
1

Title: NeuroGPU, software for NEURON modeling in GPU-based hardware 1

 2

Authors: Roy Ben-Shalom1,2, Nikhil S. Artherya3, Christopher Cross1?, Hersh Sanghevi3, Alon 3

Korngreen4,5, Kevin J. Bender1,2. 4

 5

Affiliations: 6

1. Weill Institute for Neurosciences, University of California, San Francisco, San Francisco 7

CA, USA 8

2. Department of Neurology, University of California, San Francisco, San Francisco, CA, 9

USA 10

3. Department of Electrical Engineering and Computer Science, University of California, 11

Berkeley, Berkeley CA, USA 12

4. The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan 13

University, Ramat-Gan Israel 14

5. The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-15

Gan Israel 16

Lead contact: roy.benshalom@ucsf.edu 17

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

2

Abstract: 18

Generating biologically detailed models of neurons is an important goal for modern 19

neuroscience. Unfortunately, constraining parameters within biologically detailed models can 20

be difficult, leading to poor model predictions, especially if such models are extended beyond 21

the specific problems for which they were designed. This major obstacle can be partially 22

overcome by numerical optimization and detailed exploration of parameter space. These 23

processes, which currently rely on central processing unit (CPU) computation, are 24

computationally demanding, often with exponential increases in computing time and cost for 25

marginal improvements in model behavior. As a result, models are often compromised in scale 26

given available CPU-based resources. Here, we present a simulation environment, NeuroGPU, 27

that takes advantage of the inherent parallelized structure of graphics processing unit (GPU) to 28

accelerate neuronal simulation. NeuroGPU can simulate most of biologically detailed models 29

from commonly used databases 1-2 orders of magnitude faster than traditional single core CPU 30

processors, even when implemented on relatively inexpensive GPU systems. Thus, NeuroGPU 31

offers the ability to apply compartmental, biologically detailed, modeling approaches with 32

supercomputer-level speed at substantially reduced cost. 33

 34

 35

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

3

Introduction: 36

Detailed numerical models, faithfully capturing neuronal complexity, are invaluable for 37

simulating the behavior of realistic neural networks (Einevoll et al., 2019). Generating models 38

that accurately recapitulate neuronal activity often requires one to tune individual model 39

parameters. This process can be aided by iterative rounds of parameter exploration and 40

optimization that aim to minimize the differences between empirical data targets and their 41

associated models. These processes can be computationally demanding. Indeed, each linear 42

improvement in model accuracy requires an exponential increase in computational resources 43

(Nocedal and Wright, 2006; Gurkiewicz and Korngreen, 2007) Thus, model optimization is often 44

done on supercomputers that parallelize these computations across central processing unit 45

(CPU) clusters. Unfortunately, due to the cost of constructing and running such supercomputing 46

clusters, such efforts are typically restricted to large consortia, such as the Blue Brain Project 47

(BBP) (Markram et al., 2015) and the Allen Institute (Gouwens et al., 2018). For more restricted 48

budgets, simulations must typically be compromised in scale or complexity to produce results 49

within budget and within a reasonable time frame. 50

In the past 10 years, graphical processing units (GPUs) have emerged as an alternative to 51

CPU-based clusters that may offer comparable levels of performance at substantially reduced 52

cost. GPUs utilize streaming multiprocessors with multiple simple cores that allow for 53

distributed, parallelized computing. With software optimized for distributed computing, GPU-54

based applications can often outperform CPU-based applications in processing speed and cost 55

(Payne et al., 2010). Today, GPUs are widely used in scientific fields like molecular dynamics 56

(Go et al., 2012; Salomon-Ferrer et al., 2013) and climate modeling (Prein et al., 2015), and are 57

the computational engine for most modern artificial intelligence applications (Schmidhuber, 58

2015). In neuroscience, GPUs are currently being used to accelerate complex imaging dataset 59

processing (Eklund et al., 2013), spiking neural network analysis (Fidjeland and Shanahan, 60

2010), and clustering of activity from in vivo extracellular electrophysiological experiments 61

(Pachitariu et al., 2016). Despite these advances until recently that two frameworks for 62

simulating biophysical neuronal networks (Akar et al., 2019; Kumbhar et al., 2019) were 63

published, relatively little effort has been made to leverage GPU-based architecture for 64

biophysically detailed neuronal simulation. 65

Here, we describe NeuroGPU, a computational platform optimized to exploit GPU architecture 66

to dramatically accelerate simulation of neuronal compartmental models. To do so, we 67

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

4

developed new approaches to parallelize compartmental models, utilizing the GPU-based 68

programming language CUDA to optimize memory handling on GPUs. This resulted in 69

simulation speedups of up to 200-fold on a single GPU and up to 800-fold using a set of 4 70

GPUs. Building on our previous efforts (Ben-Shalom et al., 2013), we developed an intuitive 71

user interface that can import most compartmental models in ModelDB or the BBP portal. 72

Further, we provide methods to explore model parameter space and to optimize models with 73

evolutionary algorithms (DEAP). NeuroGPU therefore provides an open-source platform useful 74

for neuronal simulation with increased speed and reduced cost. 75

 76

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

5

Results: 77

General overview 78

Our primary goal for NeuroGPU was to improve compartmental modeling speed with relatively 79

low-cost hardware and provide an interface to port NEURON models from public databases 80

such as ModelDB and the BBP portal. Toward that end, we utilized the same basic structure as 81

NEURON, including the use of hoc and mod files that define all aspects of the compartmental 82

model. To increase simulation speed, we focused primarily on parallelizing the most 83

computationally intensive aspect of NEURON simulations in GPU architecture. NEURON 84

calculates the voltages of each segment of the model by solving a system of differential 85

equations that describes current flow in each compartment. Within NEURON, this differential 86

equation system is represented within a tri-diagonal matrix (Hines, 1984). Typically, matrix 87

elements for neighboring compartments are solved in serial, as current flow in one compartment 88

is interdependent on flow in neighboring compartments. We and others have previously 89

developed methods to solve this tri-diagonal matrix in parallel across GPUs, despite the 90

interdependence of current flow across compartments (Hines et al., 2008, n.d.; Ben-Shalom et 91

al., 2013). At that time, the method was implemented only for Hodgkin-Huxley models (Ben-92

