ki−1
e0(AiAj)

c2(Ai−1Aj) +
θ[j − 1− i− `]kj−1

e0(AiAj)
c2(AiAj−1), (9)

where e0(AiAj) = θj−`−i−1ki + kj . These equations can be solved recursively starting from i = 2 and iterating
over j from j = ` + 2 to j = L with i held fixed. Then i = 3 is held fixed and the iteration goes over j from
j = `+ 3 to L and so on until i = L− ` and j = L. Once all c2(AiAj) are found, the equations for one-particle
coefficients c2(Ai) are solved recursively from i = 2 to i = L,

c2(Ai) =
δi,2
ki
c1(∅) +

θ[i− 3]ki−1
ki

c2(Ai−1) +
θ[L− `− i]kL

ki
c2(AiAL). (10)

Finally, once all c2(AiAj) and c2(Ai) are computed, c2(∅) follows from Eq. (3),

c2(∅) = −
L−∑̀
i=2

L∑
j=i+`

c2(AiAj)−
L∑

i=2

c2(Ai). (11)
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Using these coefficients we can compute J and ρi in the second-order approximation according to

J = α− kL

L−∑̀
j=2

c2(AjAL) + c2(AL)

α2 = α−
`+1∑
j=2

α2

ki
(12)

ρi =
α

ki
+

 i−∑̀
j=2

c2(AjAi) +

L∑
j=i+`

c2(AiAj) + c2(Ai)

α2. (13)

1.2.3 Third order

For n = 3 (third order), c3(C) 6= 0 only if C contains at most three particles. The equations for three-particle
coefficients c2(AiAjAm) read

c3(AiAjAm) =
δi,2

e0(AiAjAm)
c2(AjAm) +

θ[i− 3]ki−1
e0(AiAjAm)

c3(Ai−1AjAm)

+
θ[j − 1− i− `]kj−1

e0(AiAjAm)
c3(AiAj−1Am) +

θ[m− 1− j − `]km−1
e0(AiAjAm)

c3(AiAjAm−1), (14)

where e0(AiAjAm) is given by

e0(AiAjAm) = θ[j − `− i− 1]ki + θ[m− `− j − 1]kj + km. (15)

These equations are solved recursively starting from i = 2 and j = `+ 2 fixed and iterating over m from 2`+ 2
to L. Then j is increased to ` + 3 and the iteration over m is repeated from 2` + 3 to L. The procedure of
increasing i and j and iterating over m is repeated so on until i = L− 2`, j = L− ` and m = L.

Once all c3(AiAjAm) are found, the equations for two-particle coefficients c3(AiAj) are solved recursively
starting from i = 2 and j = `+ 2,

c3(AiAj) =
δi,2

e0(AiAj)
c2(Aj) +

θ[i− 3]ki−1
e0(AiAj)

c3(Ai−1Aj)

+
θ[j − 1− i− `]kj−1

e0(AiAj)
c3(AiAj−1) +

θ[L− `− j]kL
e0(AiAj)

c3(AiAjAL). (16)

The equations for one-particle coefficients c3(Ai) are then solved recursively from i = 2 to i = L,

c3(Ai) =
δi,2
ki
c2(∅) +

θ[i− 3]ki−1
ki

c3(Ai−1) +
θ[L− `− i]kL

ki
c3(AiAL). (17)

Finally, the coefficient c3(∅) is given by

c3(∅) = −
L−2`∑
i=2

L−∑̀
j=i+`

L∑
m=j+`

c3(AiAjAm)−
L−∑̀
i=2

L∑
j=i+`

c3(AiAj)−
L∑

i=2

c3(Ai). (18)

Once all coefficients for all orders up to and including the third order are computed, J and ρi can be
computed according to the following expressions

J = α−
`+1∑
j=2

1

ki
α2 + kL

L−2`∑
j=2

L−∑̀
m=j+`

c3(AjAmAL) +

L−∑̀
j=2

c3(AjAL) + c3(AL)

