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Abstract:  18 

Generating biologically detailed models of neurons is an important goal for modern 19 

neuroscience.  Unfortunately, constraining parameters within biologically detailed models can 20 

be difficult, leading to poor model predictions, especially if such models are extended beyond 21 

the specific problems for which they were designed. This major obstacle can be partially 22 

overcome by numerical optimization and detailed exploration of parameter space. These 23 

processes, which currently rely on central processing unit (CPU) computation, are 24 

computationally demanding, often with exponential increases in computing time and cost for 25 

marginal improvements in model behavior. As a result, models are often compromised in scale 26 

given available CPU-based resources. Here, we present a simulation environment, NeuroGPU, 27 

that takes advantage of the inherent parallelized structure of graphics processing unit (GPU) to 28 

accelerate neuronal simulation. NeuroGPU can simulate most of biologically detailed models 29 

from commonly used databases 1-2 orders of magnitude faster than traditional single core CPU 30 

processors, even when implemented on relatively inexpensive GPU systems. Thus, NeuroGPU 31 

offers the ability to apply compartmental, biologically detailed, modeling approaches with 32 

supercomputer-level speed at substantially reduced cost. 33 

 34 
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Introduction: 36 

Detailed numerical models, faithfully capturing neuronal complexity, are invaluable for 37 

simulating the behavior of realistic neural networks (Einevoll et al., 2019). Generating models 38 

that accurately recapitulate neuronal activity often requires one to tune individual model 39 

parameters. This process can be aided by iterative rounds of parameter exploration and 40 

optimization that aim to minimize the differences between empirical data targets and their 41 

associated models. These processes can be computationally demanding. Indeed, each linear 42 

improvement in model accuracy requires an exponential increase in computational resources 43 

(Nocedal and Wright, 2006; Gurkiewicz and Korngreen, 2007) Thus, model optimization is often 44 

done on supercomputers that parallelize these computations across central processing unit 45 

(CPU) clusters. Unfortunately, due to the cost of constructing and running such supercomputing 46 

clusters, such efforts are typically restricted to large consortia, such as the Blue Brain Project 47 

(BBP) (Markram et al., 2015) and the Allen Institute (Gouwens et al., 2018). For more restricted 48 

budgets, simulations must typically be compromised in scale or complexity to produce results 49 

within budget and within a reasonable time frame. 50 

In the past 10 years, graphical processing units (GPUs) have emerged as an alternative to 51 

CPU-based clusters that may offer comparable levels of performance at substantially reduced 52 

cost. GPUs utilize streaming multiprocessors with multiple simple cores that allow for 53 

distributed, parallelized computing. With software optimized for distributed computing, GPU-54 

based applications can often outperform CPU-based applications in processing speed and cost 55 

(Payne et al., 2010). Today, GPUs are widely used in scientific fields like molecular dynamics  56 

(Go et al., 2012; Salomon-Ferrer et al., 2013) and climate modeling (Prein et al., 2015), and are 57 

the computational engine for most modern artificial intelligence applications (Schmidhuber, 58 

2015). In neuroscience, GPUs are currently being used to accelerate complex imaging dataset 59 

processing (Eklund et al., 2013), spiking neural network analysis (Fidjeland and Shanahan, 60 

2010), and clustering of activity from in vivo extracellular electrophysiological experiments 61 

(Pachitariu et al., 2016). Despite these advances until recently that two frameworks for 62 

simulating biophysical neuronal networks (Akar et al., 2019; Kumbhar et al., 2019) were 63 

published, relatively little effort has been made to leverage GPU-based architecture for 64 

biophysically detailed neuronal simulation. 65 

Here, we describe NeuroGPU, a computational platform optimized to exploit GPU architecture 66 

to dramatically accelerate simulation of neuronal compartmental models. To do so, we 67 
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developed new approaches to parallelize compartmental models, utilizing the GPU-based 68 

programming language CUDA to optimize memory handling on GPUs. This resulted in 69 

simulation speedups of up to 200-fold on a single GPU and up to 800-fold using a set of 4 70 

GPUs. Building on our previous efforts (Ben-Shalom et al., 2013), we developed an intuitive 71 

user interface that can import most compartmental models in ModelDB or the BBP portal. 72 

Further, we provide methods to explore model parameter space and to optimize models with 73 

evolutionary algorithms (DEAP). NeuroGPU therefore provides an open-source platform useful 74 

for neuronal simulation with increased speed and reduced cost. 75 

  76 
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Results: 77 

General overview  78 

Our primary goal for NeuroGPU was to improve compartmental modeling speed with relatively 79 

low-cost hardware and provide an interface to port NEURON models from public databases 80 

such as ModelDB and the BBP portal. Toward that end, we utilized the same basic structure as 81 