Shalom et al., 2013). Here, we extended this method to support a wider range of models, 93

including most models available in ModelDB and the Blue Brain Project (BBP) repository. This is 94

implemented in Python, with an iPython Graphical User Interface (GUI). 95

Porting NEURON simulations to NeuroGPU 96

NeuroGPU simulations begin by importing NEURON’s mod and hoc files via a GUI developed in 97

iPython notebook (Figure 1). The user must input a file containing model stimulation, which 98

includes temporal aspects of the model and command currents delivered at a prescribed 99

location. Furthermore, all free parameters, such as channel properties, must be described (Fig. 100

1B). These import components are translated into CUDA code, termed kernels, that can run on 101

the GPU via the python script “extractmodel.py” (Fig. 1C). This script first takes runModel.hoc 102

and loads it into NEURON, not to run simulations, but rather to query NEURON for model 103

properties needed for subsequent porting to NeuroGPU, including compartment names and the 104

tri-diagonal matrix (F-Matrix). Then, the script iterates over the .mod files in the directory, parses 105

them and creates relevant kernels for each mechanism described. Mechanism kernels are 106

written to the AllModels.cu in similar structure as described previously (Hines and Carnevale, 107

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

6

2000; Carnevale and Hines, 2006), iterating over all compartments defined in the model. A new 108

hoc file is created to register mechanism values, which are stored in AllParams.csv and inserted 109

in each compartment. Finally, the script writes code translated to CUDA in NeuroGPU.cu and 110

packages the application to run on either Windows or Unix. After compiling the code, an 111

executable is created that reads the AllParams.csv and the stimulation and runs the model on 112

the GPU. 113

NeuroGPU implementation 114

We used CUDA to implement NEURON-based modeling using GPUs. CUDA is an extension of 115

the C programming language that enables computation on the GPU (Nvidia, 2018). CUDA 116

kernels which are procedures running on the GPU can be invoked from either the GPU or CPU. 117

To invoke a kernel from the CPU, one must specify the number of parallel threads used. 118

Threads, which allow for parallelization on the GPU, are organized into blocks, with each thread 119

occupying a specific address within that block (idx.x, idx.y). GPUs are structured to operate well 120

when computing 32 parallel threads, a computing structure termed a warp (Nvidia, 2018). 121

Therefore, we structured NeuroGPU to utilize 32 threads in the x dimension, corresponding to 122

individual morphological segments within the model. For a given model with more than 32 123

segments, individual threads are responsible for calculating every 32nd segment. For example, 124

thread #1 would calculate segments 1, 33, 65, … 31N+1. 125

Complex neuronal models, including many described in the BBP (Hay et al., 2013; Ramaswamy 126

et al., 2015), are memory intensive. GPUs have several forms of memory that have tradeoffs in 127

terms of their size and relative speed that make them ideal for certain aspects of model 128

processing and impractical for others. GLOBAL memory is the largest physical memory space 129

available on the GPU but is relatively slow. Here, we use GLOBAL memory to store the largest 130

data structures associated with a given model, in part because they simply cannot be held by 131

other memory structures. SHARED memory is far faster, shared among the whole GPU block, 132

but limited to 48 kilobytes. This makes it ideal for storing the tridiagonal matrix, as this matrix is 133

the most accessed data structure within NeuroGPU. CONSTANT memory, which is a 64 134

kilobyte block of fast, read-only memory, is used to hold constant data structures, including the 135

order in which the tri-diagonal matrix is solved in parallel (Ben-Shalom et al., 2013). Lastly, 136

REGISTER\LOCAL memory is the fastest memory available on the GPU but is limited to 137

maximum of 63 registers per thread and a total of 16 kilobytes of memory shared across the 138

entire block. It is used to store local variables necessary for the course of the simulation. 139

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

7

To determine how best to utilize GPU parallel processing, we examined two ways in which to 140

simulate compartmental models on the GPU. In both cases, the GPU is responsible for updating 141

ionic currents from established mechanisms, solving the tridiagonal matrix, and updating model 142

states and voltages at each time step. In the first configuration, termed SingleKernel, we 143

computed all the time steps of each simulation in one kernel on the GPU, largely because this 144

would limit the amount of time performing the relatively slow step of transferring memory 145

between the GPU and CPU. In this case, the transfer is done only once and during the 146

simulation the GPU communicates with the CPU only to transfer voltages reported at the 147

recording electrode site. Alternatively, we also created a SplitKernel condition, in which the 148

simulation is split into many small kernels that are invoked every single time step. Data are then 149

registered back to the CPU and the next time step is run in serial. This approach may be 150

advantageous if memory transfer between the GPU and CPU is not the rate-limiting step. 151

Furthermore, in this case the GPU can also optimize computing timing by queueing certain 152

steps for execution while other memory is being transferred. Both the SingleKernel and 153

SplitKernal configuration were assessed in all cases reported below. 154

Benchmarking 155

To determine how NeuroGPU performs relative to NEURON, we benchmarked it for relative 156

speed and accuracy across different conditions: CUDA implementation, hardware configurations 157

and across a range of models. We first compared NeuroGPU performance with a single GPU to 158

NEURON implemented on a single CPU core. 159

We began with a simple model of a soma and single dendritic branch that has 64 segments in 160

total (Figure 1A), each containing a single external mechanism pas.mod that describes passive 161

current flow. This model was stimulated with a simple current step (Fig. 1B). Voltage 162

discrepancies that never exceeded 0.4 µV were observed between NeuroGPU and NEURON 163

when simulation voltage changed rapidly. These discrepancies were due to small differences in 164

timing that likely arise from how numbers are rounded in GPUs vs CPUs (Whitehead, 2011). 165

To benchmark relative speed, we evaluated computing time for multiple instances of the same 166

model. NEURON computation speed scales linearly with the number of simulations, and, for low 167

numbers of models (< 8), outperforms NeuroGPU. By contrast, models implemented on GPUs 168

scale linearly only after saturating all streaming multiprocessors. With NeuroGPU, processing 169

times are quite similar for any simulation incorporating fewer than 128 models, and begin to 170

