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Abstract

Knowledge bases support multiple research e�orts such as providing contextual information for
biomedical entities, constructing networks, and supporting the interpretation of high-throughput
analyses. Some knowledge bases are automatically constructed, but most are populated via some
form of manual curation. Manual curation is time consuming and di�cult to scale in the context of an
increasing publication rate. A recently described “data programming” paradigm seeks to circumvent
this arduous process by combining distant supervision with simple rules and heuristics written as
labeling functions that can be automatically applied to inputs. Unfortunately writing useful label
functions requires substantial error analysis and is a nontrivial task: in early e�orts to use data
programming we found that producing each label function could take a few days. Producing a
biomedical knowledge base with multiple node and edge types could take hundreds or possibly
thousands of label functions. In this paper we sought to evaluate the extent to which label functions
could be re-used across edge types. We used a subset of Hetionet v1 that centered on disease,
compound, and gene nodes to evaluate this approach. We compared a baseline distant supervision
model with the same distant supervision resources added to edge-type-speci�c label functions, edge-
type-mismatch label functions, and all label functions. We con�rmed that adding additional edge-type-
speci�c label functions improves performance. We also found that adding one or a few edge-type-
mismatch label functions nearly always improved performance. Adding a large number of edge-type-
mismatch label functions produce variable performance that depends on the edge type being
predicted and the label function’s edge type source. Lastly, we show that this approach, even on this
subgraph of Hetionet, could add new edges to Hetionet v1 with high con�dence. We expect that
practical use of this strategy would include additional �ltering and scoring methods which would
further enhance precision.

Introduction

Knowledge bases are important resources that hold complex structured and unstructed information.
These resources have been used in important tasks such as network analysis for drug repurposing
discovery [1,2,3] or as a source of training labels for text mining systems [4,5,6]. Populating
knowledge bases often requires highly-trained scientists to read biomedical literature and summarize
the results [7]. This manual curation process requires a signi�cant amount of e�ort and time: in 2007
researchers estimated that �lling in the missing annotations would require approximately 8.4 years
[8]. The rate of publications has continued to increase exponentially [9]. This has been recognized as
a considerable challenge, which can lead to gaps in knowledge bases [8]. 
Relationship extraction has been studied as a solution towards handling this problem [7]. This
process consists of creating a machine learning system to automatically scan and extract relationships
from textual sources. Machine learning methods often leverage a large corpus of well-labeled training
data, which still requires manual curation. Distant supervision is one technique to sidestep the
requirement of well-annotated sentences: with distant supervision one makes the assumption that all
sentences containing an entity pair found in a selected database provide evidence for a relationship
[4]. Distant supervision provides many labeled examples; however it is accompanied by a decrease in
the quality of the labels. 
Ratner et al. [10] recently introduced “data programming” as a solution. Data programming combines
distant supervision with the automated labeling of text using hand-written label functions. The distant
supervision sources and label functions are integrated using a noise aware generative model that is
used to produce training labels. Combining distant supervision with label functions can dramatically
reduce the time required to acquire su�cient training data. However, constructing a knowledge base
of heterogeneous relationships through this framework still requires tens of hand-written label
functions for each relationship type. Writing useful label functions requires signi�cant error analysis,
which can be a time-consuming process.
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In this paper, we aim to address the question: to what extent can label functions be re-used across
di�erent relationship types? We hypothesized that sentences describing one relationship type may
share information in the form of keywords or sentence structure with sentences that indicate other
relationship types. We designed a series of experiments to determine the extent to which label
function re-use enhanced performance over distant supervision alone. We examined relationships
that indicated similar types of physical interactions (i.e., gene-binds-gene and compound-binds-gene)
as well as di�erent types (i.e., disease-associates-gene and compound-treats-disease). The re-use of
label functions could dramatically reduce the number required to generate and update a
heterogeneous knowledge graph.

Related Work

Relationship extraction is the process of detecting and classifying semantic relationships from a
collection of text. This process can be broken down into three di�erent categories: (1) the use of
natural language processing techniques such as manually crafted rules and the identi�cation of key
text patterns for relationship extraction, (2) the use of unsupervised methods via co-occurrence
scores or clustering, and (3) supervised or semi-supervised machine learning using annotated
datasets for the classi�cation of documents or sentences. In this section, we discuss selected e�orts
for each type of edge that we include in this project.