NEURON, including the use of hoc and mod files that define all aspects of the compartmental 82 

model. To increase simulation speed, we focused primarily on parallelizing the most 83 

computationally intensive aspect of NEURON simulations in GPU architecture.  NEURON 84 

calculates the voltages of each segment of the model by solving a system of differential 85 

equations that describes current flow in each compartment. Within NEURON, this differential 86 

equation system is represented within a tri-diagonal matrix (Hines, 1984). Typically, matrix 87 

elements for neighboring compartments are solved in serial, as current flow in one compartment 88 

is interdependent on flow in neighboring compartments. We and others have previously 89 

developed methods to solve this tri-diagonal matrix in parallel across GPUs, despite the 90 

interdependence of current flow across compartments (Hines et al., 2008, n.d.; Ben-Shalom et 91 

al., 2013). At that time, the method was implemented only for Hodgkin-Huxley models (Ben-92 

Shalom et al., 2013). Here, we extended this method to support a wider range of models, 93 

including most models available in ModelDB and the Blue Brain Project (BBP) repository. This is 94 

implemented in Python, with an iPython Graphical User Interface (GUI). 95 

Porting NEURON simulations to NeuroGPU  96 

NeuroGPU simulations begin by importing NEURON’s mod and hoc files via a GUI developed in 97 

iPython notebook (Figure 1). The user must input a file containing model stimulation, which 98 

includes temporal aspects of the model and command currents delivered at a prescribed 99 

location. Furthermore, all free parameters, such as channel properties, must be described (Fig. 100 

1B). These import components are translated into CUDA code, termed kernels, that can run on 101 

the GPU via the python script “extractmodel.py” (Fig. 1C). This script first takes runModel.hoc 102 

and loads it into NEURON, not to run simulations, but rather to query NEURON for model 103 

properties needed for subsequent porting to NeuroGPU, including compartment names and the 104 

tri-diagonal matrix (F-Matrix). Then, the script iterates over the .mod files in the directory, parses 105 

them and creates relevant kernels for each mechanism described. Mechanism kernels are 106 

written to the AllModels.cu in similar structure as described previously (Hines and Carnevale, 107 
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2000; Carnevale and Hines, 2006), iterating over all compartments defined in the model. A new 108 

hoc file is created to register mechanism values, which are stored in AllParams.csv and inserted 109 

in each compartment. Finally, the script writes code translated to CUDA in NeuroGPU.cu and 110 

packages the application to run on either Windows or Unix. After compiling the code, an 111 

executable is created that reads the AllParams.csv and the stimulation and runs the model on 112 

the GPU. 113 

NeuroGPU implementation 114 

We used CUDA to implement NEURON-based modeling using GPUs. CUDA is an extension of 115 

the C programming language that enables computation on the GPU (Nvidia, 2018). CUDA 116 

kernels which are procedures running on the GPU  can be invoked from either the GPU or CPU. 117 

To invoke a kernel from the CPU, one must specify the number of parallel threads used. 118 

Threads, which allow for parallelization on the GPU, are organized into blocks, with each thread 119 

occupying a specific address within that block (idx.x, idx.y). GPUs are structured to operate well 120 

when computing 32 parallel threads, a computing structure termed a warp (Nvidia, 2018). 121 

Therefore, we structured NeuroGPU to utilize 32 threads in the x dimension, corresponding to 122 

individual morphological segments within the model. For a given model with more than 32 123 

segments, individual threads are responsible for calculating every 32nd segment. For example, 124 

thread #1 would calculate segments 1, 33, 65, … 31N+1.  125 

Complex neuronal models, including many described in the BBP (Hay et al., 2013; Ramaswamy 126 

et al., 2015), are memory intensive. GPUs have several forms of memory that have tradeoffs in 127 

terms of their size and relative speed that make them ideal for certain aspects of model 128 

processing and impractical for others. GLOBAL memory is the largest physical memory space 129 

available on the GPU but is relatively slow. Here, we use GLOBAL memory to store the largest 130 

data structures associated with a given model, in part because they simply cannot be held by 131 

other memory structures. SHARED memory is far faster, shared among the whole GPU block, 132 

but limited to 48 kilobytes. This makes it ideal for storing the tridiagonal matrix, as this matrix is 133 

the most accessed data structure within NeuroGPU. CONSTANT memory, which is a 64 134 

kilobyte block of fast, read-only memory, is used to hold constant data structures, including the 135 

order in which the tri-diagonal matrix is solved in parallel (Ben-Shalom et al., 2013). Lastly, 136 

