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ABSTRACT
Drawing from the analogy between natural language and "genomic
sequence language", we explored the applicability of word embed-
dings in natural language processing (NLP) to represent DNA reads
in Metagenomics studies. Here, k-mer is the equivalent concept of
word in NLP and it has been widely used in analyzing sequence data.
However, directly replacing word embedding with k-mer embed-
ding is problematic due to two reasons: First, the number of k-mers
is many times of the number of words in NLP, making the model
too big to be useful. Second, sequencing errors create lots of rare
k-mers (noise), making the model hard to be trained. In this work,
we leverage Locality Sensitive Hashing (LSH) to overcoming these
challenges. We then adopted the skip-gram with negative sampling
model to learn k-mer embeddings. Experiments on metagenomic
datasets with labels demonstrated that LSH can not only accelerate
training time and reduce the memory requirements to store the
model, but also achieve higher accuracy than alternative methods.
Finally, we demonstrate the trained low-dimensional k-mer em-
beddings can be potentially used for accurate metagenomic read
clustering and predict their taxonomy, and this method is robust
on reads with high sequencing error rates (12-22%).

KEYWORDS
sequence clustering, neural networks, word embedding, LSH

1 INTRODUCTION
Word embedding is a technique for representing text where differ-
ent words with similar meaning have a similar real-valued vector
representation. It is considered one of the key breakthroughs of
machine learning on challenging natural language processing (NLP)
problems. There are three popular word embedding models in NLP.
Specifically, Global Vectors for words representation (GloVe) [14]
from Stanford University uses word-to-word co-occurrence to build
the model. word2vec[11] from Google Inc trains a two-layer neural
network to reconstruct linguistic contexts of words. FastText [2, 4]
is a library developed by the Facebook Research Team for efficient
learning of word embeddings and sentence classification. All the
three works provide pre-trained vectors for various languages.

The analogy between natural language and "genomic sequence
language" has been described earlier [9]. DNA sequences (or reads)
are the equivalent concept of sentences and k-mers are similar to
words in a text document. Metagenomics is the study of a commu-
nity of microbal species, or the equivalent of a collection of text
documents. A metagenome sequencing dataset consists of millions
of reads from thousands of species, posing a significant challenge
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Figure 1: A Lookup Table

for downstream analyses. NLP techniques may offer a good oppor-
tunity to solve problems of this field. However, this is problematic
when directly replacing word embedding with k-mer embedding
due to the following two reasons.

First, lookup tables can be enormous in size due to the large
number of k-mers. In the word embedding, the lookup table is
a embedding weight matrix, which is a two dimensional matrix
as shown in figure 1. The space requirement for this matrix is
O(nd) where n is the number of words and d is the embedding
dimension size. Every row of the embedding matrix is a vector
representing a word so every word is represented as a point in the
d dimensional space. Each word can be converted from a integer to
vectors from the embedding matrix where the input integer is the
index of a row from the lookup table. The embedding dimension
is usually between 100 and 1000 [9]. In a DNA sequence dataset,
theoretically there are 4k possible k-mers, and this number grows
exponentially as k increases. In practice the number of unique k-
mer in sequence corpus is much less than the theoretical value,
but this number is still far more than the number of words in NLP.
Table 1 compares the number of words in English wikipedia and
the number of k-mers in Pacbio, Sequel, and Nanopore datasets that
are used in this paper. The number of k-mers in our datasets is 40x
the number of words in wikipedia when k=15. Smaller k can not
capture useful information. Research suggests that a good accuracy
is only achieved with k-mers of length at least k = 12 [9](The
number of k-mers is at least 412=16777216). As a result, applying
word embedding models directly to k-mers requires hundreds of
GB memory and disk to persist a lookup table on a computing node.
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Such a big table can create significant computational challenges at
both training time and test time.

