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Abstract 
Six-state amino acid recoding strategies are commonly applied to combat the effects of compositional heterogeneity and 
substitution saturation in phylogenetic analyses. While these methods have been endorsed from a theoretical perspective, their 
performance has never been extensively tested. Here, we test the effectiveness of 6-state recoding approaches by comparing the 
performance of analyses on recoded and non-recoded datasets that have been simulated under gradients of compositional 
heterogeneity or saturation. In all of our simulation analyses, non-recoding approaches greatly outperformed 6-state recoding 
approaches. Our results suggest that 6-state recoding strategies are not effective in the face of high saturation. Further, while 
recoding strategies do buffer the effects of compositional heterogeneity, the loss of information that accompanies 6-state recoding 
outweighs its benefits, even in the most compositionally heterogeneous datasets. In addition, we evaluate recoding schemes with 
9, 12, 15, and 18 states and show that these all outperform 6-state recoding. Our results have important implications for the more 
than 70 published papers that have incorporated 6-state recoding, many of which have significant bearing on relationships across 
the tree of life. 
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Introduction 
Compositional heterogeneity and substitution saturation 

are major challenges to phylogenetic inference. Compositional 
heterogeneity stems from the tendency of genes or organisms to 
have unequal proportions of amino acids (Collins et al. 1994; 
Foster and Hickey 1999). These unequal amino acid frequencies 
are caused by mutational and selective pressures acting at the 
nucleotide level (Singer and Hickey 2000; Knight et al. 2001), as 
well as differences in translational efficiency (Akashi and Eyre-
Walker 1998). The combination of evolutionary and biological 
processes results in different amino acid compositions across 
taxa on the tree. Consequently, challenges to phylogenetic 
analyses arise when distantly related taxa share sequence 
similarities due to homoplasy (convergence), rather than descent 
from a common ancestor (Foster and Hickey 1999; Tarrío et al. 
2001).  

Similarly, phylogenetic reconstruction artifacts emerge 
under substitution saturation of amino acids. Substitution 
saturation occurs when there have been multiple amino acid 
substitutions at the same site washing out the evolutionary signal 
(Ho and Jermiin 2004). Like compositional heterogeneity, 
sequence saturation can lead to long branch attraction, driving 
unrelated taxa to group together in a clade due to homoplasy 
(Felsenstein 1978; Hendy and Penny 1989). 

Matrix recoding has been proposed as a solution for 
both compositional heterogeneity and substitution saturation. 

Under matrix recoding methods, nucleotides or amino acids are 
recoded into groups based on function (Blanquart and Lartillot 
2006). For example, under the RY nucleotide recoding strategy, 
purines (i.e., A and G) are coded with the character R and 
pyrimidines (i.e., T and C) are coded with the character Y 
(Woese et al. 1991; Phillips et al. 2001). In this recoding 
scenario, only transversion events are meaningful in a 
phylogenetic analysis. A similar recoding strategy has been 
implemented for amino acids, the most well-known being 
Dayhoff 6-state recoding. In Dayhoff 6-state recoding, 
chemically related amino acids that frequently replace each other 
are pooled together into six groups based on similar substitution 
scores in the Dayhoff (or PAM250) matrix (Dayhoff et al. 1978): 
AGPST, DENQ, HKR, ILMV, FWY, and C (Embley et al. 
2003; Hrdy et al. 2004). Thus, only amino acid changes between 
categories, and not within categories, are considered 
substitutions. Since the introduction of Dayhoff 6-state recoding, 
several other 6-state amino acid recoding strategies based around 
other scoring matrices have been developed. For example, S&R 
6-state recoding (Susko and Roger 2007; Feuda et al. 2017) is 
based on the JTT matrix (Jones et al. 1992) and KGB 6-state 
recoding (Kosiol et al. 2004; Feuda et al. 2017) is based on the 
WAG matrix (Whelan and Goldman 2001).  