REGISTER\LOCAL memory is the fastest memory available on the GPU but is limited to 137 

maximum of 63 registers per thread and a total of 16 kilobytes of memory shared across the 138 

entire block. It is used to store local variables necessary for the course of the simulation.  139 
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To determine how best to utilize GPU parallel processing, we examined two ways in which to 140 

simulate compartmental models on the GPU. In both cases, the GPU is responsible for updating 141 

ionic currents from established mechanisms, solving the tridiagonal matrix, and updating model 142 

states and voltages at each time step. In the first configuration, termed SingleKernel, we 143 

computed all the time steps of each simulation in one kernel on the GPU, largely because this 144 

would limit the amount of time performing the relatively slow step of transferring memory 145 

between the GPU and CPU. In this case, the transfer is done only once and during the 146 

simulation the GPU communicates with the CPU only to transfer voltages reported at the 147 

recording electrode site. Alternatively, we also created a SplitKernel condition, in which the 148 

simulation is split into many small kernels that are invoked every single time step. Data are then 149 

registered back to the CPU and the next time step is run in serial. This approach may be 150 

advantageous if memory transfer between the GPU and CPU is not the rate-limiting step. 151 

Furthermore, in this case the GPU can also optimize computing timing by queueing certain 152 

steps for execution while other memory is being transferred. Both the SingleKernel and 153 

SplitKernal configuration were assessed in all cases reported below. 154 

Benchmarking 155 

To determine how NeuroGPU performs relative to NEURON, we benchmarked it for relative 156 

speed and accuracy across different conditions: CUDA implementation, hardware configurations 157 

and across a range of models. We first compared NeuroGPU performance with a single GPU to 158 

NEURON implemented on a single CPU core. 159 

We began with a simple model of a soma and single dendritic branch that has 64 segments in 160 

total (Figure 1A), each containing a single external mechanism pas.mod that describes passive 161 

current flow. This model was stimulated with a simple current step (Fig. 1B). Voltage 162 

discrepancies that never exceeded 0.4 µV were observed between NeuroGPU and NEURON 163 

when simulation voltage changed rapidly. These discrepancies were due to small differences in 164 

timing that likely arise from how numbers are rounded in GPUs vs CPUs (Whitehead, 2011). 165 

To benchmark relative speed, we evaluated computing time for multiple instances of the same 166 

model. NEURON computation speed scales linearly with the number of simulations, and, for low 167 

numbers of models (< 8), outperforms NeuroGPU. By contrast, models implemented on GPUs 168 

scale linearly only after saturating all streaming multiprocessors. With NeuroGPU, processing 169 

times are quite similar for any simulation incorporating fewer than 128 models, and begin to 170 
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outpace NEURON simulations when >32 simulations are run simultaneously. Relative gains in 171 

processing time were noted when 32 to 16,384 models were run simultaneously. These gains 172 

were dependent on hardware. For example, implementing NeuroGPU on an NVIDIA TitanXP 173 

GPU resulted in 25.2-fold improvements in processing speed, while the same models run on an 174 

NVIDIA Tesla V100 were 95.8-fold faster (both implemented in the “SingleKernel” 175 

configuration). It is worth noting that TitanXP hardware is relatively low cost (<$1099) and very 176 

similar card (NVIDIA GTX-1660) can currently be purchased for less than $300, suggesting that 177 

significant improvements in processing speed can be obtained even with modestly priced 178 

hardware. 179 

More complex neuronal morphology could affect NeuroGPU processing speed. Therefore, we 180 

implemented the same passive mechanism on the more complex structure of a neocortical 181 

pyramidal neuron. While voltage discrepancies were similarly small in this instance (< 4x10-6 182 

mV), the relative speedup was lower than with simpler morphology (TitanXP: 15.2x; Tesla V100: 183 

58.1x). Thus, while morphology does affect relative speed, NeuroGPU still outperforms CPU-184 

based modeling. 185 

In addition to complex morphology, compartmental models typically contain an array of 186 

mechanisms that simulate voltage-gated channels or ligand-gated receptors. To assess 187 

NeuroGPU performance with such models, we began with a pyramidal model neuron first 188 

described by Mainen and Sejnowski  (1996). This model has 7 different mechanisms, including 189 

voltage-gated sodium, potassium, and calcium channels, and a calcium-dependent potassium 190 

channel. As with the passive model described above, we implemented these mechanisms in 191 

both simple and complex morphologies (e.g., soma and primary dendrite alone, or complete 192 

pyramidal cell morphology). In models with simple morphology, NeuroGPU was 30.3x (TitanXP) 193 

or 153.1x (Tesla V100) faster than NEURON, with minimal voltage error (< 4 µV). In pyramidal 194 

cell morphology models, NeuroGPU was 45.3x (TitanXP) or 114.2x (Tesla V100) faster than 195 

NEURON. In this instance, we observed a relatively large voltage discrepancy of 6.6 mV. This 196 

discrepancy occurred during the last AP within a burst and was due largely to a shift in the 197 

timing of this AP (Fig. 4G). Indeed, we were able to reduce this error ~6x by interpolating the 198 

data and shifting the timing of this AP by ¼ of a timestep. 199 

While the Mainen and Sejnowski model can generate physiologically-realistic spiking activity, 200 

these APs occur over a relatively narrow range of stimulus intensities. Outside this range the 201 

model is either subthreshold or enters depolarization block. As a result, we found this model to 202 
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be impractical for benchmarking NeuroGPU across a range of stimuli. Therefore, we tested 203 