α3 (19)

ρi = f
(1)
i α+ f

(2)
i α2 + f

(3)
i α3. (20)

The coefficients f
(1)
i , f

(2)
i and f

(3)
i depend only on k2, . . . , kL and are given by

f
(1)
i =

1

ki
(21a)

f
(2)
i =

i−∑̀
j=2

c2(AjAi) +

L∑
j=i+`

c2(AiAj) + c2(Ai) (21b)

f
(3)
i =

L−∑̀
j=i+`

L∑
m=j+`

c3(AiAjAm) +

i−∑̀
j=2

L∑
m=i+`

c3(AjAiAm) +

i−2∑̀
j=2

i−∑̀
m=j+`

c3(AjAmAi)

+

i−∑̀
j=2

c3(AjAi) +

L∑
j=i+`

c3(AiAj) + c3(Ai). (21c)
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From the stationary master equation (5) in the Material and Methods section of the main text, it follows that
P (C) and thus ρi are functions of k2/α, . . . , kL/α only. Using this fact we can rewrite Eq. (20) as

ρi = g
(1)
i + g

(2)
i + g

(3)
i , (22)

where

g
(n)
i

(
k2
α
, . . . ,

kL
α

)
= αnf

(n)
i (k2 . . . , kL), n = 1, 2, 3, . . . . (23)

2 The procedure of inferring elongation-to-initiation ratios κi = ki/α
from ribosome profiling data

2.1 Details of Monte Carlo simulations

All Monte Carlo simulations were performed using the Gillespie algorithm. In the first part of the simulation
we checked the total density ρ every 100 · L updates until the percentage error between two values of the total
density ρ was less than 0.1%. After that we ran the simulation for further M = 104 · L updates during which
we computed the time average of ρi defined as

ρsimi =
1

T

M∑
n=1

τ
(n)
i dt(n), (24)

where τ
(n)
i is the value of τi (1 if codon i is occupied by the ribosome’s A-site and 0 otherwise) just before the

n-th update in the simulation, dt(n) is the time interval between the (n − 1)-th and the n-th iteration of the

Gillespie algorithm, and T =
∑M

n=1 dt
(n) is the total time.

2.2 Normalisation of Ribo-seq data

We used A-site ribosome profiles of 849 genes of Saccharomyces cerevisiae obtained by Dao Duc and Song [4]
from the experimental data of Weinberg et al [5]. These genes were selected from the pool of 5887 genes to
have more than 200 codons and for which the average number of A-site occurrences (“reads”) per codon was
greater than 10. We further reduced this list to 839 genes for which the total ribosome density (the number of
ribosomes per gene length) is known from polysome profiling experiments by Mackay et al [6].

For each gene we computed the value of local experimental ribosome density ri at codons i = 2, . . . , L
according to

ri = ρ
Ni∑L

n=2Nn

, i = 2, . . . , L (25)

where Ni is the number of reads at codon i obtained from ribosome profiling experiments, ρ is the total ribosome
density and L is the number of codons for that particular gene. Most genes in our analysis had codons with
zero reads, which implies an infinite value of the elongation rate. In order to mitigate this problem we replaced
Ni = 0 by Ni = 1 and calculated ri according to Eq. (25). The normalisation procedure failed for one gene
out of 849, gene YHR094C, for which the obtained ribosome density ri was larger than 1 at some codons.

2.3 Solving nonlinear equations for κi = ki/α

We looked for κi = ki/α such that the theoretical ribosome density ρi in Eq. (20) matches the experimental
density ri,

ρi (κ2, . . . , κL) = ri, i = 2, . . . , L. (26)

The procedure of finding κi was the following. First we estimated the values of κMF
i in the mean-field approxi-

mation according to Eq. (2). Next we computed local ribosome densities ρsimi ({κMF
i }) by running a stochastic

simulation of the TASEP using the Gillespie algorithm in which the elongation rate ki at codon i was set to
κMF
i estimated in the mean-field approximation (i.e. setting α = 1 in the simulation without loss of generality).