Disease-Gene Associations

E�orts to extract Disease-associates-Gene (DaG) relationships have often used manually crafted rules
or unsupervised methods. One study used hand crafted rules based on a sentence’s grammatical
structure, represented as dependency trees, to extract DaG relationships [11]. Some of these rules
inspired certain DaG text pattern label functions in our work. Another study used co-occurrence
frequencies within abstracts and sentences to score the likelihood of association between disease and
gene pairs [12]. The results of this study were incorporated into Hetionet v1 [3], so this served as one
of our distant supervision label functions. Another approach built o� of the above work by
incorporating a supervised classi�er, trained via distant supervision, into a scoring scheme [13]. Each
sentence containing a disease and gene mention is scored using a logistic regression model and
combined using the same co-occurrence approach used in Pletscher-Frankild et al. [12]. We
compared our results to this approach to measure how well our overall method performs relative to
other methods. Besides the mentioned three studies, researchers have used co-occurrences for
extraction alone [14,15,16] or in combination with other features to recover DaG relationships [17].
One recent e�ort relied on a bi-clustering approach to detect DaG-relevant sentences from Pubmed
abstracts [18] with clustering of dependency paths grouping similar sentences together. The results of
this work supply our domain heuristic label functions. These approaches do not rely on a well-
annotated training performance and tend to provide excellent recall, though the precision is often
worse than with supervised methods [19,20].

Hand-crafted high-quality datasets [21,22,23,24] often serve as a gold standard for training, tuning,
and testing supervised machine learning methods in this setting. Support vector machines have been
repeatedly used to detect DaG relationships [21,25,26]. These models perform well in large feature
spaces, but are slow to train as the number of data points becomes large. Recently, some studies
have used deep neural network models. One used a pre-trained recurrent neural network [27], and
another used distant supervision [28]. Due to the success of these two models, we decided to use a
deep neural network as our discriminative model.

Compound Treats Disease

The goal of extracting Compound-treats-Disease (CtD) edges is to identify sentences that mention
current drug treatments or propose new uses for existing drugs. One study combined an inference
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model from previously established drug-gene and gene-disease relationships to infer novel drug-
disease interactions via co-occurrences [29]. A similar approach has also been applied to CtD
extraction [30]. Manually-curated rules have also been applied to PubMed abstracts to address this
task [31]. The rules were based on identifying key phrases and wordings related to using drugs to
treat a disease, and we used these patterns as inspirations for some of our CtD label functions. Lastly,
one study used a bi-clustering approach to identify sentences relevant to CtD edges [18]. As with DaG
edges, we use the results from this study to provide what we term as domain heuristic label functions.

Recent work with supervised machine learning methods has often focused on compounds that induce
a disease: an important question for toxicology and the subject of the BioCreative V dataset [32]. We
don’t consider environmental toxicants in our work, as our source databases for distant supervision
are primarily centered around FDA-approved therapies.

Compound Binds Gene

The BioCreative VI track 5 task focused on classifying compound-protein interactions and has led to a
great deal of work on the topic [33]. The equivalent edge in our networks is Compound-binds-Gene
(CbG). Curators manually annotated 2,432 PubMed abstracts for �ve di�erent compound protein
interactions (agonist, antagonist, inhibitor, activator and substrate/product production) as part of the
BioCreative task. The best performers on this task achieved an F1 score of 64.10% [33]. Numerous
additional groups have now used the publicly available dataset, that resulted from this competition, to
train supervised machine learning methods [27,34,35,36,36,37,38,39,40] and semi-supervised
machine learning methods [41]. These approaches depend on well-annotated training datasets,
which creates a bottleneck. In addition to supervised and semi-supervised machine learning methods,
hand crafted rules [42] and bi-clustering of dependency trees [18] have been used. We use the results
from the bi-clustering study to provide a subset of the CbG label functions in this work.

Gene-Gene Interactions

Akin to the DaG edge type, many e�orts to extract Gene-interacts-Gene (GiG) relationships used co-
occurrence approaches. This edge type is more frequently referred to as a protein-protein interaction.
Even approaches as simple as calculating Z-scores from PubMed abstract co-occurrences can be
informative [43], and there are numerous studies using co-occurrences [16,44,45,46]. However,
more sophisticated strategies such as distant supervision appear to improve performance [13].
Similarly to the other edge types, the bi-clustering approach over dependency trees has also been
applied to this edge type [18]. This manuscript provides a set of label functions for our work.