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

8

outpace NEURON simulations when >32 simulations are run simultaneously. Relative gains in 171

processing time were noted when 32 to 16,384 models were run simultaneously. These gains 172

were dependent on hardware. For example, implementing NeuroGPU on an NVIDIA TitanXP 173

GPU resulted in 25.2-fold improvements in processing speed, while the same models run on an 174

NVIDIA Tesla V100 were 95.8-fold faster (both implemented in the “SingleKernel” 175

configuration). It is worth noting that TitanXP hardware is relatively low cost (<$1099) and very 176

similar card (NVIDIA GTX-1660) can currently be purchased for less than $300, suggesting that 177

significant improvements in processing speed can be obtained even with modestly priced 178

hardware. 179

More complex neuronal morphology could affect NeuroGPU processing speed. Therefore, we 180

implemented the same passive mechanism on the more complex structure of a neocortical 181

pyramidal neuron. While voltage discrepancies were similarly small in this instance (< 4x10-6 182

mV), the relative speedup was lower than with simpler morphology (TitanXP: 15.2x; Tesla V100: 183

58.1x). Thus, while morphology does affect relative speed, NeuroGPU still outperforms CPU-184

based modeling. 185

In addition to complex morphology, compartmental models typically contain an array of 186

mechanisms that simulate voltage-gated channels or ligand-gated receptors. To assess 187

NeuroGPU performance with such models, we began with a pyramidal model neuron first 188

described by Mainen and Sejnowski (1996). This model has 7 different mechanisms, including 189

voltage-gated sodium, potassium, and calcium channels, and a calcium-dependent potassium 190

channel. As with the passive model described above, we implemented these mechanisms in 191

both simple and complex morphologies (e.g., soma and primary dendrite alone, or complete 192

pyramidal cell morphology). In models with simple morphology, NeuroGPU was 30.3x (TitanXP) 193

or 153.1x (Tesla V100) faster than NEURON, with minimal voltage error (< 4 µV). In pyramidal 194

cell morphology models, NeuroGPU was 45.3x (TitanXP) or 114.2x (Tesla V100) faster than 195

NEURON. In this instance, we observed a relatively large voltage discrepancy of 6.6 mV. This 196

discrepancy occurred during the last AP within a burst and was due largely to a shift in the 197

timing of this AP (Fig. 4G). Indeed, we were able to reduce this error ~6x by interpolating the 198

data and shifting the timing of this AP by ¼ of a timestep. 199

While the Mainen and Sejnowski model can generate physiologically-realistic spiking activity, 200

these APs occur over a relatively narrow range of stimulus intensities. Outside this range the 201

model is either subthreshold or enters depolarization block. As a result, we found this model to 202

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

9

be impractical for benchmarking NeuroGPU across a range of stimuli. Therefore, we tested 203

NeuroGPU on more recently developed models from the Blue Brain Project portal. Here, we 204

used two models: one of a layer 5 pyramidal neuron (BBP_PC, see Methods for specific model) 205

and one of a layer 5 chandelier interneuron (BBP_CC). Models were interrogated with a range 206

of stimulus intensities to determine relative differences between NeuroGPU and NEURON (Fig. 207

5). Similar to Mainen and Sejnowski, voltage differences were small (maximum differences: 208

<0.2 mV) and were most commonly observed when voltage was changing markedly between 209

time steps (Fig. 5C, G). 210

As with other models (Fig. 3, 4), implementing NeuroGPU on faster GPUs decreased 211

processing time (Fig. 5D, H). Interestingly, CUDA has been recently updated to allow for 212

memory sharing across GPUs, which could be leveraged to decrease processing time further. 213

To test this, we connected up to 4 Tesla V100 GPUs together and measured speedup on both 214

BBP models displayed in Figure 5. As expected, adding more GPUs increased the overall 215

processing capacity, and we noted shifts in the number of models that could be handled 216

simultaneously before reaching maximum GPU utilization (Fig. 6). Furthermore, speedup was 217

almost 2 orders of magnitude faster relative to NEURON. 218

Profiling 219

To better understand why NeuroGPU accelerated some models more than others, we used the 220

NVIDIA profiler to monitor GPU utilization. Further, we tested two different memory handling 221

configurations—SingleKernel and SplitKernel—to determine how best to utilize GPU parallel 222

processing. In both cases, the GPU is responsible for updating ionic currents from given 223

mechanisms, solving the tridiagonal matrix, and updating model states and voltages at each 224

time step. 225

We found that configuring NeuroGPU in SingleKernel mode produced the fastest runtimes in all 226

models tested (Table 1), and had higher GPU utilization levels. This indicates that, for most 227

models, memory transfer between GPU and CPU is rate-limiting, and models run most 228

efficiently when the majority of calculations are isolated on the GPU. Nevertheless, the highest 229

utilization values were ~10% in the SingleKernel configuration (3.8% in SplitKernel), suggesting 230

that additional memory optimizations could be leveraged in future iterations of NeuroGPU. 231

 232

 233

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

10

Benefits of using NeuroGPU for parameter space exploration and genetic optimization 234

Neuronal simulations are often tested over a range of parameter values to both explore the 235

range of output generated and to optimize models to best fit empirical data (Druckmann et al., 236

2007; Van Geit et al., 2008; Keren et al., 2009; Gouwens et al., 2018). These simulations 237

essentially run the same model repeatedly with small differences in underlying parameters, 238

making them ideal for parallelization with NeuroGPU. Indeed, relative speedups would be 239

identical to situations considered above (Fig. 3-6) and depend simply on the number of 240

parameter sets used. Based on this, we developed a GUI that streamlines parameter space 241

exploration in NeuroGPU. 242

To provide an example of parameter space exploration, we examined neuronal output in the 243