NeuroGPU on more recently developed models from the Blue Brain Project portal. Here, we 204 

used two models: one of a layer 5 pyramidal neuron (BBP_PC, see Methods for specific model) 205 

and one of a layer 5 chandelier interneuron (BBP_CC). Models were interrogated with a range 206 

of stimulus intensities to determine relative differences between NeuroGPU and NEURON (Fig. 207 

5). Similar to Mainen and Sejnowski, voltage differences were small (maximum differences: 208 

<0.2 mV) and were most commonly observed when voltage was changing markedly between 209 

time steps (Fig. 5C, G). 210 

As with other models (Fig. 3, 4), implementing NeuroGPU on faster GPUs decreased 211 

processing time (Fig. 5D, H). Interestingly, CUDA has been recently updated to allow for 212 

memory sharing across GPUs, which could be leveraged to decrease processing time further. 213 

To test this, we connected up to 4 Tesla V100 GPUs together and measured speedup on both 214 

BBP models displayed in Figure 5. As expected, adding more GPUs increased the overall 215 

processing capacity, and we noted shifts in the number of models that could be handled 216 

simultaneously before reaching maximum GPU utilization (Fig. 6). Furthermore, speedup was 217 

almost 2 orders of magnitude faster relative to NEURON. 218 

Profiling 219 

To better understand why NeuroGPU accelerated some models more than others, we used the 220 

NVIDIA profiler to monitor GPU utilization. Further, we tested two different memory handling 221 

configurations—SingleKernel and SplitKernel—to determine how best to utilize GPU parallel 222 

processing. In both cases, the GPU is responsible for updating ionic currents from given 223 

mechanisms, solving the tridiagonal matrix, and updating model states and voltages at each 224 

time step.  225 

We found that configuring NeuroGPU in SingleKernel mode produced the fastest runtimes in all 226 

models tested (Table 1), and had higher GPU utilization levels. This indicates that, for most 227 

models, memory transfer between GPU and CPU is rate-limiting, and models run most 228 

efficiently when the majority of calculations are isolated on the GPU. Nevertheless, the highest 229 

utilization values were ~10% in the SingleKernel configuration (3.8% in SplitKernel), suggesting 230 

that additional memory optimizations could be leveraged in future iterations of NeuroGPU. 231 

 232 

 233 
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Benefits of using NeuroGPU for parameter space exploration and genetic optimization 234 

Neuronal simulations are often tested over a range of parameter values to both explore the 235 

range of output generated and to optimize models to best fit empirical data (Druckmann et al., 236 

2007; Van Geit et al., 2008; Keren et al., 2009; Gouwens et al., 2018). These simulations 237 

essentially run the same model repeatedly with small differences in underlying parameters, 238 

making them ideal for parallelization with NeuroGPU. Indeed, relative speedups would be 239 

identical to situations considered above (Fig. 3-6) and depend simply on the number of 240 

parameter sets used. Based on this, we developed a GUI that streamlines parameter space 241 

exploration in NeuroGPU. 242 

To provide an example of parameter space exploration, we examined neuronal output in the 243 

BBP_PC model when co-varying the density of the axonal fast inactivating sodium channel and 244 

axonal slow-inactivating potassium channel over a range of 0 to 10 and 0 to 20 S/cm2, 245 

respectively. Total spike output and select single traces are shown in Figure 7. As expected, 246 

increasing sodium conductance allowed models to generate more APs until sodium 247 

conductance was so high that models entered depolarization block. Similarly, reducing 248 

potassium conductance produced comparable results. Interestingly, certain combinations of 249 

sodium and potassium conductance concentrations produced bursting phenotypes 250 

characterized by high-frequency APs riding atop long-duration depolarizations. These 251 

presumably reflect parameter ranges that then interact with other ion channels in the model 252 

(e.g., CaV3 channels) that promote such burst dynamics. 253 

To implement genetic optimization within NeuroGPU, we integrated the DEAP (Distributed 254 

Evolutionary Algorithms in Python) package (Gagn, 2012). Genetic algorithm success lies in the 255 

balance between exploration of the whole parameter space and the exploitation of specific 256 

areas that seem promising. For this, large sample populations are ideal, as this allows for 257 

effective and broad parameter space exploration. NeuroGPU is more efficient when many 258 

instances are running in parallel, allowing for more effective application of genetic algorithms. 259 

Genetic optimization was tested here by fitting model-generated voltages to a single voltage 260 

epoch containing APs that was generated by the default values present in the BBP_PC model. 261 