Most supervised classi�ers used publicly available datasets for evaluation [47,48,49,50,51]. These
datasets are used equally among studies, but can generate noticeable di�erences in terms of
performance [52]. Support vector machines were a common approach to extract GiG edges [53,54].
However, with the growing popularity of deep learning numerous deep neural network architectures
have been applied [41,55,56,57]. Distant supervision has also been used in this domain [58], and in
fact this e�ort was one of the motivating rationales for our work.

Materials and Methods

Hetionet
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Figure 1:  A metagraph (schema) of Hetionet where biomedical entities are represented as nodes and the relationships
between them are represented as edges. We examined performance on the highlighted subgraph; however, the long-
term vision is to capture edges for the entire graph.

Hetionet [3] is a large heterogenous network that contains pharmacological and biological
information. This network depicts information in the form of nodes and edges of di�erent types:
nodes that represent biological and pharmacological entities and edges which represent relationships
between entities. Hetionet v1.0 contains 47,031 nodes with 11 di�erent data types and 2,250,197
edges that represent 24 di�erent relationship types (Figure 1). Edges in Hetionet were obtained from
open databases, such as the GWAS Catalog [59] and DrugBank [60]. For this project, we analyzed
performance over a subset of the Hetionet relationship types: disease associates with a gene (DaG),
compound binds to a gene (CbG), gene interacts with gene (GiG) and compound treating a disease
(CtD).

Dataset

We used PubTator [61] as input to our analysis. PubTator provides MEDLINE abstracts that have been
annotated with well-established entity recognition tools including DNorm [62] for disease mentions,
GeneTUKit [63] for gene mentions, Gnorm [64] for gene normalizations and a dictionary based search
system for compound mentions [65]. We downloaded PubTator on June 30, 2017, at which point it
contained 10,775,748 abstracts. Then we �ltered out mention tags that were not contained in
hetionet. We used the Stanford CoreNLP parser [66] to tag parts of speech and generate dependency
trees. We extracted sentences with two or more mentions, termed candidate sentences. Each
candidate sentence was strati�ed by co-mention pair to produce a training set, tuning set and a
testing set (shown in Table 1). Each unique co-mention pair is sorted into four categories: (1) in
hetionet and has sentences, (2) in hetionet and doesn’t have sentences, (3) not in hetionet and does
have sentences and (4) not in hetionet and doesn’t have sentences. Within these four categories each
pair is randomly assigned their own individual partition rank (continuous number between 0 and 1).
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Any rank lower than 0.7 is sorted into the training set, while any rank greater than 0.7 and lower than
0.9 is assigned to the tuning set. The rest of the pairs with a rank greater than or equal to 0.9 is
assigned to the test set. Sentences that contain more than one co-mention pair are treated as
multiple individual candidates. We hand labeled �ve hundred to a thousand candidate sentences of
each relationship type to obtain a ground truth set (Table 1)1.

Table 1:  Statistics of Candidate Sentences. We sorted each candidate sentence into a training, tuning and testing set.
Numbers in parentheses show the number of positives and negatives that resulted from the hand-labeling process.

Relationship Train Tune Test

Disease Associates Gene 2.35 M 31K (397+, 603-) 313K (351+, 649-)

Compound Binds Gene 1.7M 468K (37+, 463-) 227k (31+, 469-)

Compound Treats Disease 1.013M 96K (96+, 404-) 32K (112+, 388-)

Gene Interacts Gene 12.6M 1.056M (60+, 440-) 257K (76+, 424-)

Label Functions for Annotating Sentences

The challenge of having too few ground truth annotations is common to many natural language
processing settings, even when unannotated text is abundant. Data programming circumvents this
issue by quickly annotating large datasets by using multiple noisy signals emitted by label functions
[10]. Label functions are simple pythonic functions that emit: a positive label (1), a negative label (-1)
or abstain from emitting a label (0). We combine these functions using a generative model to output a
single annotation, which is a consensus probability score bounded between 0 (low chance of
mentioning a relationship) and 1 (high chance of mentioning a relationship). We used these
annotations to train a discriminator model that makes the �nal classi�cation step. Our label functions
fall into three categories: databases, text patterns and domain heuristics. We provide examples for
each category in our supplemental methods section.