To date, there are at least 77 phylogenetic studies that 
have implemented six-state amino acid recoding strategies 
(Table 1). While amino acid recoding has been valued from a 
theoretical perspective, the performance of 6-state recoding has 
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never been tested empirically against non-recoding methods. In 
this study, we simulate datasets with either a gradient of 
compositional heterogeneity or saturation and compare the 
performance of maximum-likelihood analyses on 6-state recoded 
datasets to the same analyses on non-recoded datasets. We also 
run a subset of these analyses using 9-, 12-, 15-, and 18-state 
recoding schemes and compare these results to those achieved 
with 6-state recoded and non-recoded matrices.  

Results 
The Efficacy of 6-state Recoding under a Compositional 
Heterogeneity Gradient 

We simulated data with various levels of compositional 
heterogeneity by matching amino acid frequencies of four non-
sister 5-taxa clades on a balanced 20-taxa tree and varying the 
length of the stem branches leading to those four clades (Figure 
1A). We scored the ability of recoding and non-recoding 
approaches to recover the two compositionally heterogeneous 
10-taxa clades (i.e., a clade containing all A and B taxa and a 
clade containing all C and D taxa). As compositional 
heterogeneity increased, the performance of the recoding 
approaches diminished at a slower rate than the non-recoding 
approaches (Figure 1B). However, in all cases tested, non-
recoding approaches performed significantly better than 
recoding approaches, even under the highest levels of 
compositional heterogeneity and shortest stem branches (Table 
S2; Table S3). 

The Efficacy of 6-state Recoding under a Saturation Gradient 

We simulated datasets on the Chang and Feuda trees 
under the Dayhoff and JTT models with increasing levels of 
saturation. Under all tested levels of saturation, phylogenetic 
reconstructions using the Dayhoff and LG models on non-
recoded data matrices that were simulated under the Dayhoff 
model produced trees with fewer errors on average (as measured 
by Robinson-Foulds distances from the starting tree) than those 
that used the Dayhoff 6-state recoded matrix (Figure 2A). The 
results were similar for data simulated under the JTT model, 
where trees reconstructed with the JTT and LG models on non-
recoded data matrices contained fewer errors on average across 
all tested levels of saturation compared to reconstructions with 
the S&R 6-state recoded matrix (Figure 2B). The results were 
consistent regardless of which topology (i.e., Chang or Feuda) 
was used for data simulations (Figure S2). As saturation 
increased, the performance of recoding approaches decreased at 
a faster rate than non-recoding approaches (Figure S2). T-tests 
performed for each branch length scaling factor parameter 
showed that Robinson-Foulds distances were significantly 
higher for recoded datasets compared to non-recoded datasets 
(p-value < 2.2e-16).   

 We also simulated data under the GTR model using the 
amino acid rates of substitution, amino acid frequencies, and 
gamma rate heterogeneity parameters estimated from the Chang 
dataset. Phylogenetic analyses of data simulated under GTR 

resulted in fewer errors on average when reconstructed with non-
recoded Dayhoff matrices compared to reconstructions with the 
Dayhoff 6-state recoded matrices (Figure 2C). T-tests carried out 
for each branch length scaling factor parameter indicated that 
recoded approaches performed significantly worse than non-
recoded approaches (p-value < 2.2e-16). 