Second, the presence of sequencing errors is another challenge.
Long-read sequencing technologies like Pacbio and Nanopore se-
quencing tehcnologies are essential for resolving complex and repet-
itive regions of the genome in metagenomics. However, they have
10%− 15% errors, meaning that the vast majority of the k-mers may
contain one or two errors for k = 15. In word embedding models,
the higher frequency of a word in a text corpus, the better vector
it can be obtained. Sequencing errors create a lot of rare k-mers,
which are hard to be trained.

Table 1: Characteristics of text corpus and DNA sequences

Data # Word
or k-mer*

# of words
or k-mers*

Wikipeida-en 9.7M 4.6G
ActinoMock Pacbio k=15 468.3M 2.5G
ActinoMock Sequel k=15 495.6M 5.3G
ActinoMock Nanopore k=15 436.5M 3.6G
*Calculated by JELLYFISH [8]

To overcome these challenges, we encode k-mers with Locality
Sensity Hashing (LSH) in this work. The embedding lookup table
size can be efficiently reduced, since LSH can convert large number
of k-mers to a fixed size of buckets. Those rare k-mers generated by
sequencing errors can be reduced by the fact that LSH can project
similar k-mers into the same bucket. After encoding k-mers using
LSH, we adopted the skip-gram with negative sampling model in
NLP to learn k-mer embeddings. We further applied our model to
solve taxonomic classification problem in metagenomics, where
each read must be assigned to a rank in order to obtain a community
profile.

To evaluate the quality of our method, we trained embedding and
classification models on two metagenomic datasets, which cover a
wide range of organisms and taxonomic ranks. We compared the
quality of models trained using LSH to those trained on one-hot
and FNV encoding using two metrics. First, we test whether we
can effectively cluster the reads using their embedding. Second, we
tested whether embedding can be used for accurate taxonomic clas-
sification at different taxonomic ranks. These experiments demon-
strated that our trained embedding vectors are capable of capturing
meaningful relationships between reads despite having orders of
magnitude fewer dimensions.

In summary, we made the following contributions to the vector
representation of DNA sequences:

• We developed a novel method to leverage LSH for encoding
genomic sequences. This method can speedup the training
time by up to 15.8 times and improves the accuracy by as
much as 22.7%, compared to one-hot encoding and FNV
encoding.

• We evaluated the impact of read length and error rate on the
encoding accuracy.

• We demonstrated that the LSH encoding method can achieve
high accuracy in both clustering and classification tasks in
metagenomics datasets.

The source code of this work is available at https://github.com/
Lizhen0909/LSHVec.

2 RELATEDWORK
The concept of k-mer embedding to represent biological sequences
is not a new one. Specifically, bioVec [1] and seq2vec[5] have ap-
plied the word2vec technique to biological sequences. Similarly,
Gene2vec[3], [21], and Dna2vec[13] applied the same technique to
gene embedding, protein embedding, and DNA sequence embed-
ding respectively. All these works were based on word2vec, and
their k-mer sizes span from 3-8 (dna2vec embed k-mers of length 3
to 8, others work on k-mer size of 3 ). The main reason for choosing
small k-mer is because the k-mer size is limited by the lookup table
size and computational cost. Large ks lead to huge lookup tables
and prohibitive computational costs. However, short k-mers may
not capture high order information such as taxonomy.

Similar to our work, fastDNA[10] was based on f astText to
represent DNA sequence. The k-mer size of 8-15 was evaluated
in this work. However, it conducted experiments on training data-
base of genomes with error rate less than 5%. Consequently, its
performance dropped significantly as the error rate increases[10].

3 METHODS
Our implementation is based on f astText[2, 4], which is an ex-
tension and optimization ofword2vec[11]. f astText is an efficient
CPU tool, allowing to train models without requiring a GPU. We
made two modifications for DNA encoding: First, we discard the
subword feature (aka. n-gram) in f astText , since a (k − i)-subword
is just a (k − i)-mer and an n-gram is only a (k − n + 1)-mer. This
greatly decreases training overhead without losing accuracy. Sec-
ond, after we obtain k-mer embeddings we represent each read by
taking the mean of its k-mer vectors.