Training Models

Generative Model

The generative model is a core part of this automatic annotation framework. It integrates multiple
signals emitted by label functions and assigns a training class to each candidate sentence. This model
assigns training classes by estimating the joint probability distribution of the latent true class ( ) and
label function signals ( ), . Assuming each label function is conditionally independent, the
joint distribution is de�ned as follows:

where  is the number of candidate sentences,  is the vector of summary statistics and  is a vector
of weights for each summary statistic. The summary statistics used by the generative model are as
follows:

Lab is the label function’s propensity (the frequency of a label function emitting a signal). Acc is the
individual label function’s accuracy given the training class. This model optimizes the weights ( ) by

Y
Λ P(Λ,Y )

P(Λ,Y ) =
exp(∑

m

i=1 θ
TFi(Λ, y))

∑Λ′ ∑y′ exp(∑
m
i=1 θ

TFi(Λ′, y′))

m F θ

F Lab
i,j (Λ,Y ) = 𝟙{Λi,j ≠ 0}

F Acc
i,j (Λ,Y ) = 𝟙{Λi,j = yi,j}

θ
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minimizing the negative log likelihood:

In the framework we used predictions from the generative model, , as training classes
for our dataset [67,68].

Experimental Design

Being able to re-use label functions across edge types would substantially reduce the number of label
functions required to extract multiple relationships from biomedical literature. We �rst established a
baseline by training a generative model using only distant supervision label functions designed for the
target edge type. As an example, for the GiG edge type we used label functions that returned a 1  if
the pair of genes were included in the Human Interaction database [69], the iRefIndex database [70]
or in the Incomplete Interactome database [71]. Then we compared models that also included text
and domain-heuristic label functions. Using a sampling with replacement approach, we sampled these
text and domain-heuristic label functions separately within edge types, across edge types, and from a
pool of all label functions. We compared within-edge-type performance to across-edge-type and all-
edge-type performance. For each edge type we sampled a �xed number of label functions consisting
of �ve evenly-spaced numbers between one and the total number of possible label functions. We
repeated this sampling process 50 times for each point. We evaluated both generative and
discriminative (training and downstream analyses are described in the supplemental methods
section) models at each point, and we reported performance of each in terms of the area under the
receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPR).
Lastly, we conducted a follow up experiment for the generative model described in the supplemental
methods section.

Results

Generative Model Using Randomly Sampled Label Functions

θ̂ = argminθ −∑
Λ

log∑
Y

P(Λ,Y )

Ŷ = P(Y ∣ Λ)
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Figure 2:  Grid of AUROC scores for each generative model trained on randomly sampled label functions. The rows
depict the relationship each model is trying to predict and the columns are the edge type speci�c sources from which
each label function is sampled. The right most column consists of pooling every relationship speci�c label function and
proceeding as above.

We added randomly sampled label functions to a baseline for each edge type to evaluate the
feasibility of label function re-use. Our baseline model consisted of a generative model trained with
only edge-speci�c distant supervision label functions. We reported the results in AUROC and AUPR
(Figure 2 and Supplemental Figure 5). 
The on-diagonal plots of �gure 2 and supplemental �gure 5 show increasing performance when
edge-speci�c label functions are added on top of the edge-speci�c baselines. The CtD edge type is a
quintessential example of this trend. The baseline model starts o� with an AUROC score of 52% and
an AUPRC of 28%, which increase to 76% and 49% respectively as more CtD label functions are
included. DaG edges have a similar trend: performance starting o� with an AUROC of 56% and AUPR
of 41% then increases to 62% and 45% respectively. Both the CbG and GiG edges have an increasing
trend but plateau after a few label functions are added.

The o�-diagonals in �gure 2 and supplemental �gure 5 show how performance varies when label
functions from one edge type are added to a di�erent edge type’s baseline. In certain cases (apparent
for DaG), performance increases regardless of the edge type used for label functions. In other cases
(apparent with CtD), one label function appears to improve performance; however, adding more label
functions does not improve performance (AUROC) or decreases it (AUPR). In certain cases, the source
of the label functions appears to be important: the performance of CbG edges decrease when using
label functions from the DaG and CtD categories.

Our initial hypothesis was based on the idea that certain edge types capture similar physical
relationships and that these cases would be particularly amenable for label function transfer. For
example, CbG and GiG both describe physical interactions. We observed that performance increased
as assessed by both AUROC and AUPR when using label functions from the GiG edge type to predict
CbG edges. A similar trend was observed when predicting the GiG edge; however, the performance
di�erences were small for this edge type making the importance di�cult to assess. 
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The last column shows increasing performance (AUROC and AUPR) for both DaG and CtD when
sampling from all label functions. CbG and GiG also had increased performance when one random
label function was sampled, but performance decreased drastically as more label functions were
added. It is possible that a small number of irrelevant label functions are able to overwhelm the
distant supervision label functions in these cases (see Figure 3 and Supplemental Figure 6).