The Effect of Alternative Recoding Strategies on 
Compositional Heterogeneity 

We used the data simulated under inflation parameter 
0.5 (mid-level of compositional heterogeneity) using the 
hypothetical tree 0.002 (short stem branches; Figure 1A) from 
the main compositional heterogeneity analysis to test Dayhoff 9-
, 12-, 15-, and 18-state recoding strategies and compared the 
performance of these methods to Dayhoff 6-state recoding and 
non-recoding. As in the main compositional heterogeneity 
analysis outlined above, trees were assessed to determine if they 
recovered the two compositionally heterogeneous 10-taxa clades 
(i.e., AB and CD). The percentage of trees that passed these 
criteria increased as the number of Dayhoff states increased with 
Dayhoff 18-state recoding outperforming all other strategies 
including the non-recoding approach (Figure 3). Non-recoding 
outperformed all other recoding strategies except Dayhoff 12- 
and 15-state recoding under the highest level of compositional 
heterogeneity (inflation parameter 0.9; Figure 3C). Since the 
performance of Dayhoff-18 recoding surpassed the non-recoding 
method under all levels of compositional heterogeneity, we 
performed z-tests to determine if the differences in numbers of 
incorrect trees between analyses run with Dayhoff 18-state 
recoding and those run without recoding were significant. The 
difference was significant (p d 0.05) only under the highest level 
of compositional heterogeneity (p-values for inflation 
parameters 0.1, 0.5, and 0.9: 0.2338, 0.1205, and 4.125e-06 
respectively).  

Discussion 
The philosophy underlying recoding strategies in 

phylogenetics is that sacrificing some information is beneficial 
in cases where homoplasy is high, as is the case when there is 
substantial heterogeneity in nucleotide or amino acid 
composition or when datasets are highly saturated. Six-state 
amino acid recoding has been proposed as a strategy to improve 
phylogenetic reconstruction in the presence of compositional 
heterogeneity and saturation (Embley et al. 2003; Hrdy et al. 
2004; Martin et al. 2005). While there have been simulation 
analyses that compare different binning schemes (Susko and 
Roger 2007; Nesnidal et al. 2010), there are few if any studies 
that compare the accuracy of 6-state recoding to non-recoding 
approaches. In this study, we used simulations under gradients of 
compositional heterogeneity and saturation to compare the 
performance of 6-state amino acid recoding strategies. 
Remarkably, we found that non-recoding approaches 
outperformed 6-state recoding approaches in all of our 
comparisons. Our results show that while 6-state recoding seems 
to be less affected by increases in compositional heterogeneity, it 
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does not overcome the penalty of information loss even under 
the highest levels of compositional heterogeneity (Figure 1B). 
Further, we found that 6-state recoding performs poorly when 
applied to highly saturated datasets. As such, we conclude that 
the costs of information loss associated with the 6-state recoding 
schemes are too great to justify applying these strategies.  

It is possible that not all recoding strategies are 
inappropriate. Specifically, we found that our Dayhoff 9-, 12-, 
15-, and 18-state recoding strategies performed better than the 
standard Dayhoff 6-state recoding approach for all tested levels 
of compositional heterogeneity (Figure 3). Dayhoff-18 recoding 
performed the best under all gradients of compositional 
heterogeneity and may comprise the optimum balance of 
minimizing compositional heterogeneity while maximizing 
information retention. However, we do not advocate blindly 
applying Dayhoff 18-state recoding, especially since significant 
(p  0.05) improvement only occurs under the most extreme 
compositional heterogeneity setting (0.9), which in no way 
reflects a realistic level. Instead we suggest that further 
simulation experiments with challenging topologies and realistic 
datasets are needed before adopting any amino acid recoding 
approach. 

Applying a recoding method that is dataset specific may 
be another tactic to handle compositional heterogeneity or 
saturation. Susko and Roger (2007) and Nesnidal et al. (2010) 
applied this strategy by testing several recoding binning schemes 
informed by their datasets of interest. Tailoring the level and/or 
type of recoding to the amount of compositional heterogeneity 
and saturation, perhaps on a column-by-column basis, may be a 
successful approach, but further testing using such a tailored 
method would be necessary. Since only a handful of studies have 
investigated different recoding schemes, it is clear that more 
analyses are required to gain an understanding of the impact of 
alternative recoding methods for compositionally heterogeneous 
and/or saturated datasets. 