BBP_PC model when co-varying the density of the axonal fast inactivating sodium channel and 244

axonal slow-inactivating potassium channel over a range of 0 to 10 and 0 to 20 S/cm2, 245

respectively. Total spike output and select single traces are shown in Figure 7. As expected, 246

increasing sodium conductance allowed models to generate more APs until sodium 247

conductance was so high that models entered depolarization block. Similarly, reducing 248

potassium conductance produced comparable results. Interestingly, certain combinations of 249

sodium and potassium conductance concentrations produced bursting phenotypes 250

characterized by high-frequency APs riding atop long-duration depolarizations. These 251

presumably reflect parameter ranges that then interact with other ion channels in the model 252

(e.g., CaV3 channels) that promote such burst dynamics. 253

To implement genetic optimization within NeuroGPU, we integrated the DEAP (Distributed 254

Evolutionary Algorithms in Python) package (Gagn, 2012). Genetic algorithm success lies in the 255

balance between exploration of the whole parameter space and the exploitation of specific 256

areas that seem promising. For this, large sample populations are ideal, as this allows for 257

effective and broad parameter space exploration. NeuroGPU is more efficient when many 258

instances are running in parallel, allowing for more effective application of genetic algorithms. 259

Genetic optimization was tested here by fitting model-generated voltages to a single voltage 260

epoch containing APs that was generated by the default values present in the BBP_PC model. 261

We then determined how close different optimization sets could come to identifying these 262

original parameter values. Optimization began with different population sizes comprised of 100 263

to 10,000 individual parameter sets with random initial values (Fig. 8A). These populations were 264

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

11

run in four independent trials, each for 50 generations, and the difference between the naïve 265

model and ground-truth model was compressed to a single score value (see Methods). For 266

these scores, lower values indicate less difference between the two cases. 267

Scores improved for each of these populations, but the variance across trials and the overall 268

score were markedly affected by the population size, with score decreasing in a near-linear 269

fashion with each doubling of population size (Fig 8C). These score improvements were 270

paralleled by a decrease in total processing time. For example, optimization with 10,000 271

individual parameter sets ran 7.7x faster on NeuroGPU than NEURON (Fig. 8D; 10 vs 77 hours, 272

respectively). While these are significant improvements in simulation speed, they are relatively 273

modest compared to those observed in other conditions (Fig. 5), likely because current versions 274

of NeuroGPU require NEURON to load the simulation and generate parameter values. This step 275

is currently done using the CPU. Whether it is possible to parallelize this step will be explored in 276

future versions of NeuroGPU. 277

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

12

Discussion: 278

In this work, we implemented a simulation environment to run single neuron compartmental 279

models on GPUs. Based on our previous efforts (Ben-Shalom et al., 2013), we designed a user-280

friendly environment that enables one to port multi-compartmental models for implementation 281

with CUDA. NeuroGPU was developed to be interoperable with NEURON (Cannon et al., 2007), 282

thereby allowing anyone with expertise in the NEURON environment access to GPU-based 283

acceleration. Towards this goal, we developed a platform to easily port NEURON models from 284

either ModelDB or the BBP portal (Ramaswamy et al., 2015; McDougal et al., 2017) using a 285

iPython notebook-based graphical user interface (GUI). We further developed GUIs for creating 286

stimulation protocols, parameter exploration, and genetic optimization. By taking advantage of 287

parallel processing inherent to GPUs, we were able to accelerate simulations dramatically, in 288

some cases by almost two orders of magnitude. 289

NeuroGPU accelerates compartmental modeling largely through parallelization of matrix 290

calculations. Solving the tridiagonal matrix is the most computationally demanding aspect of 291

compartmental model simulations (Hines, 1984; Hines et al., 2008; Ben-Shalom et al., 2013). 292

Therefore, we took advantage of fast, on-GPU memory and controlled the timing of calculations 293

and memory transfers to optimize the use of computational resources (Volkov and Demmel, 294

2008; Ben-Shalom et al., 2013; Nvidia, 2018). Resulting speedups depended primarily on 295

neuronal morphology, and in general we found the NeuroGPU performed best when processing 296

anatomically complex cases. Even in these cases, overall GPU utilization was limited by 297

execution dependencies, where one aspect of GPU processing could not proceed until another 298

aspect either transferred or processed its own memory. In the future, these dependencies may 299

be further reduced through either dynamic parallelization (Zhang et al., 2015) or by increasing 300

instruction level parallelism (ILP) (Volkov and Demmel, 2008). Nevertheless, the current version 301

of NeuroGPU can still accelerate single neuron compartmental simulations by several orders of 302

magnitude. 303

NeuroGPU addresses a major gap in currently implemented GPU-based simulation 304

environments. In addition to NeuroGPU, two other neuronal simulations environments for multi-305

compartmental models have been implemented using GPUs, CoreNeuron (Hines et al., n.d.) 306

and Arbor (Akar et al., 2019). Both of these environments are designed primarily to accelerate 307

large scale network simulations. NeuroGPU, by contrast, is focused more on exploring the 308

parameter space of single models and optimizing such models to best fit empirical data. As 309

such, NeuroGPU has expanded GUIs for parameter exploration, which allows for quick 310

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

13

assessment of how changes in ion channel density across compartments affects neuronal 311

excitability (Fig. 7). This approach may be particularly useful to generate testable hypotheses 312

regarding channel distribution with pharmacological manipulations (Keren et al., 2009; Almog 313

and Korngreen, 2014; Mäki-Marttunen et al., 2018), modulation of ion channels (Byczkowicz et 314

al., n.d.), or in disease states where ion channel density is thought to be affected (Migliore and 315

Migliore, 2012; Miceli et al., 2013; Ben-Shalom et al., 2017; Spratt et al., 2019). Furthermore, 316

one could also generate a range of cells with variable channel densities and confirm that their 317

activity is physiologically realistic (e.g., Fig. 7, all cases before generating depolarization block). 318

These conditions could then be used as building blocks for variable activity within neuronal 319

networks (Prinz et al., 2003, 2004; Alonso and Marder, 2019). 320

In addition to parameter exploration, NeuroGPU is designed for extensive model optimization 321

using DEAP. Fitting computational models to empirical data is computationally taxing, and fits 322

typically improve two-fold with each doubling of computational resources. Here, we found that 323