Random Label Function Generative Model Analysis

Figure 3:  A grid of AUROC (A) scores for each edge type. Each plot consists of adding a single label function on top of
the baseline model. This label function emits a positive (shown in blue) or negative (shown in orange) label at speci�ed
frequencies, and performance at zero is equivalent to not having a randomly emitting label function. The error bars
represent 95% con�dence intervals for AUROC or AUPR (y-axis) at each emission frequency.

We observed that including one label function of a mismatched type to distant supervision often
improved performance, so we evaluated the e�ects of adding a random label function in the same
setting. We found that usually adding random noise did not improve performance (Figure 3 and
Supplemental Figure 6). For the CbG edge type we did observe slightly increased performance via
AUPR (Supplemental Figure 6). However, performance changes in general were smaller than those
observed with mismatched label types.

Discussion

We tested the feasibility of re-using label functions to extract relationships from literature. Through
our sampling experiment, we found that adding relevant label functions increases prediction
performance (shown in the on-diagonals of Figures 2 and Supplemental Figure 5). We found that
label functions designed from relatively related edge types can increase performance (seen when GiG
label functions predicts CbG and vice versa). We noticed that one edge type (DaG) is agnostic to label
function source (Figure 2 and Supplemental Figure 5). Performance routinely increases when adding
a single mismatched label function to our baseline model (the generative model trained only on
distant supervision label functions). These results led us to hypothesize that adding a small amount of
noise aided the model, but our experiment with a random label function reveals that this was not the
case (Figures 3 and 6). Based on these results one question still remains: why does performance
drastically increase when adding a single label function to our distant supervision baseline?
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The discriminative model didn’t work as intended. The majority of the time the discriminative model
underperformed the generative model (Supplemental Figures 7 and 8). Potential reasons for this are
the discriminative model over�tting to the generative model’s predictions and a negative class bias in
some of our datasets (Table 1). The challenges with the discriminative model are likely to have led to
issues in our downstream analyses: poor model calibration (Supplemental Figure 9) and poor recall in
detecting existing Hetionet edges (Supplemental Figure 11). Despite the above complications, our
model had similar performance with a published baseline model (Supplemental Figure 10). This
implies that with better tuning the discriminative model has the potential to perform better than the
baseline model.

Conclusion and Future Direction

Filling out knowledge bases via manual curation can be an arduous and erroneous task [8]. As the
rate of publications increases manual curation becomes an infeasible approach. Data programming, a
paradigm that uses label functions as a means to speed up the annotation process, can be used as a
solution for this problem. A problem with this paradigm is that creating a useful label function takes a
signi�cant amount of time. We tested the feasibility of reusing label functions as a way to speed up
the label function creation process. We conclude that label function re-use across edge types can
increase performance when there are certain constraints on the number of functions re-used. More
sophisticated methods of reuse may be able to capture many of the advantages and avoid many of
the drawbacks. Adding more relevant label functions can increase overall performance. The
discriminative model, under this paradigm, has a tendency to over�t to predictions of the generative
model. We recommend implementing regularization techniques such as drop out and weight decay to
combat this issue.

This work sets up the foundation for creating a common framework that mines text to create edges.
Within this framework we would continuously ingest new knowledge as novel �ndings are published,
while providing a single con�dence score for an edge by consolidating sentence scores. Di�erent from
existing hetnets like Hetionet where text-derived edges generally cannot be exactly attributed to
excerpts from literature [3,72], our approach would annotate each edge with its source sentences. In
addition, edges generated with this approach would be unencumbered from upstream licensing or
copyright restrictions, enabling openly licensed hetnets at a scale not previously possible [73,74,75].
Accordingly, we plan to use this framework to create a robust multi-edge extractor via multitask
learning [68] to construct continuously updating literature-derived hetnets.

Supplemental Information

This manuscript and supplemental information are available at
https://greenelab.github.io/text_mined_hetnet_manuscript/. Source code for this work is available
under open licenses at: https://github.com/greenelab/snorkeling/.
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Supplemental Methods

Label Function Categories

We provide examples of label function categories below. Each example regards the following
candidate sentence: “PTK6 may be a novel therapeutic target for pancreatic cancer.”

Databases: These label functions incorporate existing databases to generate a signal, as seen in
distant supervision [4]. These functions detect if a candidate sentence’s co-mention pair is present in
a given database. If the candidate pair is present, our label function emitted a positive label and
abstained otherwise. If the candidate pair wasn’t present in any existing database, a separate label
function emitted a negative label. We used a separate label function to prevent a label imbalance
problem that we encountered during development: emitting positive and negatives from the same
label functions appeared to result in classi�ers that predict almost exclusively negative predictions.