Implications 

 There are at least 77 publications that use 6-state amino 
acid recoding, with the first seven months of 2019 seeing more 
than any year to date (Table 1). Many of these studies have 
proposed controversial topologies with profound implications 
across the tree of life including bacteria, archaea, unicellular 
eukaryotes, fungi, animals, and plants. We have shown that 6-
state recoding greatly reduces information content and therefore 
often results in suboptimal phylogenetic reconstructions. We 
therefore advocate caution when interpreting results stemming 
from analyses that have employed 6-state recoding and contend 
that publications in which 6-state recoding analyses had a 
substantial effect on the conclusions be revisited. 
 

Materials and Methods 
Reproducibility and Transparency Statement 

Custom scripts, command lines, and data used in these 
analyses are available at 
https://github.com/josephryan/Hernandez_Ryan_2019_Recoding
Sim 

To maximize transparency and minimize confirmation 
bias, all analyses were pre-planned using phylotocol (DeBiasse 
and Ryan 2018) and pre-registered using the Center for Open 
Science’s pre-registration platform (https://osf.io/smj6k/ and 
https://osf.io/6ubgj/). We made three changes to our original 
plan during the life of this project, and these changes were 
documented and justified in the phylotocol available on our 
GitHub repository (URL above).   

Overview of Empirical Datasets Employed 

The following methods can be divided into two main 
analyses: compositional heterogeneity and saturation. Both 
analyses employ empirical data from the following papers: 
Chang et al. (2015) hereafter “Chang,” and Feuda et al. (2017) 
hereafter “Feuda.” The topologies from Chang and Feuda are 
based on the same dataset which is made up of 51,940 amino 
acid positions from 77 taxa representing a wide range of animals 
and 9 non-animal outgroups. Feuda extensively applied 6-state 
amino acid recoding to this dataset in a reanalysis of the Chang 
study, which did not use recoding.  

For the compositional heterogeneity analysis, we use 
several hypothetical 20-taxa symmetrical trees which consist of 
4 clades (named A, B, C, and D) made up of 5 taxa each (Figure 
1A), and apply global parameters estimated from the Chang 
dataset. For the saturation analysis, we use the topologies 
reported in Chang and Feuda. More details on these analyses are 
provided below. 

Testing 6-state Recoding Performance on Compositional 
Heterogeneity 

We used the script comphet.pl (available in our GitHub 
repository) to simulate amino acid data in P4 (Foster 2004) on 
four hypothetical 20-taxa balanced trees (Figure 1A). We 
simulated sequences that were 1,000 amino acids in length under 
the GTR model using the amino acid rates of substitution from 
the Chang dataset. To introduce compositional heterogeneity, we 
generated one set of amino acid frequencies for clades A and C 
and a different set of frequencies for clades B and D. For clades 
B and D, we used the amino acid frequencies from the Chang 
dataset. For clades A and C, frequencies for the following pairs 
of amino acids ((A,L), (R,K), (N,M), (D,F), (C,P), (Q,S), (E,T), 
(G,W), (H,Y), (I,V); chosen based on an alphabetical pattern) 
were determined by adjusting each frequency by X, where X is 
the inflation parameter (i.e., 0.1, 0.5, 0.9) multiplied by the 
lowest frequency of the pair. The amino acid of the pair with the 
lowest frequency is incremented by X and the other is 
decremented by X.  
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For example, the Chang frequencies for the amino acids 
R and K are 0.063 and 0.080 respectively. These frequencies 
were used for clades B and D without adjustment. To determine 
the increment value X under the inflation parameter 0.1, we 
multiplied the frequency of R, which is the lowest of the pair, by 
0.1 (X=0.0063). We then added X to the Chang frequency of R 
(0.063 + 0.0063) and subtracted X from the Chang frequency of 
K (0.080 - 0.0063). We rounded these values to 3 decimal places 
(to work with P4) for a final set of frequencies of R = 0.069 and 
K=0.074.  