NeuroGPU can accelerate DEAP processing times 8x (Fig. 8). Of note, these speedups 324

compare single GPUs and CPUs. Leveraging multiple GPUs should accelerate this process 325

further. 326

Future iterations of NeuroGPU may expand on the strengths and address limitations in using 327

GPUs for compartmental modeling. Ion channels are modeled typically with Markov-based 328

kinetics, or a simpler Markov approximation based on Hodgkin-Huxley type equations. 329

NeuroGPU currently supports Hodgkin-Huxley-based mechanisms only, as we found that 330

implementation of full Markov-based mechanisms on GPUs requires too much shared memory 331

and reduces performance drastically (Ben-Shalom et al., 2012). As with total GPU utilization, 332

improvements in memory handling may improve these cases. Furthermore, GPUs work best 333

when the same instructions are occurring simultaneously on multiple memory addresses. This 334

makes them ideal for iterating through models with identical morphologies and different channel 335

distributions, but less ideal for network models containing a diversity of neuron types. As an 336

intermediate, one could address this limitation by modeling networks containing discrete sets of 337

neurons. For example, a network could contain several compartmental morphology models that 338

each support multiple instances with different channel parameters, similar to the Ring model 339

applied by Arbor (Akar et al., 2019; Kumbhar et al., 2019). 340

In its current state of development, NeuroGPU may help democratize compartmental modeling. 341

While NeuroGPU can support simulations in large clusters using UNIX-based mutli-GPU 342

architectures, it also is ideal for individual laboratories running simulations on Windows-based 343

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

14

workstations. Indeed, a workstation with total costs <$3000, when kitted with appropriate GPUs, 344

can out-perform large CPU-based clusters. This could help broaden the use and utility of 345

computational modeling by bringing supercomputer-level processing power to a large range of 346

academic settings. 347

 348

 349

 350

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

15

 351

Figure 1: NeuroGPU overview and flowchart 352

A: Overview of the general workflow in NeuroGPU: The user ports a model via the iPython GUI 353

and customizes the simulation (panel B). NeuroGPU translates the model to CUDA code 354

that can run on the GPU and compiles executable code. 355

B: Sources for model components: The morphology and model’s properties are described in 356

the hoc file. Additional mechanisms such as ion-channels are described in .mod files. The 357

stimulation protocols can be either imported or can be generated with our provided GUI 358

C: Import to NeuroGPU is done by the extractModel.py script. It translates mod files to GPU 359

kernels (see methods), which are written to AllModels.cu, and updates the course of the 360

simulation at CudaStuff.cu. extractModel.py writes to the BasicConst.csv the tri-diagonal 361

matrix and mechanism map, which indicates the mechanisms for each compartment. Finally, 362

extractModel.py writes all the mechanism parameters to AllParams.csv. 363

D: After extractModel.py terminates, it creates NeuroGPU.exe. When NeuroGPU is invoked it 364

reads the input files and runs the simulations for the different instances of the model and 365

writes their voltages output to a file. When NeuroGPU is used for optimization, new 366

instances of the models are created each iteration, and only AllParams.csv is updated via a 367

python script. 368

 369

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

16

 370

 371

Figure 2: NeuroGPU CUDA implementation 372

A: NeuroGPU can be run on multiple GPUs; each GPU will run a separate grid of 373

block/neurons (Nvidia, 2018). 374

B: Grids are distributed in blocks, with each block representing an instance of a model. The 375

number of blocks in a grid is set by the number of model instances that will be simulated on 376

an individual GPU. 377

C: A block is the basic simulation unit upon which 32 threads each update the memory in an 378

ILP manner (see Methods). Global memory, which can be accessed by all blocks, stores 379

mechanism parameters for every compartment. Constant memory, which is limited in size, 380

stores the simulation constants such as the tri-diagonal matrix and the mechanism map. 381

 382

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

17

 383

Figure 3: Passive model simulations 384

A: Simple morphology with artificial axon. This model contains passive channels (pas.mod) in 385

all compartments. 386

B: Top: injected current at the soma Middle: NEURON voltage response as recorded at the 387

soma. Blue: NeuroGPU response as recorded at the soma. Bottom: difference in voltage 388

between NEURON and NeuroGPU. 389

C: Top: Runtimes for the model using the different architectures: black – NEURON, green – 390

NeuroGPU on TitanXP, blue – NeuroGPU on TeslaV100. X-axis in log2 scale, Y-axis in 391

log10 scale. Bottom: Speedup compared to NEURON. 392

D-F: Same as A-C, but for complex morphology from (Mainen and Sejnowski, 1996). 393

 394

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

18

 395

Figure 4: Mainen and Sejnowski model neuron simulations 396

A: Simple morphology with artificial axon and active and passive components distributed as in 397

(Mainen and Sejnowski, 1996) 398

B: Top: injected current at the soma. Middle: NEURON voltage response as recorded at the 399

soma. Cyan: NeuroGPU response as recorded at the soma. Bottom: difference in voltage 400

between NEURON and NeuroGPU. 401

C: Top: Runtimes for the model using the different architectures: black – NEURON, green – 402

NeuroGPU on TitanXP, blue – NeuroGPU on TeslaV100. X-axis in log2 scale, Y-axis in 403

log10 scale. Bottom: Speedup compared to NEURON. 404

D-F: Same as A-C, but for neocortical layer 5 pyramidal cell morphology, as in (Mainen and 405

Sejnowski, 1996). 406

G: Last AP in panel E, with expanded timebase, highlighting differences in voltage during the 407

rising phase of the AP. Voltage differences are minimized by linearly interpolating the data 408

4-fold and advancing NeuroGPU simulation by ¼ time-step. 409

410

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

19

 411

Figure 5: BBP portal model simulations 412

A: Morphology of a BBP portal layer 5 neocortical pyramidal cell (Ramaswamy et al., 2015). 413