Next we solved a nonlinear least squares optimisation problem using {κMF
i } as a starting point, which consisted

of finding xi = ki/α for which the sum of squares

S(κ2, . . . , κL) =

L∑
j=2

(ρj (κ2, . . . , κL)− rj)2 (27)

was minimal.
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In the initiation-limited regime we expect the local density ρi to increase with increasing α, which means
that the first derivative of ρi must be non-negative,

∂ρi
∂α

= f
(1)
i + 2f

(2)
i α+ 3f

(3)
i α2 ≥ 0. (28)

If this criterion is not met, the approximation of ρi by a cubic polynomial may lead to erroneous results such as
negative density. This problem can be mitigated by computing higher orders beyond the third one. However,
computing higher orders takes considerably more time and memory and may not be practical for analysing many
genes. Instead in the optimisation procedure we took a more pragmatic approach in which we approximated

ρi by g
(1)
i whenever (28) was not met

ρi =

{
g
(1)
i + g

(2)
i + g

(3)
i , g

(1)
i + 2g

(2)
i + 3g

(3)
i > 0

g
(1)
i , otherwise.

(29)

In order to prevent unrealistic values of ki/α and to speed up the optimisation procedure, we also restricted
the search of κ2, . . . , κL to

10−3 ≤ ki
α
≤ 106. (30)

The nonlinear optimisation was preformed using NLopt library from Ref. [7]. We used a local derivative-free
algorithm called BOBYQA which was developed in Ref. [8]. The optimisation search was preformed until one
of the following three stopping criteria was met: (1) the fractional error ∆S/S between two iterations was less
than 10−10, (2) the number of evaluations Neval = 200 · N and (3) the total run time exceeded 144 minutes.
These numbers were chosen due to time constraints (maximum 1 day for the optimisation of 10 genes on a single
processor) when analysing many genes; a better accuracy may be achieved for individual genes by amending
the stopping criteria. After the optimisation procedure finished we recomputed local densities ρsimi by running
a stochastic simulation of the TASEP with elongation rates ki = κi and compared them to experimental values
ri.

2.4 Dealing with outliers

After optimisation of the rates explained in the previous section, comparison between local densities ρsimi and
experimental values ri sometimes reveals codons at which the disagreement between ρsimi and ri is unexpectedly
large.
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Figure S1: Ribo-seq data for gene YAL007C of Saccharomyces cerevisiae. (a) Number of reads of A-site
positions. (b) Local ribosome density obtained by normalising ribosome profiling data according to Eq. (25).

A typical example is gene YAL007C for which the Ribo-seq and normalised Ribo-seq data are presented
in Figures S1(a) and S1(b), respectively. The relative error of at least 70% between local densities ρsimi ({κi})
predicted by the TASEP using optimised rates and experimental values ri is found at two sets of codons:
{7, 11, 12, 13} and {41, 42} (dashed vertical lines in Figure S2(a) and red circles in Figure S2(b)).

We first checked whether this discrepancy is due to truncation of the power series in Eq. (4). We did this
by comparing ρsimi computed from simulations using optimised rates with the theoretical prediction ρPSM

i from
Eq. (20). Any discrepancy between these two profiles would indicate that the third-order approximation was
not good enough and that higher-orders terms are needed. On the contrary, Figures S2(c)-(d) demonstrate
that the third-order approximation ρPSM

i correctly reproduces simulated densities ρsimi .
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Figure S2: Results of the NEAR procedure for gene YAL007C of Saccharomyces cerevisiae. (a) Comparison
between local ribosome density ρsimi ({κi}) obtained using optimised rates and experimental density ri. Vertical
dashed lines denote codon positions at which the relative error between ρsimi and ri is larger than 70%. (b)
Scatter plot of ri vs ρsimi showing outliers from (a) (orange squares). (c) Comparison between local ribosome
density ρPSM

i obtained from Eq. (20) and simulated density ρsimi obtained using the same optimised rates. (d)
Scatter plot of ρsimi vs ρPSM

i showing excellent agreement between the two datasets.