We then determined how close different optimization sets could come to identifying these 262 

original parameter values. Optimization began with different population sizes comprised of 100 263 

to 10,000 individual parameter sets with random initial values (Fig. 8A). These populations were 264 
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run in four independent trials, each for 50 generations, and the difference between the naïve 265 

model and ground-truth model was compressed to a single score value (see Methods). For 266 

these scores, lower values indicate less difference between the two cases. 267 

Scores improved for each of these populations, but the variance across trials and the overall 268 

score were markedly affected by the population size, with score decreasing in a near-linear 269 

fashion with each doubling of population size (Fig 8C). These score improvements were 270 

paralleled by a decrease in total processing time. For example, optimization with 10,000 271 

individual parameter sets ran 7.7x faster on NeuroGPU than NEURON (Fig. 8D; 10 vs 77 hours, 272 

respectively). While these are significant improvements in simulation speed, they are relatively 273 

modest compared to those observed in other conditions (Fig. 5), likely because current versions 274 

of NeuroGPU require NEURON to load the simulation and generate parameter values. This step 275 

is currently done using the CPU. Whether it is possible to parallelize this step will be explored in 276 

future versions of NeuroGPU.  277 
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Discussion: 278 

In this work, we implemented a simulation environment to run single neuron compartmental 279 

models on GPUs. Based on our previous efforts (Ben-Shalom et al., 2013), we designed a user-280 

friendly environment that enables one to port multi-compartmental models for implementation 281 

with CUDA. NeuroGPU was developed to be interoperable with NEURON (Cannon et al., 2007), 282 

thereby allowing anyone with expertise in the NEURON environment access to GPU-based 283 

acceleration. Towards this goal, we developed a platform to easily port NEURON models from 284 

either ModelDB or the BBP portal (Ramaswamy et al., 2015; McDougal et al., 2017) using a 285 

iPython notebook-based graphical user interface (GUI). We further developed GUIs for creating 286 

stimulation protocols, parameter exploration, and genetic optimization. By taking advantage of 287 

parallel processing inherent to GPUs, we were able to accelerate simulations dramatically, in 288 

some cases by almost two orders of magnitude. 289 

NeuroGPU accelerates compartmental modeling largely through parallelization of matrix 290 

calculations. Solving the tridiagonal matrix is the most computationally demanding aspect of 291 

compartmental model simulations (Hines, 1984; Hines et al., 2008; Ben-Shalom et al., 2013). 292 

Therefore, we took advantage of fast, on-GPU memory and controlled the timing of calculations 293 

and memory transfers to optimize the use of computational resources (Volkov and Demmel, 294 

2008; Ben-Shalom et al., 2013; Nvidia, 2018). Resulting speedups depended primarily on 295 

neuronal morphology, and in general we found the NeuroGPU performed best when processing 296 

anatomically complex cases. Even in these cases, overall GPU utilization was limited by 297 

execution dependencies, where one aspect of GPU processing could not proceed until another 298 

aspect either transferred or processed its own memory. In the future, these dependencies may 299 

be further reduced through either dynamic parallelization (Zhang et al., 2015) or by increasing 300 

instruction level parallelism (ILP) (Volkov and Demmel, 2008). Nevertheless, the current version 301 

of NeuroGPU can still accelerate single neuron compartmental simulations by several orders of 302 

magnitude. 303 

NeuroGPU addresses a major gap in currently implemented GPU-based simulation 304 

environments. In addition to NeuroGPU, two other neuronal simulations environments for multi-305 

compartmental models have been implemented using GPUs, CoreNeuron (Hines et al., n.d.) 306 

and Arbor (Akar et al., 2019). Both of these environments are designed primarily to accelerate 307 

large scale network simulations. NeuroGPU, by contrast, is focused more on exploring the 308 

parameter space of single models and optimizing such models to best fit empirical data. As 309 

such, NeuroGPU has expanded GUIs for parameter exploration, which allows for quick 310 
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assessment of how changes in ion channel density across compartments affects neuronal 311 

excitability (Fig. 7). This approach may be particularly useful to generate testable hypotheses 312 

regarding channel distribution with pharmacological manipulations (Keren et al., 2009; Almog 313 

and Korngreen, 2014; Mäki-Marttunen et al., 2018), modulation of ion channels (Byczkowicz et 314 

al., n.d.), or in disease states where ion channel density is thought to be affected (Migliore and 315 

Migliore, 2012; Miceli et al., 2013; Ben-Shalom et al., 2017; Spratt et al., 2019). Furthermore, 316 

one could also generate a range of cells with variable channel densities and confirm that their 317 

activity is physiologically realistic (e.g., Fig. 7, all cases before generating depolarization block). 318 

These conditions could then be used as building blocks for variable activity within neuronal 319 

networks (Prinz et al., 2003, 2004; Alonso and Marder, 2019).  320 

In addition to parameter exploration, NeuroGPU is designed for extensive model optimization 321 

using DEAP. Fitting computational models to empirical data is computationally taxing, and fits 322 

typically improve two-fold with each doubling of computational resources. Here, we found that 323 