Dendrite in black, axon in red. 414

B: Top: injected current at the soma. Middle: NEURON voltage response as recorded at the 415

soma. Cyan: NeuroGPU response as recorded at the soma. Bottom: difference in voltage 416

between NEURON and NeuroGPU. 417

C: Top: APs generated per current injection intensity in the soma. Middle, bottom: Peak and 418

average voltage difference between the voltage response in NEURON and NeuroGPU. Red 419

circles denote examples in B. 420

D: Top: Runtimes for the model using the different architectures: black – NEURON, green – 421

NeuroGPU on TitanXP, blue – NeuroGPU on TeslaV100. X-axis in log2 scale, Y-axis in 422

log10 scale. Bottom: Speedup compared to NEURON. 423

E-H: Same as A-D, but for a model chandelier cell. 424

 425

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

20

 426

Figure 6: NeuroGPU simulation on multiple GPUs 427

A: Top: Runtimes for pyramidal cell model using a different numbers of V100 GPUs (cyan – 1 428

orange – 2 green -3 purple – 4). X-axis is in log2 scale and Y-axis is in log10 scale. Bottom: 429

Speedup compared to NEURON. 430

B: Same as A, but for chandelier cell model. 431

 432

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

21

 433

Figure 7: Parameter space exploration in the BBP pyramidal model 434

A: Each point in the grid represents the number of APs in the relevant model. Points on the 435

axis represent the varied conductances of Nav and Kv at the axon in the range of [0,10] and 436

[0,20] S/cm2, respectively. 437

B: Example voltage responses for chosen models from A. Colors matched to the 438

corresponding model location in A. 439

 440

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

22

 441

. 442

 443

Figure 8: Evolutionary optimization with NeuroGPU 444

A: Optimizations examples using DEAP with different sizes of populations. Four Optimizations 445

with different random starting population over 50 generations. Y axis is the error from the 446

target voltage as described in the methods section. Lower values denote less error from 447

target data. 448

B: Voltage traces obtained from optimization (worst case from population of 100: red; best case 449

from population of 10,000: cyan) compared to ground truth (black). 450

C: Comparing runtimes for optimizations using NeuroGPU and NEURON (linearly extrapolated 451

from 5 generations). Circles are color coded for population size as in A. 452

D: Best score in each optimization in A. Circles and error bars are mean ± SEM. 453

 454

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

23

Table 1: 455

Model Morphology SingleKernel SplitKernel

Acceleration Utilization Acceleration Utilization

Passive membrane Soma & apical dendrite 95.8 0.30% 78.8 0.41%

Pyramidal Cell 58.1 10% 55.2 3.62%

Mainen and Sejnowski Soma & apical dendrite 153.1 10% 99.5 1%

Pyramidal Cell 114.2 10% 111.8 3.80%

Blue Brain Project Pyramidal Cell 93 10% 107 3.70%

Chandelier Cell 205.6 10% 197.5 1.60%

Acceleration: fold increase in processing speed relative to single core CPU (MODEL)

Utilization: Percent of time the GPU is being used 456

 457

Table 2: 458

Parameter Name Base value Lower Bound Upper Bound

gNaTa_tbar_NaTa_t 3.137968 0.3137968 31.37968

gNaTs2_tbar_NaTs2_t 0.983955 0.0983955 9.83955

gK_Tstbar_K_Tst 0.089259 0.0089259 0.89259

gIhbar_Ih 0.00008 0.000008 0.0008

gImbar_Im 0.000143 0.0000143 0.00143

gSKv3_1bar_SKv3_1 0.303472 0.0303472 3.03472 459

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

24

Methods: 460

Hardware — NEURON and TitanXP-based simulations were run on a PC with Intel Core I7-461

7700K 4.2GHz with 16GB of RAM. Tesla V100-based simulations were run using the NVIDIA 462

PSG cluster. Here, each simulation was run on a single node with Haswell or Skylake CPU 463

cores. For multi-GPU simulations, we used cluster nodes with NVLINK (Li et al., 2019) between 464

the GPUs to enable memory peer-access. 465

Software — Simulations were performed in NEURON 7.6 and CUDA 9.1. All scripts were 466

written in Python 3.7. All software is available at https://github.com/roybens/NeuroGPU. 467

Importing NEURON models — The python script extractmodel.py (Fig 1) exports NEURON 468

models to NeuroGPU. This script reads all simulation details from runModel.hoc, which is 469

populated using the GUI. NEURON models are described using either hoc or python scripts. 470

The scripts include a morphology that can either be called as a separate file or constructed 471

within the script. 472

Translating mechanisms to CUDA — Mechanisms in NEURON are described by NMODL 473

(.mod) files (Hines and Carnevale, 2000), that update the mechanism states every simulation 474

time step. This is done using three different procedures within NEURON that initialize 475

mechanisms (nrn_init), update currents that mechanisms affect (nrn_cur), and then update 476

mechanism states (nrn_state) (Carnevale and Hines, 2006). In NeuroGPU, CUDA kernels are 477

written for each of these procedures using .mod and .c files that are generated by NEURON 478

when running nrnivmodl. Kernels are saved and editable in AllModels.cu and AllModels.h. 479

Extracting simulation properties from NEURON — NeuroGPU utilizes NEURON for 480

simulation pre-processing, including generating the mechanism map for mechanism distribution 481

across compartments and exporting the tri-diagonal matrix using the fmatrix(). These are stored 482

in BasicConstSegP.csv. NEURON extracts all parameters for cable equations and mechanism 483

values within each compartment to AllParams.csv. External stimulation delivery location, 484

intensity, and timecourse are written in stim.csv. Resting membrane potential and number of 485

time steps in the simulation are written in sim.csv. 486

Solving the tridiagonal matrix — Matrix solutions were performed here using the branch-487

based parallelism approach as described in (Ben-Shalom et al., 2013), with morphology 488

analysis guiding iterative matrix computations. This analysis is done in extractmodel.py and the 489

data structures to solve the tri-diagonal in parallel is stored in BasicConstSegP.csv. 490

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

25

Benchmarking — All benchmarking was done compared to NEURON 7.6 running in a single 491

thread. The morphology was adjusted to have one segment per compartment in both NEURON 492

and NeuroGPU comparison. Simulation runtimes were compared without hard drive read/write 493

file steps, as these aspects depend more on hard drive properties than CPU/GPU comparisons. 494