In this following we discuss in details about k-mer encoding,
k-mer embedding (unsupervised), and read classification model
(unsupervised).

3.1 k-mer Encoding
Encoding method in general has a major effect on models’ training
time and models’ ability to learn. Our work experimented on 3
encoding methods: One-hot, FNV (Fowler-Noll-Vo), and LSH.

3.1.1 One-hot. A straightforward numeric encoding of k-mer is
the one-hot encoding, which is widely used in machine learning for
turning a categorical feature into a binary vector. Standard one-hot
encoding uses 4 bits to encode a nucleotide. To reduce memory
overhead, we re-encode each nucleotide in 2 bits (e.g. A,C,G,T to 00,
01, 10 and 11) and then convert the resulting binary vector into an
integer. Since most computers use 32 bits to hold an integer, and we
only use positive numbers, at most 15-mers can be encoded. A key
drawback of one-hot encoding is that the size of lookup table grows
exponentially as the k increases, since each k-mer corresponds
to a specific index number and takes up one row in the lookup
table. It is important to note that all the earlier works on the vector
representations of biological sequences mentioned implicitly used
one-hot as their initial encoding for training their models.
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3.1.2 Hash (FNV) . Hashing can be used for converting a large
number of k-mers into a fixed size of buckets. In this work, we
tested FNV (Fowler-Noll-Vo) hashing, a hashing method also used
in f astText .

3.1.3 LSH. Locality Sensitive Hashing (LSH) reduces the dimen-
sionality of high-dimensional data while keeping similar items
mapped to the same "buckets" with high probability. LSH has differ-
ent similarity measures. Choosing the appropriate metric that most
suits the problem is very important. We chose the cosine similarity,
since it is a good measure of similarity between two vectors in high
dimensional space. In our implementation,A,C,G,T are encoded as
complex numbers of −1,−i, i, 1. A k-mer is represented as a vector
in k-dimension complex space. Then n hyper-planes are drawn
from the space and 2n buckets are defined. The similarity sim(x,y)
of two k-mers x and y is the cosine of the angle between them as
shown in the following formula.

sim(x ,y) = cos(θx,y )

3.2 k-mer Embedding
We use skip-gram with negative sampling for embedding, a method
was originally introduced by [11] and further applied in [2]. Note
that the skip-gram model uses the current word to predict its sur-
rounding contextual words, so it is a method of unsupervised learn-
ing.

We first constructed a database of k-mers and their contexts
from our datasets. We defined the ’context’ as the k-mers to the
left and to the right of a target k-mer within a specific window size.
Before training, the embedding matrix was initialized with random
weights. The loss function is defined over the entire dataset, and we
speedup training with negative sampling, only updating the weight
of each target k-mer and only a small number (5-20) of negative
k-mers. Specifically, for a window with n k-mers, wi and ui are
input and output embedding vectors of k-mer i , training the k-mer
embedding can be done by minimizing the following loss function:

1
n

n∑
i=1


∑
j ∈Ci

log(1 + e−wT
i uj ) +

∑
j ∈Ni

log(1 + ewT
i uj )


where Ci is the indices of k-mers in the surrounding context of
k-mer wi and Ni is the indices of negative k-mers sampled from
the whole k-mer set. Please refer to [2] and [11] for more details.

3.3 Taxonomy Classification
Taxonomy classification is to assign a given read in a sequence
corpus into a fixed number of predefined taxa. Unlike learning of
k-mer embeddings, taxonomy classification is supervised learning.

Given a set of n reads corresponding tom labels. Letwi be the
embedding vector of i-th k-mer, sj be the embedding vector of
j-th read. The classification model is a one layer softmax neutral
network, trained by minimizing the following objective function:

− 1
n

n∑
j=1

σ (Wsj )

where σ is softmax function andW is the hidden layer matrix. Refer
to [4] for more details.