 Using this algorithm to generate frequencies, we 
performed 1,000 simulations for each combination of the four 
hypothetical 20-taxa trees and the three inflation parameters  
(i.e., 0.1, 0.5, and 0.9) resulting in 12,000 total datasets. To 
verify that these datasets displayed compositional heterogeneity 
between clades A and C compared to clades B and D, we 
computed amino acid frequencies on the simulated datasets and 
summed the difference in frequencies across all replicates. We 
subtracted the average difference in amino acid frequencies 
between clades A and C and between clades B and D (clade 
pairs with homogeneous composition) from the average 
difference in amino acid frequencies between clades A and B, A 
and D, B and C, and C and D (clade pairs with heterogenous 
composition) to generate a compositional heterogeneity (comp-
het) index value. Datasets with comp-het index values closer to 0 
are characterized by low compositional heterogeneity, while 
datasets with higher comp-het index values are characterized by 
high compositional heterogeneity.  

 We recoded each simulated dataset with both Dayhoff 
6-state recoding and S&R 6-state recoding, and then 
reconstructed maximum-likelihood trees of the recoded datasets 
using the GTR multi-state model and of the non-recoded datasets 
using the Dayhoff and JTT models in RAxML (Stamatakis 
2014). In total we produced 48,000 phylogenies for testing 
compositional heterogeneity. We used the script is_mono.pl 
(available in our GitHub repository) to determine whether each 
tree recovered a monophyletic group that included all A and B 
taxa, which by definition would include a monophyletic group 
that included all C and D taxa. We did not test for more fine-
scale relationships as our goal was to evaluate the degree to 
which the applied level of compositional heterogeneity was 
pulling together the compositionally homogenous clades A and 
C, and B and D.  We calculated the percentage of incorrect trees 
using the above criteria for each combination of model, recoding 
type (including no recoding), and level of applied compositional 
heterogeneity (i.e., inflation parameter), and performed a z-test 
to compare the proportions of incorrect trees between non-
recoding and recoding approaches. 

Testing 6-state Recoding Performance on Saturation 

We used Seq-Gen (Rambaut and Grass 1997) to 
simulate the evolution of amino acids on the Chang and Feuda 
topologies. First, we confirmed that increasing the branch length 
scaling factor parameter in Seq-Gen linearly increased levels of 
saturation (Figure S1) using the script seq-gen_saturation_test.pl 

(available in the accompanying GitHub repository). Next, we 
performed 1,000 simulations per combination of tree topology 
(Chang and Feuda), branch length scaling factor parameter (1– 
20), and model of amino acid substitution (either Dayhoff or 
JTT) for a total of 80,000 datasets. We simulated an additional 
1,000 datasets on the Chang topology for a subset of branch 
length scaling factor parameters (1, 5, 10, 15, 20) under the GTR 
model using the amino acid rates of substitution, amino acid 
frequencies, and gamma rate heterogeneity from the Chang 
dataset, bringing the grand total to 85,000 datasets. Each dataset 
included 1,000 amino acid columns. 

For simulations performed on the Chang topology, we 
increased the branch length scaling factor parameter from 1 to 
20 in increments of 1. The Feuda topology was produced from 
recoding the Chang dataset (Feuda et al. 2017), and because 
trees produced from recoded data have substantially fewer 
substitutions and therefore shorter branch lengths, we 
incremented branch lengths by a factor of 2.6 for the Feuda tree 
(based on our calculation that the sum of branch lengths in the 
recoded tree was 2.6 shorter than the sum of branch lengths in 
the non-recoded Chang tree).  

 We performed maximum-likelihood analyses with 
RAxML for each set of sequences produced from simulations 
over the Chang and Feuda topologies. For the datasets simulated 
with Dayhoff and JTT substitution models, we reconstructed 
trees using the generating model, the 6-state recoding scheme 
derived from that model, and for a subset of branch length 
scaling factor parameters (1, 5, 10, 15, 20) we also reconstructed 
trees using LG, a sub-optimal model in this context, as it was not 
the model used for the simulations. For the datasets simulated 
with the GTR substitution model, we generated trees using 
Dayhoff and Dayhoff 6-state recoding. We produced 180,000 
phylogenies in total to test saturation. To test the performance of 
each recoding (or non-recoding) scheme, we used TOPD/FMTS 
(Puigbo et al. 2007) to calculate Robinson-Foulds distances 
(Robinson and Foulds 1981) between the topology used for 
simulation (i.e., Chang or Feuda) and the reconstructed trees 
generated from simulated sequences. We used a t-test to 
determine if there were significant differences in Robinson-
Foulds distances between recoded and non-recoded datasets for 
each branch length scaling factor. 