Multi-compartmental models — NeuroGPU performance was tested with 4 different models: 495

1) A passive model, utilizing passive channels described in NEURON distribution pas.mod file. 496

These channels were distributed on both simple and complex morphologies (see Fig. 3A, D) 497

(Mainen and Sejnowski, 1996). The simple morphology was based on the simple morphology 498

described in Mainen and Sejnowski, with compartments reduced to 32, as this is the minimum 499

number of compartments required for NeuroGPU-based simulations. 500

2) The Mainen and Sejnowski (1996) model, with channels distributed on the same complex 501

and simple morphologies (Fig 4). Channels are distributed as in (Mainen and Sejnowski, 1996) 502

3) A pyramidal cell model from the Blue Brain Project portal (Ramaswamy et al., 2015) (Fig 5). 503

BBP_PC refers to the model named L5_TTPC1_cADpyr232_1. 504

4) A chandelier cell model, termed BBP_CC, referring to L5_ChC_dNAC222_1. For this model, 505

the Kdshu2007.mod files were altered to run on NeuroGPU. Specifically, global variables were 506

removed from the neuron block and instead placed in the assigned block (Carnevale and Hines, 507

2006). 508

Optimization algorithm — The eaMuPlusLambda algorithm from the DEAP package was 509

implemented by modifying the varOR procedure to call NeuroGPU (Rainville et al., 2012). 510

Optimization was performed on the BBP_PC model. For each iteration, the algorithm began with 511

a new population of parameters with values randomly chosen with the range specified in Table 512

2. The model was modified to accept new values from the optimization algorithm (similar 513

changes were necessary to run the parameter space exploration for Figure 7). Target data were 514

generated using the original parameters values described in Table 2. Optimization was targeted 515

to reduce error between target data and test data using both the interspike interval (ISI) and the 516

root mean square (RMS) of the voltage as the error function. Error was reduced to a single 517

variable by weighting these two variables as: 10*ISI + RMS. 518

 519

 520

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

26

Acknowledgments 521

We are grateful to Dr. Gilad Liberman who helped conceptualize this project. To the support and 522

advice of NVIDIA developers – Dr. Jonathan Lefman, Dr. Jonathan Bentz, Dr. Xuemeng Zhang 523

and Angela Chen in optimizing the CUDA code. To NVIDIA Corporation for donating the GPUs 524

used in this study. To all the members of the Bender Lab for critically assessing this work. This 525

research was supported by NIH Grants F32 NS095580 (RBS), MH112729 (KJB), and 526

DA035913 (KJB). 527

 528

 529

 530

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

27

References 531

Akar NA, Cumming B, Karakasis V, Küsters A, Klijn W, Peyser A, Yates S (2019) Arbor - A 532

Morphologically-Detailed Neural Network Simulation Library for Contemporary High-533

Performance Computing Architectures. In: Proceedings - 27th Euromicro International 534

Conference on Parallel, Distributed and Network-Based Processing, PDP 2019, pp 274–535

282. 536

Almog M, Korngreen A (2014) A quantitative description of dendritic conductances and its 537

application to dendritic excitation in layer 5 pyramidal neurons. J Neurosci 34:182–196. 538

Alonso LM, Marder E (2019) Visualization of currents in neural models with similar behavior and 539

different conductance densities. Elife 8. 540

Ben-Shalom R, Aviv A, Razon B, Korngreen A (2012) Optimizing ion channel models using a 541

parallel genetic algorithm on graphical processors. J Neurosci Methods 206:183–194. 542

Ben-Shalom R, Keeshen CM, Berrios KN, An JY, Sanders SJ, Bender KJ (2017) Opposing 543

Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in 544

Individuals With Autism Spectrum Disorder or Infantile Seizures. Biol Psychiatry 82:224–545

232. 546

Ben-Shalom R, Liberman G, Korngreen A (2013) Accelerating compartmental modeling on a 547

graphical processing unit. Front Neuroinform 7:4. 548

Byczkowicz N, Eshra A, Montanaro J, Trevisiol A, Hirrlinger J, P Kole MH, Shigemoto R (n.d.) 549

HCN channel-mediated neuromodulation can control action 1 potential velocity and fidelity 550

in central axons. 551

Cannon RC, Gewaltig M-O, Gleeson P, Bhalla US, Cornelis H, Hines ML, Howell FW, Muller E, 552

Stiles JR, Wils S, De Schutter E (2007) Interoperability of Neuroscience Modeling 553

Software: Current Status and Future Directions. Neuroinformatics 5:127–138. 554

Carnevale NT, Hines ML (2006) The NEURON Book. Cambridge University Press. 555

Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I (2007) A novel multiple 556

objective optimization framework for constraining conductance-based neuron models by 557

experimental data. Front Neurosci 1:7. 558

Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, Migliore M, Ness T V., 559

Plesser HE, Schürmann F (2019) The Scientific Case for Brain Simulations. Neuron 560

102:735–744. 561

Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical image processing on the GPU - 562

past, present and future. Med Image Anal 17:1073–1094. 563

Fidjeland AK, Shanahan MP (2010) Accelerated Simulation of Spiking Neural Networks Using 564

GPUs. Ijcnn’10:1–8. 565

Gagn C (2012) DEAP�: Evolutionary Algorithms Made Easy. J Mach Learn Res 13:2171–2175. 566

Go AW, Williamson MJ, Xu D, Poole D, Grand S Le, Walker RC, Götz AW, Williamson MJ, Xu 567

D, Poole D, Le Grand S, Walker RC (2012) Routine microsecond molecular dynamics 568

simulations with AMBER on GPUs. 1. generalized born. J Chem Theory Comput 8:1542–569

1555. 570

Gouwens NW, Berg J, Feng D, Sorensen SA, Zeng H, Hawrylycz MJ, Koch C, Arkhipov A 571

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

28

(2018) Systematic generation of biophysically detailed models for diverse cortical neuron 572

types. Nat Commun 9. 573

Gurkiewicz M, Korngreen A (2007) A Numerical Approach to Ion Channel Modelling Using 574