Text Patterns: These label functions are designed to use keywords and sentence context to generate
a signal. For example, a label function could focus on the number of words between two mentions or
focus on the grammatical structure of a sentence. These functions emit a positive or negative label
depending on the situation.

Domain Heuristics: These label functions use the other experiment results to generate a signal. For
this category, we used dependency path cluster themes generated by Percha et al. [18]. If a candidate
sentence’s dependency path belongs to a previously generated cluster, then the label function will
emit a positive label and abstain otherwise.

Roughly half of our label functions are based on text patterns, while the others are distributed across
the databases and domain heuristics (Table 2).

Table 2:  The distribution of each label function per relationship.

Relationship Databases (DB) Text Patterns (TP) Domain Heuristics (DH)

DaG 7 20 10

CtD 3 15 7

CbG 9 13 7

ΛDB(D,G) = { 1 (D,G) ∈ DB

0 otherwise

Λ¬DB(D,G) = {−1 (D,G) ∉ DB

0 otherwise

ΛTP (D,G) = { 1 " target " ∈ Candidate Sentence

0 otherwise

ΛTP (D,G) = {−1 " VB " ∉ pos_tags(Candidate Sentence)
0 otherwise

ΛDH(D,G) = { 1 Candidate Sentence ∈ Cluster Theme

0 otherwise
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Relationship Databases (DB) Text Patterns (TP) Domain Heuristics (DH)

GiG 9 20 8

Adding Random Noise to Generative Model

We discovered in the course of this work that adding a single label function from a mismatched type
would often improve the performance of the generative model (see Results). We designed an
experiment to test whether adding a noisy label function also increased performance. This label
function emitted a positive or negative label at varying frequencies, which were evenly spaced from
zero to one. Zero was the same as distant supervision and one meant that all sentences were
randomly labeled. We trained the generative model with these label functions added and reported
results in terms of AUROC and AUPR.

Discriminative Model

The discriminative model is a neural network, which we train to predict labels from the generative
model. The expectation is that the discriminative model can learn more complete features of the text
than the label functions used in the generative model. We used a convolutional neural network with
multiple �lters as our discriminative model. This network uses multiple �lters with �xed widths of 300
dimensions and a �xed height of 7 (Figure 4), because this height provided the best performance in
terms of relationship classi�cation [76]. We trained this model for 20 epochs using the adam
optimizer [77] with pytorch’s default parameter settings and a learning rate of 0.001. We added a L2
penalty on the network weights to prevent over�tting. Lastly, we added a dropout layer (p=0.25)
between the fully connected layer and the softmax layer.

Figure 4:  The architecture of the discriminative model was a convolutional neural network. We performed a
convolution step using multiple �lters. The �lters generated a feature map that was sent into a maximum pooling layer
that was designed to extract the largest feature in each map. The extracted features were concatenated into a singular
vector that was passed into a fully connected network. The fully connected network had 300 neurons for the �rst layer,
100 neurons for the second layer and 50 neurons for the last layer. The last step from the fully connected network was
to generate predictions using a softmax layer.
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Word Embeddings

Word embeddings are representations that map individual words to real valued vectors of user-
speci�ed dimensions. These embeddings have been shown to capture the semantic and syntactic
information between words [78]. We trained Facebook’s fastText [79] using all candidate sentences
for each individual relationship pair to generate word embeddings. fastText uses a skipgram model
[80] that aims to predict the surrounding context for a candidate word and pairs the model with a
novel scoring function that treats each word as a bag of character n-grams. We trained this model for
20 epochs using a window size of 2 and generated 300-dimensional word embeddings. We use the
optimized word embeddings to train a discriminative model.

Calibration of the Discriminative Model

Often many tasks require a machine learning model to output reliable probability predictions. A
model is well calibrated if the probabilities emitted from the model match the observed probabilities:
a well-calibrated model that assigns a class label with 80% probability should have that class appear
80% of the time. Deep neural network models can often be poorly calibrated [81,82]. These models
are usually over-con�dent in their predictions. As a result, we calibrated our convolutional neural
network using temperature scaling. Temperature scaling uses a parameter T to scale each value of the
logit vector (z) before being passed into the softmax (SM) function.

We found the optimal T by minimizing the negative log likelihood (NLL) of a held out validation set.
The bene�t of using this method is that the model becomes more reliable and the accuracy of the
model doesn’t change [81].