4 DATASETS
We evaluate the quality of our model on two datasets, ActinoMock
and CAMI2 Airway (Table 2).

ActinoMock is a synthetic microbial community using Nanopore,
(PacBio) Sequel, and Pacbio (RSII) sequencing platforms. It consists
of 12 bacterial strains representing a breadth of genome sizes and
ranging from low to high % GC with variable repeat fractions.
Taxonomy statistics of this dataset are listed in the supplementary
Table 8. We omitted the organism M. coxensis (2623620609) in our
analysis due to its negligible number of reads.

The Critical Assessment of Metagenome Interpretation (CAMI)
project is the first-ever community-organized benchmark for evalu-
ating computational tools for metagenomes. CAMI is now entering
its second-round challenge (CAMI2). Two multisample "toy" data
sets are provided to allow participants to prepare for the challenges.
We selected 57 organisms from sample 10, 11, and 12 of Human
Microbiome Airway dataset and experimented on its Pacbio reads.
Table 9 in the supplementary summarized the taxonomy statistics
of this dataset.

To avoid imbalanced training data, we subsampled the dataset
to select equal number of reads from each species in these two
datasets.

5 RESULTS
A number of parameters need to be pre-specified in order to train a
model. We experimented with different parameters and chosen the
followings to train our embedding models: epoch = 5, dim = 100,
and lr = 0.05, where dim represents embedding dimension, epoch is
the number of epochs, and lr is the learning rate. After learning read
embedddings, we projected them onto 2D space for visualization
using t-SNE [19].

For classification, we randomly selected 20% of the data as test
data and used grid search for parameter tuning. In our experi-
ments it turned out there was little performance difference with
lr ∈ {1, 0.5}, epoch ∈ {15, 20, 25}, dim ∈ {50, 100, 200}. We chose
a commonly used set of metrics to evaluate multi-class classifica-
tion [7] performance, including accuracy, precision, recall, f1-score,
and support, defined in the following:

• Accuracy is defined as (TP+TN)/(TP+FP+FN+TN) (please
refer to Table 3 for TP, FP, FN, and TN).

• Precision is defined as TP/(TP+FP).
• Recall is defined as TP/(TP+FN).
• F1-score is a weighted harmonic mean of the precision and
recall, and it is defined as 2*(recall * precision) / (recall +
precision)

• Support is the number of occurrences of the true response
that lie in each class.

5.1 k-mer encoding using LSH is more accurate
and computational efficient than One-hot
and FNV

We compared the accuracy of LSH, FNV, and One-hot encoding by
training embedding models on the ActinoMock Nanopore dataset
based on these three k-mer encoding methods (Methods). The read
embedding vectors were projected to 2D space to visualize the
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Table 2: Statistics of ActinoMock and CAMI2 Airway

ID Data Platform Insert Delete Error ReadLength
AM_PB [a] ActinoMock Pacbio 5.4% 3.7% 13.0% 5,947
AM_SEQ [a] ActinoMock Sequel 3.8% 3.6% 12.1% 9,294
AM_NANO [a] ActinoMock Nanopore 2.4% 3.3% 12.9% 17,589
CAMI2_AW [b] CAMI2_AW Pacbio 13.2% 6.6% 22.0% 2,845

[a] Calculated by Alfred [15] [b] From CAMI2 parameters

Table 3: Evaluation metrics for taxon classification

Predicted Class
Actual Class Class = Yes Class = No

Class = Yes True Positive (TP) False Negative (FN)
Class = No False Positive (FP) True Negative (TN)

separation of different taxa at different ranks (Fig 2). At the Or-
ganism level, LSH encoding produces discrete read clusters with
each cluster corresponding to a different organism. The only excep-
tion is Halomonas sp. HL-93 (2623620618) and Halomonas sp. HL-4
(2623620617), the two strains of Halomonas that share 99% genomic
sequences. Besides that, only very few reads did not get clustered to
their genome of origin. The clear separation was similarly observed
when the models were trained at the Order, Class and Phylum levels.
In contrast, FNV and One-Hot encoding schemes only work well
at Phylum level.