This leaves us with two possibilities for the explanation of the outliers. One possibility is that the optimisa-
tion procedure failed to find the best solution. This can happen because we are searching for a local minimum
of the objective function S and we do not know for sure if there is a better solution somewhere in the large
space of parameters.

The other possibility is that the data cannot be fully described by the TASEP model. Indeed, a closer
look at the Ribo-seq data reveals a small number of reads at codons 11 and 41 (equal to 7 and 0 respectively)
compared to a large number of reads 10 codons downstream (equal to 196 and 209 respectively). This scenario
is unlikely to happen in the TASEP: a large density at codon i implies large density at codon i − 10 due
to excluded volume interactions between ribosomes. Perhaps the model misses an important step in mRNA
translation such as premature termination due to ribosome dropping off the mRNA. It is also possible that
the observed discrepancy is due to the known bias in ribosome profiling that discards clustered ribosomes. We
hence develop a quality check for the estimated κi in Section 2.5 that excludes the estimates of codons that we
rate as unreliable for the reasons explained above.

2.5 NEAR quality check of {κi}
In this section we detail the quality check that we carry out for each value of the inferred κi = ki/α. For each
gene for which the optimisation procedure was successful (see previous section) we preformed the following five
steps.

1. Overall improvement over the initial (mean-field) prediction. We check whether the optimisation proce-
dure has improved the agreement with respect to the initial (mean-field) prediction. For the mean-field
prediction we compute the sum of squares SMF

SMF =

L∑
i=2

(
ρsimi ({κMF

i })− ri
)2
, (31)
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where {ρsimi ({κMF
i })} is the simulated density profile computed with the mean-field rates {κMF

i } and ri
is the experimental density profile. The value of SMF is then compared to Sopt obtained from

Sopt =

L∑
i=2

(
ρsimi ({κi})− ri

)2
, (32)

where {ρsimi ({κi})} is the simulated density profile computed using the inferred elongation-to-initiation
ratios {κi}. If Sopt < SMF then the TIE is taken from the simulations of the optimised system, otherwise
from the MF simulations.

2. Rate-limiting step in translation. We verify if the optimised elongation-to-initiation ratio κi > 1 ∀i
(otherwise initiation is not the limiting step and our framework cannot be used).

3. Applicability of the power series method. We set a tolerance εPSM for the power series method (3rd order
approximation). For each codon we check if |ρPSM

i − ρsimi ({κi})|/ρsimi < εPSM. If that is the case the
power series approximation holds and the method is reliable. We set εPSM = 0.1.

4. Comparison with Ribo-seq data. If the codon passes the quality checks in points 2 and 3 then we check
if the prediction is consistent with the experimental profile {ri} (within a tolerance εEXP) by checking if
|ri−ρsimi ({κi})|/ri < εEXP, where we set εEXP = 0.05. Codons that pass this check are kept and considered
reliable only if κi < κthr. This last check is to discard values of κi that are deemed suspiciously large and
are likely unphysical. Such unreasonably large values of κi are due to low number of reads for a particular
codon, especially for codons for which we artificially increased the number reads from zero to one in order
to avoid infinite elongation rates. Because such small number of reads may be due to experimental errors,
we decided to exclude those codons from the final analysis. We used the threshold value κthr = 1000
corresponding to an elongation rate k ∼ 120/s (assuming α = 0.12/s).