Supplemental Tables and Figures

Generative Model AUPR Performance
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Figure 5:  Grid of AUPR scores for each generative model trained on randomly sampled label functions. The rows depict
the relationship each model is trying to predict and the columns are the edge type speci�c sources from which each
label function is sampled. For example, the top-left most square depicts the generative model predicting DaG sentences,
while randomly sampling label functions designed to predict the DaG relationship. The square towards the right depicts
the generative model predicting DaG sentences, while randomly sampling label functions designed to predict the CtD
relationship. This pattern continues �lling out the rest of the grid. The right most column consists of pooling every
relationship speci�c label function and proceeding as above.

Random Label Function Generative Model Analysis

Figure 6:  A grid of AUROC (A) scores for each edge type. Each plot consists of adding a single label function on top of
the baseline model. This label function emits a positive (shown in blue) or negative (shown in orange) label at speci�ed
frequencies, and performance at zero is equivalent to not having a randomly emitting label function. The error bars
represent 95% con�dence intervals for AUROC or AUPR (y-axis) at each emission frequency.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 8, 2019. ; https://doi.org/10.1101/730085doi: bioRxiv preprint 

https://doi.org/10.1101/730085
http://creativecommons.org/licenses/by/4.0/


Discriminative Model Performance

Figure 7:  Grid of AUROC scores for each discriminative model trained using generated labels from the generative
models. The rows depict the edge type each model is trying to predict and the columns are the edge type speci�c
sources from which each label function was sampled. For example, the top-left most square depicts the discriminator
model predicting DaG sentences, while randomly sampling label functions designed to predict the DaG relationship. The
error bars over the points represents the standard deviation between sampled runs. The square towards the right
depicts the discriminative model predicting DaG sentences, while randomly sampling label functions designed to predict
the CtD relationship. This pattern continues �lling out the rest of the grid. The right most column consists of pooling
every relationship speci�c label function and proceeding as above.

In this framework we used a generative model trained over label functions to produce probabilistic
training labels for each sentence. Then we trained a discriminative model, which has full access to a
representation of the text of the sentence, to predict the generated labels. The discriminative model is
a convolutional neural network trained over word embeddings (See Methods). We report the results
of the discriminative model using AUROC and AUPR (Figures 7 and 8).

We found that the discriminative model under-performed the generative model in most cases. Only
for the CtD edge does the discriminative model appear to provide performance above the generative
model and that increased performance is only with a modest number of label functions. With the full
set of label functions, performance of both models remain similar. The one or a few mismatched label
functions (o�-diagonal) improving generative model performance trend is retained despite the limited
performance of the discriminative model.
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Figure 8:  Grid of AUPR scores for each discriminative model trained using generated labels from the generative
models. The rows depict the edge type each model is trying to predict and the columns are the edge type speci�c
sources from which each label function was sampled. For example, the top-left most square depicts the discriminator
model predicting DaG sentences, while randomly sampling label functions designed to predict the DaG relationship. The
error bars over the points represents the standard deviation between sampled runs. The square towards the right
depicts the discriminative model predicting DaG sentences, while randomly sampling label functions designed to predict
the CtD relationship. This pattern continues �lling out the rest of the grid. The right most column consists of pooling
every relationship speci�c label function and proceeding as above.

Discriminative Model Calibration

Figure 9:  Calibration plots for the discriminative model. A perfectly calibrated model would follow the dashed diagonal
line. The blue line represents the predictions before calibration and the orange line shows predictions after calibration.
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Even deep learning models with high precision and recall can be poorly calibrated, and the
overcon�dence of these models has been noted [81,82]. We attempted to calibrate the best
performing discriminative model so that we could directly use the emitted probabilities. We examined
the calibration of our existing model (Supplemental Figure 9, blue line). We found that the DaG and
CtG edge types were, though not perfectly calibrated, were somewhat aligned with the ideal
calibration lines. The CbG and GiG edges were poorly calibrated and increasing model certainty did
not always lead to an increase in precision. Applying the calibration algorithm (orange line) did not
appear to bring predictions in line with the ideal calibration line, but did capture some of the
uncertainty in the GiG edge type. For this reason we use the measured precision instead of the
predicted probabilities when determining how many edges could be added to existing knowledge
bases with speci�ed levels of con�dence.

Model Calibration Tables

Table 3:  Contains the top ten Disease-associates-Gene con�dence scores before and after model calbration. Disease
mentions are highlighted in brown and Gene mentions are highlighted in blue.