To quantitatively compare the accuracy of these three encoding
schemes, we further compared the performance of their taxonomic
classification models (Table 4). Consistent with the above cluster-
ing visualizations, models trained on LSH outperform the ones
trained on one-hot and FNV: better accuracy achieved at all ranks
in classification.

In theory LSH-encoding and embedding is verymemory efficient,
as it uses 2 bits to represent one nucleotide instead of 4 bits in one-
hot. As it only needs one epoch of training while FNV and one-hot
need 5, LSH encoding requires much less time. As shown in table 5,
the model size of one-hot and FNV (20M) is 15x and 2x respectively
of LSH’s, resulting in higher memory consumption. For training
speed, LSH takes 40% of One-hot and only 0.6% of FNV’s model
training time.

5.2 Our approach is able to work well with
different sequencing technologies

Existing sequencing technologies display platform-specific biases
depending on run mode and chemistry. These biases affect read
length, data throughput, GC coverage bias, the ability to resolve
repetitive genomic elements and error rates [6, 12, 16]. In order to
evaluate the applicability of our methods to these technologies, we
trained models on Pacbio, Sequel, and Nanopore reads respectively
of ActinoMock dataset using our proposed LSH encoding. Figure 3
presented the visualization of our trained embedding models on
the order rank, where clear clusters can be observed. We didn’t
show the result on the organism rank, because there exist some
overlaps: some organisms(2623620617 and 2623620618, 2623620557
and 2623620567, and 2616644829 and 2615840697) share a great

Table 4: Classification performance of LSH, FNV, and One-
hot

Phylum Class Order Organism
LSH accuracy 1.00 0.99 0.98 0.92

precision 1.00 0.99 0.98 0.92
recall 1.00 0.99 0.98 0.92
f1-score 0.99 0.99 0.98 0.92
support 17,037 17,037 17,037 17,037

One-hot accuracy 0.93 0.92 0.83 0.76
precision 0.94 0.94 0.77 0.75
recall 0.93 0.92 0.83 0.76
f1-score 0.91 0.89 0.79 0.68
support 17,037 17,037 17,037 17,037

FNV accuracy 0.937 0.922 0.897 0.754
precision 0.94 0.94 0.89 0.73
recall 0.94 0.92 0.9 0.75
f1-score 0.92 0.9 0.88 0.71
support 17037 17037 17037 17037

Table 5: Computational overhead for different encoding
methods

Hash ModelSize(Gb) #words(M) Mem(Gb) RT(hr)
FNV 20M 20 20 11 19
One-hot 130 360 180 3
LSH 25bit 8.5 9 6 1.2

many DNA sequences and are from the same species as shown in
the supplementary table 8. Table 6 shows the classification accuracy
on the order rank. These results suggest that the readswere assigned
accurately with the trained classification models.

In terms of these sequencing technologies, we can see that
Nanopore achieved the best result, while Pacbio achieved the worst.
This is likely caused by the fact that Nanopore has the longest read
length and lowest error rate (as shown in Table 2). The impact of
read length and error rate on the model’s accuracy was evaluated
in the next part.

5.3 The impact of read length and error rate on
the model’s accuracy

Read length and error rate are two important characteristics of DNA
reads and hence can have major impact on the model performance.
Intuitively, longer length and lower error rate enable more accurate
estimation and lead to higher model accuracy, since longer reads
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Figure 2: t-SNE visualization for encoding methods
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Figure 3: t-SNE visualization of Pacbio, Sequel, and Nanopore reads on ActinoMock dataset
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Table 6: Classification performance of Pacbio, Sequel, and
Nanopore reads on the order rank

accuracy precision recall f1-score support
Nanopore 0.98 0.98 0.98 0.98 17,037
Sequel 0.92 0.92 0.92 0.92 20,935
Pacbio 0.88 0.88 0.88 0.88 19,919

convey more information, reads with lower error rates are more
accurate. In order to evaluate the impact of read length and error
rate on the model’s accuracy, we simulated several datasets with
various number of read lengths and error rates from the synthetic
ActinoMock metagenome dataset using the CAMI2 Pacbio simu-
lator. Figure 4 showed the result of our experiments. As expected,
the model accuracy was falling as the error rate increased and the
read length decreased.