5. Problematic codons. If |ri − ρsimi ({κi})|/ri > εEXP then the codon is excluded from the final analysis
and we set κi = −1 (to identify the problematic codon for further analysis). Those codons fall in the
most interesting class, in which the experimental data cannot be reproduced using the existing theory.
We speculate that those “problematic” codons might also arise because ribosome profiling cannot detect
clusters of ribosomes that will instead be predicted by our simulated profile {ρsimi ({κi})}. The set of codons
entering in this category (in which our method can be applied but experimental data are inconsistent
with the density generated by NEAR) are also gathered in the Supplementary Table 1.

6. Falling back to the mean-field prediction. In the case in which the codon does not pass the quality checks
in points 2 and 3, the mean-field prediction {κMF

i } will be considered. If |ri−{ρsimi ({κMF
i })})|/ri < εEXP,

then the κi is kept and the mean-field prediction is considered reliable. Otherwise the codon is excluded
from the final analysis and we set κi = −2.

7. Stop codon. We further check if the elongation-to-initiation ratio κL of the stop codon has been kept for
the analysis. If κL is reliable then the ratio κi/κL = ki/kL can be computed.

3 Computing TEE profiles

For each gene we obtain the TEE profile by computing on each codon i TEEi = TIE/(κiρ
sim
i ) (details given

in the main text) on the codons where the κi passed the quality check. Therefore the profile is “broken” when
NEAR cannot find a reliable estimate for the elongation-to-initiation ratio. We note that by definition TEEi

is a probability and as such must take values between 0 and 1. Because each of TIE, κi and ρsimi comes with
its own statistical error, TEE may occasionally be larger than 1.
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4 Supplementary Figures
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Figure S3: Testing NEAR on a random sequence of rates {ki}. The {ki} profile is shown in panel (a). Panels
(b)-(c)-(d) show the scatter plot between the rates ακi estimated by NEAR (y-axis) and the original rates {ki}
(x-axis) with increasing values of the initiation rate α. The points in orange are the κi values that did not pass
the quality check of NEAR. Since NEAR is based on a power series approximation that is reliable for small
initiation rates, the method is expected to perform badly for large values of α. However, even in this regime
the quality check is able to exclude codons that will not be considered in the final analysis. We remind that
initiation has been estimated to be limiting and the physiological situation is the one presented in panel (b) for
most of the genes [9].
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Figure S4: Distributions of elongation-to-initiation ratios κ for all codon types. We gather the ratios κi = ki/α
for each codon-type, and plot their distributions. In principle codons from different genes cannot be compared
because they have a different initiation rate α. However, we notice a small variability in the estimates of STOP
codons (first 3 codons in the plot). This is reasonable since STOP codons are supposed to be less context
dependent. We also remark that, as opposed to generally believed, STOP codons are the slowest, but still ∼ 10
times faster compared to initiation.
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Figure S5: {κi} profile obtained by averaging the κi values of each gene. The coloured area represent the
standard deviation of the distribution of the elongation-to-initiation ratios at each codon position. Although
high variability of elongation rates makes it difficult to conclude something on the profile of individual genes,
when averaging among the entire set of genes analysed we remark that in the first part of the coding region
the elongation is usually slower than more downstream in the transcript.
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Figure S6: Profiles of TEE for four genes amongst the ones with the smallest average TEE. When the TEE is
low (showing a rather uniform ribosome interference of about 15%), many κi do not pass the quality check, as
it can be seen from the many points missing in the TEE profiles. This means that the experimental read counts
are inconsistent with the model. We speculate that this is due to the bias in the ribosome profiling neglecting
clusters of ribosomes. However, NEAR fills the partial information that is enclosed in the experimental profile
and finds evidence of traffic.
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Figure S7: Percentage of codons (per mRNA transcript) that are excluded from the analysis because of the
inconsistency between the underlying model and experimental densities (codons that did not pass the second
part of point 4 of the quality check of Section 2.5). This is a signature of local ribosome interference that cannot
be detected by ribosome profiling, and is highlighted by NEAR. The mean of the distribution is at 23%, the
median at 17%.

Nossan & Ciandrini 2019 13