NeuroGPU can accelerate DEAP processing times 8x (Fig. 8). Of note, these speedups 324 

compare single GPUs and CPUs. Leveraging multiple GPUs should accelerate this process 325 

further. 326 

Future iterations of NeuroGPU may expand on the strengths and address limitations in using 327 

GPUs for compartmental modeling. Ion channels are modeled typically with Markov-based 328 

kinetics, or a simpler Markov approximation based on Hodgkin-Huxley type equations. 329 

NeuroGPU currently supports Hodgkin-Huxley-based mechanisms only, as we found that 330 

implementation of full Markov-based mechanisms on GPUs requires too much shared memory 331 

and reduces performance drastically (Ben-Shalom et al., 2012). As with total GPU utilization, 332 

improvements in memory handling may improve these cases. Furthermore, GPUs work best 333 

when the same instructions are occurring simultaneously on multiple memory addresses. This 334 

makes them ideal for iterating through models with identical morphologies and different channel 335 

distributions, but less ideal for network models containing a diversity of neuron types. As an 336 

intermediate, one could address this limitation by modeling networks containing discrete sets of 337 

neurons. For example, a network could contain several compartmental morphology models that 338 

each support multiple instances with different channel parameters, similar to the Ring model 339 

applied by Arbor (Akar et al., 2019; Kumbhar et al., 2019).  340 

In its current state of development, NeuroGPU may help democratize compartmental modeling. 341 

While NeuroGPU can support simulations in large clusters using UNIX-based mutli-GPU 342 

architectures, it also is ideal for individual laboratories running simulations on Windows-based 343 
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workstations. Indeed, a workstation with total costs <$3000, when kitted with appropriate GPUs, 344 

can out-perform large CPU-based clusters. This could help broaden the use and utility of 345 

computational modeling by bringing supercomputer-level processing power to a large range of 346 

academic settings. 347 

 348 

 349 
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 351 

Figure 1: NeuroGPU overview and flowchart 352 

A:  Overview of the general workflow in NeuroGPU: The user ports a model via the iPython GUI 353 

and customizes the simulation (panel B). NeuroGPU translates the model to CUDA code 354 

that can run on the GPU and compiles executable code.  355 

B:  Sources for model components: The morphology and model’s properties are described in 356 

the hoc file. Additional mechanisms such as ion-channels are described in .mod files. The 357 

stimulation protocols can be either imported or can be generated with our provided GUI  358 

C:  Import to NeuroGPU is done by the extractModel.py script. It translates mod files to GPU 359 

kernels (see methods), which are written to AllModels.cu, and updates the course of the 360 

simulation at CudaStuff.cu. extractModel.py writes to the BasicConst.csv the tri-diagonal 361 

matrix and mechanism map, which indicates the mechanisms for each compartment. Finally, 362 

extractModel.py writes all the mechanism parameters to AllParams.csv.  363 

D:  After extractModel.py terminates, it creates NeuroGPU.exe. When NeuroGPU is invoked it 364 

reads the input files and runs the simulations for the different instances of the model and 365 

writes their voltages output to a file. When NeuroGPU is used for optimization, new 366 

instances of the models are created each iteration, and only AllParams.csv is updated via a 367 

python script. 368 
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  370 

 371 

Figure 2: NeuroGPU CUDA implementation 372 

A:  NeuroGPU can be run on multiple GPUs; each GPU will run a separate grid of 373 

block/neurons (Nvidia, 2018). 374 

B: Grids are distributed in blocks, with each block representing an instance of a model. The 375 

number of blocks in a grid is set by the number of model instances that will be simulated on 376 

an individual GPU. 377 

C: A block is the basic simulation unit upon which 32 threads each update the memory in an 378 

ILP manner (see Methods). Global memory, which can be accessed by all blocks, stores 379 

mechanism parameters for every compartment. Constant memory, which is limited in size, 380 

stores the simulation constants such as the tri-diagonal matrix and the mechanism map.  381 
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 383 

Figure 3: Passive model simulations 384 

A:  Simple morphology with artificial axon. This model contains passive channels (pas.mod) in 385 

all compartments. 386 

B: Top: injected current at the soma Middle: NEURON voltage response as recorded at the 387 

soma. Blue: NeuroGPU response as recorded at the soma. Bottom: difference in voltage 388 

between NEURON and NeuroGPU. 389 

C: Top: Runtimes for the model using the different architectures: black – NEURON, green – 390 

NeuroGPU on TitanXP, blue – NeuroGPU on TeslaV100. X-axis in log2 scale, Y-axis in 391 

log10 scale. Bottom: Speedup compared to NEURON. 392 

D-F: Same as A-C, but for complex morphology from (Mainen and Sejnowski, 1996). 393 
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 395 

Figure 4: Mainen and Sejnowski model neuron simulations 396 

A:  Simple morphology with artificial axon and active and passive components distributed as in 397 