5.4 Our approach works well on the complex
dataset

Clustering and classification on complex community metagenomic
data remains a challenging issue for environmental studies and
usually achieves very low accuracy. In order to evaluate the efficacy
of our methods on complex dataset, we ran it on CAMI2 Airway.
The visualization of the embedding models was presented in Fig 5.
Two experiments were conducted for classification: First, we ran-
domly sampled 20% of reads as test data (CAMI2_AW); Second, we
sampled 20% of organisms, choosing 12 out of 57 organisms (starred
in Table 9 ) as test data (*CAMI2_AW), since in reality, we either
label or not label all the reads belonging to an organism dependent
on whether the organism is known or not. The classification accu-
racy is summarized in table 7. The performance of *CAMI2_AW
is 1% to 5% worse than that of CAMI2_AW in f1-score. The most
probable reason is that randomly splitting high-coverage reads may
introduce overfitting.

Overall, the results on CAMI2 Airway exhibits lower accuracy
than that on ActinoMock, this is likely caused by two reasons: 1)

Table 7: Classfication tests for CAMI2 Airway dataset

Phylum Class Order Family
5*CAMI2_AW accuracy 0.92 0.90 0.86 0.85

precision 0.92 0.89 0.86 0.85
recall 0.92 0.90 0.86 0.85
f1-score 0.92 0.90 0.86 0.85
support 120,000 120,000 120,000 120,000

5**CAMI2_AW accuracy 0.87 0.83 0.72 0.72
precision 0.87 0.85 0.82 0.84
recall 0.87 0.83 0.87 0.86
f1-score 0.87 0.83 0.84 0.84
support 120,000 120,000 100,000 100,000

The reads of CAMI2 Airway are shorter and has more errors (as
shown in Table 2); 2) CAMI2 Airway dataset is much more complex
than ActinoMock dataset (ActinoMock has 12 organisms while
CAMI2 airway has 57).

6 DISCUSSION AND CONCLUSION
In this work, we presented a simple but effective vector represen-
tation model by using locality sensitive hashing and skip-gram
with negative sampling. LSH significantly reduces the lookup table
size and enhances training power by keeping similar k-mers in
one bucket. Comparing LSH to one-hot and FNV proves LSH has
advantages in terms of accuracy and resource costs.

To evaluate the quality of our method, we trained embedding
models and classification models on both real mock and simulating
metagenomic dataset: ActinoMock and CAMI2 Airway. The trained
read vectors verified the promising performance of our method to
capture the rich characteristics of DNA sequences despite having
orders of magnitude fewer dimensions.

Graph has a longstanding place in biological sequence analy-
sis, either de bruijn graph [20] or read graph [17]. Common graph
techniques even with big data technologies [18] do not scale well
when the graph size increases to a certain degree, which prevents
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Figure 4: The impact of read length and error rate on model accuracy
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Figure 5: t-SNE visualization for CAMI2 Airway dataset
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biological scientist from gaining insights into biological sequences.
With the reads embedding, we opened a new door to genome anal-
ysis. Various numerical-based techniques can be applied, which are
more mature and able to scale better than graph. In particular, the

learned vectors through reads embeddings can be fed to various
machine learning models for applications in bioinformatics.

However, taxonomic classification belongs to the category of
supervised learning, which means that it is reliant on taxonomy
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reference databases for classifying sequences. Despite the ever
growing sequence databases, most metagenomic reads cannot be
assigned to a function, limiting the value of metagenomic datasets
as a tool for novel discoveries.