Testing Alternative Recoding Strategies on Compositional 
Heterogeneity 

To test the effect of number of states on recoding 
strategies, we developed alternative Dayhoff 9-, 12-, 15-, and 
18-state recoding strategies. The first step in these analyses was 
to determine the optimal amino acid binning strategy for each 
number of tested states. Since the number of possible bins for 
each state is finite, ideally, we would use an exhaustive 
algorithm to identify the binning scheme that maximizes the sum 
of intra-bin substitution scores using the Dayhoff matrix. 
Unfortunately, as pointed out by Susko and Roger (2007), the 
number of possible bins is very large (e.g., there are roughly 1.5 
x 1013 choices of bins under an 8-state recoding strategy) and an 
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exhaustive algorithm is computationally intractable. Instead, we 
generated scores (see score.pl in our GitHub repository) for 
several binning schemes that incorporated subsets of the 
Dayhoff 6-state recoding bins and chose the best-scoring binning 
strategies from this set (Table S1). We also compared our best 
binning strategies to those proposed in Susko and Roger (2007) 
and in all cases, the scores we generated were higher, except for 
one which had an equal score (not entirely surprising given that 
the Susko and Roger bins were optimized for JTT recoding). 

 We compared the binning schemes that scored the 
highest for each recoding strategy (Table 2) against the Dayhoff 
and Dayhoff 6-state recoded matrices by testing their 
performance under reasonably high levels of compositional 
heterogeneity. We recoded the data that we simulated for the 
compositional heterogeneity analysis (data simulated with 
inflation parameter 0.5 using the hypothetical tree 0.002 (Figure 
1A)) using our Dayhoff 9-, 12-, 15-, and 18-state recoding 
strategies and reconstructed maximum-likelihood trees in 
RAxML. As in the main compositional heterogeneity analysis 
outlined above, we used the script is_mono_comphet.pl to test if 
the ten taxa labeled A and B were monophyletic and likewise the 
ten taxa labeled C and D were monophyletic. We also performed 
a z-test to compare the proportion of incorrect trees produced 
under Dayhoff-18 recoding (see Results for rationale) to those 
produced under non-recoding. 

Supplementary Material 
All commands and versions of software used in this 

study are provided in the supplementary material. All data and 
scripts are available in the following GitHub repository: 
https://github.com/josephryan/Hernandez_Ryan_2019_Recoding
Sim. 
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Figure 1. Six-state recoding approaches produce more incorrect trees under various levels 

of compositional heterogeneity. (a) Trees used for simulations. The value in the name of the 
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tree (e.g., 0.008 in Tree 0.008) denotes the length in substitutions per site of the stem branches of 

the AB and CD clades (highlighted in orange). Decreasing the lengths of these branches 

increased the effect of compositional heterogeneity (Figure S3). (b) Percentage of 1000 trees that 

did not reconstruct a monophyletic group of taxa from clades A and B and monophyletic group 

of taxa from clades C and D.   
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Figure 2. Six-state recoding approaches produce more errors under increasing levels of 

saturation. Robinson-Foulds distances of all 1,000 runs for each branch length scaling factor 

parameter. All data were simulated on the Chang tree topology. (a) Datasets simulated under the 

Dayhoff model. (b) Datasets simulated under the JTT model. (c) Datasets simulated under the 

GTR model using the amino acid rates of substitution, amino acid frequencies, and gamma rate 

heterogeneity estimated from the Chang dataset.  
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Figure 3. Dayhoff 9-, 12-, 15-, and 18-state recoding produce fewer incorrect trees than 