(Mainen and Sejnowski, 1996)  398 

B:  Top: injected current at the soma. Middle: NEURON voltage response as recorded at the 399 

soma. Cyan: NeuroGPU response as recorded at the soma. Bottom: difference in voltage 400 

between NEURON and NeuroGPU. 401 

C:  Top: Runtimes for the model using the different architectures: black – NEURON, green – 402 

NeuroGPU on TitanXP, blue – NeuroGPU on TeslaV100. X-axis in log2 scale, Y-axis in 403 

log10 scale. Bottom: Speedup compared to NEURON. 404 

D-F: Same as A-C, but for neocortical layer 5 pyramidal cell morphology, as in (Mainen and 405 

Sejnowski, 1996). 406 

G:  Last AP in panel E, with expanded timebase, highlighting differences in voltage during the 407 

rising phase of the AP. Voltage differences are minimized by linearly interpolating the data 408 

4-fold and advancing NeuroGPU simulation by ¼ time-step. 409 

410 
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 411 

Figure 5: BBP portal model simulations 412 

A:  Morphology of a BBP portal layer 5 neocortical pyramidal cell (Ramaswamy et al., 2015). 413 

Dendrite in black, axon in red.   414 

B:  Top: injected current at the soma. Middle: NEURON voltage response as recorded at the 415 

soma. Cyan: NeuroGPU response as recorded at the soma. Bottom: difference in voltage 416 

between NEURON and NeuroGPU. 417 

C:  Top: APs generated per current injection intensity in the soma. Middle, bottom: Peak and 418 

average voltage difference between the voltage response in NEURON and NeuroGPU. Red 419 

circles denote examples in B. 420 

D:  Top: Runtimes for the model using the different architectures: black – NEURON, green – 421 

NeuroGPU on TitanXP, blue – NeuroGPU on TeslaV100. X-axis in log2 scale, Y-axis in 422 

log10 scale. Bottom: Speedup compared to NEURON. 423 

E-H: Same as A-D, but for a model chandelier cell. 424 
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 426 

Figure 6: NeuroGPU simulation on multiple GPUs 427 

A:  Top: Runtimes for pyramidal cell model using a different numbers of V100 GPUs (cyan – 1 428 

orange – 2 green -3 purple – 4). X-axis is in log2 scale and Y-axis is in log10 scale. Bottom: 429 

Speedup compared to NEURON. 430 

B: Same as A, but for chandelier cell model. 431 
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 433 

Figure 7: Parameter space exploration in the BBP pyramidal model 434 

A:  Each point in the grid represents the number of APs in the relevant model. Points on the 435 

axis represent the varied conductances of Nav and Kv at the axon in the range of [0,10] and 436 

[0,20] S/cm2, respectively.  437 

B:  Example voltage responses for chosen models from A. Colors matched to the 438 

corresponding model location in A. 439 
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 441 

. 442 

  443 

Figure 8: Evolutionary optimization with NeuroGPU 444 

A:  Optimizations examples using DEAP with different sizes of populations. Four Optimizations 445 

with different random starting population over 50 generations. Y axis is the error from the 446 

target voltage as described in the methods section. Lower values denote less error from 447 

target data. 448 

B:  Voltage traces obtained from optimization (worst case from population of 100: red; best case 449 

from population of 10,000: cyan) compared to ground truth (black). 450 

C: Comparing runtimes for optimizations using NeuroGPU and NEURON (linearly extrapolated 451 

from 5 generations). Circles are color coded for population size as in A. 452 

D:  Best score in each optimization in A. Circles and error bars are mean ± SEM. 453 
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Table 1: 455 

Model Morphology SingleKernel     SplitKernel

Acceleration Utilization Acceleration Utilization

Passive membrane Soma & apical dendrite 95.8 0.30% 78.8 0.41%

Pyramidal Cell 58.1 10% 55.2 3.62%

Mainen and Sejnowski Soma & apical dendrite 153.1 10% 99.5 1%

Pyramidal Cell 114.2 10% 111.8 3.80%

Blue Brain Project Pyramidal Cell 93 10% 107 3.70%

Chandelier Cell 205.6 10% 197.5 1.60%

Acceleration: fold increase in processing speed relative to single core CPU (MODEL)

Utilization: Percent of time the GPU is being used  456 

 457 

Table 2: 458 

 

Parameter Name Base value Lower Bound    Upper Bound

gNaTa_tbar_NaTa_t 3.137968 0.3137968 31.37968

gNaTs2_tbar_NaTs2_t 0.983955 0.0983955 9.83955

gK_Tstbar_K_Tst 0.089259 0.0089259 0.89259

gIhbar_Ih 0.00008 0.000008 0.0008

gImbar_Im 0.000143 0.0000143 0.00143

gSKv3_1bar_SKv3_1 0.303472 0.0303472 3.03472   459 
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Methods: 460 