It is important to note that we demonstrated our method with
genome analysis in this work. However, We believe our method is
also applicable to other biological sequences, like protein embed-
ding and gene embedding. We opened source our implementation
to facilitate comparison of future work and boost the application
of word embedding in Bioinformatics.
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Table 8: Reference statistics of ActionoMock obtaining from IMG database

IMG Tax Organism Phylum Class Order Family Genus
2623620557 Micromonospora echinaurantiaca DSM 43904 Actinobacteria Actinobacteria Micromonosporales Micromonosporaceae Micromonospora
2623620567 Micromonospora echinofusca DSM 43913 Actinobacteria Actinobacteria Micromonosporales Micromonosporaceae Micromonospora
2615840646 Propionibacteriaceae bacterium ES.041 Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae
2615840527 Muricauda sp. ES.050 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Muricauda
2615840601 Cohaesibacter sp. ES.047 Proteobacteria Alphaproteobacteria Rhizobiales Cohaesibacteraceae Cohaesibacter
2615840533 Thioclava sp. ES.032 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Thioclava
2623620617 Halomonas sp. HL-4 Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas
2623620618 Halomonas sp. HL-93 Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas
2616644829 Marinobacter sp. LV10MA510-1 Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter
2615840697 Marinobacter sp. LV10R510-8 Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter
2617270709 Psychrobacter sp. LV10R520-6 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Psychrobacter
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Table 9: Taxonomy Statistics of CAMI2 AirWay

Organism NCBI Tax phylum Class Order Family Genus
*OTU_97.32155.0 1653 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae
OTU_97.21926.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
*OTU_97.41740.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.36185.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.36161.1 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
*OTU_97.45281.1 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.17807.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.34913.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.89.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.39766.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.7131.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.5420.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.34011.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.32419.1 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.30815.1 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.7928.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.27418.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.20026.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
*OTU_97.1263.0 1716 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium
OTU_97.2571.0 2070 Actinobacteria Actinobacteria Pseudonocardiales Pseudonocardiaceae
OTU_97.13430.0 85031 Actinobacteria Actinobacteria Nakamurellales Nakamurellaceae
OTU_97.34830.0 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
OTU_97.44585.0 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
OTU_97.40239.0 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
*OTU_97.38699.0 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
OTU_97.37297.1 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
*OTU_97.37297.0 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
OTU_97.37290.0 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
OTU_97.35920.0 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
OTU_97.35712.0 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
OTU_97.34821.0 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
OTU_97.34663.1 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
OTU_97.34382.0 1279 Firmicutes Bacilli Bacillales Staphylococceae Staphylococcus
*OTU_97.45365.1 1301 Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus
OTU_97.36159.0 1386 Firmicutes Bacilli Bacillales Bacillaceae Bacillus
OTU_97.39911.0 357 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Agrobacterium
*OTU_97.9612.1 13687 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas
OTU_97.2559.0 41294 Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae
OTU_97.14774.0 481 Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae
*OTU_97.20828.0 481 Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae
OTU_97.25427.1 481 Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae
OTU_97.38539.0 80864 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae
OTU_97.7565.0 286 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas
OTU_97.11114.0 475 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Moraxella
*OTU_97.80.0 475 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Moraxella
OTU_97.12006.0 475 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Moraxella
OTU_97.36230.0 475 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Moraxella
OTU_97.36502.0 475 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Moraxella
OTU_97.10083.0 475 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Moraxella
OTU_97.41428.0 543 Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae
OTU_97.11086.0 543 Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae
OTU_97.3377.0 543 Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae
*OTU_97.161.0 570 Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Klebsiella
OTU_97.1661.0 570 Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Klebsiella
OTU_97.18721.0 570 Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Klebsiella
*OTU_97.18721.1 570 Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Klebsiella
OTU_97.29883.0 570 Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Klebsiella
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