Dayhoff 6-state recoding under various levels of compositional heterogeneity. Trees were 

reconstructed by applying the non-recoded (NR) Dayhoff matrix or alternative Dayhoff recoding 

strategies (the number of states in the recoding strategy is indicated by digits). Incorrect trees did 

not include a monophyletic group of taxa from clades A and B and monophyletic group of taxa 

from clades C and D. The Y-axis refers to percentage out of 1,000 trees.  
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Williams et al. (2017) yes Archaea 
Schwentner et al. (2017) no Pancrustacea 
Shin et  al. (2017) no Curculionoidea 
Simion et al. (2017) no Animals 
Yoshida et al. (2017) no Tardigrades 
Leliaert et al. (2016) yes Viridiplantae 

Zhang et al. (2016) yes Roseobacter CHAB-I-5 
lineage 

He et al. (2016) no Rhizaria  
Song et al. (2016) no Holometabola 
Domman et al. (2015) yes Plastids 
Luo (2015) yes SAR11  
Petitjean et al. (2015) yes Archaea 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729103doi: bioRxiv preprint 

https://doi.org/10.1101/729103
http://creativecommons.org/licenses/by/4.0/


Borowiec et al. (2015) no Animals 
Derelle et al. (2015) no Eukaryotes 
Wang & Wu (2015) no Mitochondria 
Luo et al. (2014) yes Roseobacter 
Fu et al. (2014) no Discoba 
Lemieux et al. (2014) no Trebouxiophyceae 
Luo et al. (2013) yes Marine Alphaproteobacteria 
Morgan et al. (2013) yes Placental mammals 
Rota-Stabelli et al. (2013) yes Pancrustacea 
Hill et al. (2013) no Demospongiae 
Kayal et al. (2013) no Cnidaria 
Lasek-Nesselquist & Gogarten 
(2013) no 3 domains (eukaryotes, 

archaea, bacteria) 
Ometto et al. (2013) no Drosophila suzukii 
Lasek-Nesselquist (2012) yes Syndermata  
Rodríguez-Ezpeleta & Embley 
(2012) yes SAR11  

Burki et al. (2012) no Plastids 
Derelle & Lang (2012) no Eukaryotes 
Heinz et al. (2012) no Trachipleistophora hominis 
Nishimura et al. (2012) no Mitochondria 
Brochier-Armanet et al. (2011) yes Archaea 

Williams et al. (2011) yes Nucleocytoplasmic large DNA 
virus 

Matsumoto et al. (2011) no Plastids 
Philippe et al. (2011) no Xenacoelomorpha 

Wodniok et al. (2011) no Streptophyte algae and land 
plants 

Torruella et al. (2011) no Opisthokonta 
Parfrey et al. (2010) no Eukaryotes 
Pons et al. (2010) no Coleoptera  
Deschamps & Moreira (2009) yes Archaeplastida 
Foster et al. (2009) yes Eukaryotes 
Masta et al. (2009) yes Arachnida 
Cox et al. (2008) yes Eukaryotes 
Haen et al. (2007) no Hexactinellida  
Andersson et al. (2006) yes Eukaryotes 
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Fitzpatrick et al. (2006) yes Mitochondria 
Fitzpatrick et al. (2006) yes Fungi 
O’Halloran et al. (2006) yes Caenorhabditis elegans  
Delsuc et al. (2006) no Chordates 
Wang & Lavrov (2006) no Homoscleromorpha 
Martin et al. (2005) yes Land plants 
Philip et al. (2005) no Eukaryotes 
Hrdy et al. (2004) yes Hydrogenosomes 
Embley et al. (2003a) yes Hydrogenosomes 
Embley et al. (2003b) yes Hydrogenosomes 
Davidson et al. (2002) yes Hydrogenosomes 

Table 1. Publications that use 6-state amino acid recoding.  
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Table 2. Best scoring binning schemes optimized on the Dayhoff matrix. 
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