Hardware — NEURON and TitanXP-based simulations were run on a PC with Intel Core I7-461 

7700K 4.2GHz with 16GB of RAM. Tesla V100-based simulations were run using the NVIDIA 462 

PSG cluster. Here, each simulation was run on a single node with Haswell or Skylake CPU 463 

cores. For multi-GPU simulations, we used cluster nodes with NVLINK (Li et al., 2019) between 464 

the GPUs to enable memory peer-access. 465 

Software — Simulations were performed in NEURON 7.6 and CUDA 9.1. All scripts were 466 

written in Python 3.7. All software is available at https://github.com/roybens/NeuroGPU. 467 

Importing NEURON models — The python script extractmodel.py (Fig 1) exports NEURON 468 

models to NeuroGPU. This script reads all simulation details from runModel.hoc, which is 469 

populated using the GUI. NEURON models are described using either hoc or python scripts. 470 

The scripts include a morphology that can either be called as a separate file or constructed 471 

within the script. 472 

Translating mechanisms to CUDA — Mechanisms in NEURON are described by NMODL 473 

(.mod) files (Hines and Carnevale, 2000), that update the mechanism states every simulation 474 

time step. This is done using three different procedures within NEURON that initialize 475 

mechanisms (nrn_init), update currents that mechanisms affect (nrn_cur), and then update 476 

mechanism states (nrn_state) (Carnevale and Hines, 2006). In NeuroGPU, CUDA kernels are 477 

written for each of these procedures using .mod and .c files that are generated by NEURON 478 

when running nrnivmodl. Kernels are saved and editable in AllModels.cu and AllModels.h. 479 

Extracting simulation properties from NEURON — NeuroGPU utilizes NEURON for 480 

simulation pre-processing, including generating the mechanism map for mechanism distribution 481 

across compartments and exporting the tri-diagonal matrix using the fmatrix(). These are stored 482 

in BasicConstSegP.csv. NEURON extracts all parameters for cable equations and mechanism 483 

values within each compartment to AllParams.csv. External stimulation delivery location, 484 

intensity, and timecourse are written in stim.csv. Resting membrane potential and number of 485 

time steps in the simulation are written in sim.csv. 486 

Solving the tridiagonal matrix — Matrix solutions were performed here using the branch-487 

based parallelism approach as described in (Ben-Shalom et al., 2013), with morphology 488 

analysis guiding iterative matrix computations. This analysis is done in extractmodel.py and the 489 

data structures to solve the tri-diagonal in parallel is stored in BasicConstSegP.csv. 490 
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Benchmarking — All benchmarking was done compared to NEURON 7.6 running in a single 491 

thread. The morphology was adjusted to have one segment per compartment in both NEURON 492 

and NeuroGPU comparison. Simulation runtimes were compared without hard drive read/write 493 

file steps, as these aspects depend more on hard drive properties than CPU/GPU comparisons. 494 

Multi-compartmental models — NeuroGPU performance was tested with 4 different models: 495 

1) A passive model, utilizing passive channels described in NEURON distribution pas.mod file. 496 

These channels were distributed on both simple and complex morphologies (see Fig. 3A, D)  497 

(Mainen and Sejnowski, 1996). The simple morphology was based on the simple morphology 498 

described in Mainen and Sejnowski, with compartments reduced to 32, as this is the minimum 499 

number of compartments required for NeuroGPU-based simulations. 500 

2) The Mainen and Sejnowski (1996) model, with channels distributed on the same complex 501 

and simple morphologies (Fig 4). Channels are distributed as in (Mainen and Sejnowski, 1996) 502 

3) A pyramidal cell model from the Blue Brain Project portal (Ramaswamy et al., 2015) (Fig 5). 503 

BBP_PC refers to the model named L5_TTPC1_cADpyr232_1. 504 

4) A chandelier cell model, termed BBP_CC, referring to L5_ChC_dNAC222_1. For this model, 505 

the Kdshu2007.mod files were altered to run on NeuroGPU. Specifically, global variables were 506 

removed from the neuron block and instead placed in the assigned block (Carnevale and Hines, 507 

2006). 508 

Optimization algorithm — The eaMuPlusLambda algorithm from the DEAP package was 509 

implemented by modifying the varOR procedure to call NeuroGPU (Rainville et al., 2012). 510 

Optimization was performed on the BBP_PC model. For each iteration, the algorithm began with 511 

a new population of parameters with values randomly chosen with the range specified in Table 512 

2. The model was modified to accept new values from the optimization algorithm (similar 513 

changes were necessary to run the parameter space exploration for Figure 7). Target data were 514 

generated using the original parameters values described in Table 2. Optimization was targeted 515 

to reduce error between target data and test data using both the interspike interval (ISI) and the 516 

root mean square (RMS) of the voltage as the error function. Error was reduced to a single 517 

variable by weighting these two variables as: 10*ISI + RMS.  518 

 519 
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