Whole-Cell Voltage-Clamp Recordings and a Genetic Algorithm. PLoS Comput Biol 575

3:e169. 576

Hay E, Schurmann F, Markram H, Segev I, Schürmann F, Markram H, Segev I (2013) 577

Preserving axosomatic spiking features despite diverse dendritic morphology. J 578

Neurophysiol 109:2972–2981. 579

Hines M (1984) Efficient computation of branched nerve equations. Int J Biomed Comput 580

15:69–76. 581

Hines ML, Carnevale NT (2000) Expanding NEURON’s Repertoire of Mechanisms with 582

NMODL. Neural Comput 12:995–1007. 583

Hines ML, Eichner H, Schürmann F (2008) Neuron splitting in compute-bound parallel network 584

simulations enables runtime scaling with twice as many processors. J Comput Neurosci 585

25:203–210. 586

Hines P, Fouriaux M, Jan NC (n.d.) An Optimized Compute Engine for the NEURON Simulator. 587

Keren N, Bar-Yehuda D, Korngreen A (2009) Experimentally guided modelling of dendritic 588

excitability in rat neocortical pyramidal neurones. J Physiol 587:1413–1437. 589

Kumbhar P, Hines M, Fouriaux J, Ovcharenko A, King J, Delalondre F, Schürmann F (2019) 590

CoreNEURON�: An Optimized Compute Engine for the NEURON Simulator. 591

Li A, Song SL, Chen J, Li J, Liu X, Tallent N, Barker K (2019) Evaluating Modern GPU 592

Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect. 593

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model 594

neocortical neurons. Nature 382:363–366. 595

Mäki-Marttunen T, Halnes G, Devor A, Metzner C, Dale AM, Andreassen OA, Einevoll GT 596

(2018) A stepwise neuron model fitting procedure designed for recordings with high spatial 597

resolution: Application to layer 5 pyramidal cells. J Neurosci Methods 293:264–283. 598

Markram H et al. (2015) Reconstruction and Simulation of Neocortical Microcircuitry. Cell 599

163:456–492. 600

McDougal RA, Morse TM, Carnevale T, Marenco L, Wang R, Migliore M, Miller PL, Shepherd 601

GM, Hines ML (2017) Twenty years of ModelDB and beyond: building essential modeling 602

tools for the future of neuroscience. J Comput Neurosci 42:1–10. 603

Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, Taglialatela M (2013) 604

Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the 605

voltage sensor of K v 7.2 potassium channel subunits. Proc Natl Acad Sci 110:4386–4391. 606

Migliore M, Migliore R (2012) Know Your Current Ih: Interaction with a Shunting Current 607

Explains the Puzzling Effects of Its Pharmacological or Pathological Modulations Attali B, 608

ed. PLoS One 7:e36867. 609

Nocedal J, Wright S (2006) Numerical optimization. 610

Nvidia C (2018) Cuda c programming guide, version 9.1. NVIDIA Corp. 611

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

29

Pachitariu M, Steinmetz N, Kadir S, Carandini M, D. HK (2016) Kilosort: realtime spike-sorting 612

for extracellular electrophysiology with hundreds of channels. bioRxiv:061481. 613

Payne JL, Sinnott-Armstrong NA, Moore JH (2010) Exploiting Graphics Processing Units for 614

Computational Biology and Bioinformatics. Interdiscip Sci 2:213–220. 615

Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, 616

Feser F, Brisson E, Kollet S, Schmidli J, Van Lipzig NPM, Leung R (2015) A review on 617

regional convection-permitting climate modeling: Demonstrations, prospects, and 618

challenges. Rev Geophys 53:323–361. 619

Prinz AA, Billimoria CP, Marder E (2003) Alternative to Hand-Tuning Conductance-Based 620

Models: Construction and Analysis of Databases of Model Neurons. J Neurophysiol 621

90:3998–4015. 622

Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. 623

Nat Neurosci 7:1345–1352. 624

Rainville F De, Fortin F, Gardner M, Parizeau M, Gagné C (2012) DEAP�: A Python Framework 625

for Evolutionary Algorithms. Companion proc Genet Evol Comput Conf:85–92. 626

Ramaswamy S et al. (2015) The neocortical microcircuit collaboration portal: a resource for rat 627

somatosensory cortex. Front Neural Circuits 9:44. 628

Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC, Go AW, Poole D, Grand S Le, 629

Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on 630

GPUs. 2. Explicit solvent particle mesh ewald. J Chem Theory Comput 9:3878–3888. 631

Schmidhuber J (2015) Deep Learning in neural networks: An overview. Neural Networks 61:85–632

117. 633

Spratt PWE, Ben-Shalom R, Keeshen CM, Burke KJ, Clarkson RL, Sanders SJ, Bender KJ 634

(2019) The Autism-Associated Gene Scn2a Contributes to Dendritic Excitability and 635

Synaptic Function in the Prefrontal Cortex. Neuron. epub ahead of print 636

Van Geit W, De Schutter E, Achard P (2008) Automated neuron model optimization techniques: 637

a review. Biol Cybern 99:241–251. 638

Volkov V, Demmel JW (2008) Benchmarking GPUs to tune dense linear algebra. In: 2008 SC - 639

International Conference for High Performance Computing, Networking, Storage and 640

Analysis, pp 1–11. IEEE. 641

Whitehead N (2011) Precision & Performance: Floating Point and IEEE 754 Compliance 642

for NVIDIA GPUs. 643

Zhang P, Holk E, Matty J, Misurda S, Zalewski M, Chu J, McMillan S, Lumsdaine A (2015) 644

Dynamic parallelism for simple and efficient GPU graph algorithms. In: Proceedings of the 645

5th Workshop on Irregular Applications Architectures and Algorithms - IA3 ’15, pp 1–4. 646

New York, New York, USA: ACM Press. 647

 648

 649

 650

 651

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727560doi: bioRxiv preprint

https://doi.org/10.1101/727560
http://creativecommons.org/licenses/by-nc/4.0/