Disease Name Gene
Symbol Text Before

Calibration
After

Calibraiton

adrenal gland
cancer TP53

the mechanisms of adrenal tumorigenesis remain
poorly established ; the r337h germline mutation in the
p53 gene has previously been associated with acts in
brazilian children .

1.0 0.882

breast cancer ERBB2
in breast cancer , overexpression of her2 is associated
with an aggressive tumor phenotype and poor
prognosis .

1.0 0.845

lung cancer TP53
however , both adenine ( a ) and guanine ( g ) mutations
are found in the p53 gene in cr exposure-related lung
cancer .

1.0 0.83

malignant glioma BAX

these data suggest that the combination of tra-8
treatment with speci�c overexpression of bax using
advegfbax may be an e�ective approach for the
treatment of human malignant gliomas .

0.999 0.827

polycystic ovary
syndrome SERPINE1

4 g allele in pai-1 gene was more frequent in pcos and
the 4g/4 g genotype was associated with increased pai-
1 levels .

0.999 0.814

systemic lupus
erythematosus PRL

results : sle patients showed a signi�cantly higher
serum level of prl than healthy subjects , which was
especially obvious in the active stage of the disease ( p
= 0.000 .

0.999 0.813

hematologic
cancer TNF

the mean tnf-alpha plasma concentration in the
patients with cll was signi�cantly higher than in the
healthy control population ( 16.4 versus 8.7 pg/ml ; p <
.0001 ) .

0.999 0.81

lung cancer MUC16

the mean concentration of ca 125 was higher in
patients with lung cancer ( 37 + / - 81 u/ml ) than in
those with nonmalignant disease ( 4.2 + / - 5.7 u/ml ) ( p
less than 0.01 ) .

0.999 0.806

prostate cancer AR
the androgen receptor was expressed in all primary
and metastatic prostate cancer tissues and no
mutations were identi�ed .

0.999 0.801
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Disease Name Gene
Symbol Text Before

Calibration
After

Calibraiton

breast cancer ERBB2

the results of multiple linear regression analysis , with
her2 as the dependent variable , showed that family
history of breast cancer was signi�cantly associated
with elevated her2 levels in the tumors ( p = 0.0038 ) ,
after controlling for the e�ects of age , tumor estrogen
receptor , and dna index .

0.999 0.8

Table 4:  Contains the bottom ten Disease-associates-Gene con�dence scores before and after model calbration.
Disease mentions are highlighted in brown and Gene mentions are highlighted in blue.

Disease
Name

Gene
Symbol Text Before

Calibration
After

Calibraiton

breast cancer NAT2 [ the relationship between passive smoking , breast cancer
risk and n-acetyltransferase 2 ( nat2 ) ] . 0.012 0.287

schizophrenia EP300 ventricle size and p300 in schizophrenia . 0.012 0.286

hematologic
cancer CD33

in the 2 ( nd ) study of cd33 + sr-aml 2 doses of go ( 4.5 - 9
mg/m ( 2 ) ) were administered > = 60d post reduced
intensity conditioning ( ric ) allosct ( 8 wks apart ) .

0.01 0.281

Crohn’s
disease PTPN2

in this sample , we were able to con�rm an association
between cd and ptpn2 ( genotypic p = 0.019 and allelic p =
0.011 ) , and phenotypic analysis showed an association of
this snp with late age at �rst diagnosis , in�ammatory and
penetrating cd behaviour , requirement of bowel resection
and being a smoker at diagnosis .

0.008 0.268

breast cancer ERBB2 long-term e�cacy and safety of adjuvant trastuzumab for
her2-positive early [breast cancer ] . 0.007 0.262

hematologic
cancer CD40LG

we examined the direct e�ect of lenalidomide on cll-cell
proliferation induced by cd154-expressing accessory cells
in media containing interleukin-4 and -10 .

0.006 0.259

hematologic
cancer MLANA

methods : the sln sections ( n = 214 ) were assessed by qrt
assay for 4 established messenger rna biomarkers : mart-1
, mage-a3 , galnac-t , and pax3 .

0.005 0.252

breast cancer ERBB2

the keywords erbb2 or her2 or erbb-2 or her-2 and breast
cancer and ( country ) were used to search pubmed ,
international and local conference abstracts and local-
language journals from the year 2000 onwards .

0.003 0.225

hepatitis B PKD2

conversely , a signi�cant enhancement of activation was
observed for afb1 in cases of mild cah and especially for
trp-p-2 in hepatitis b virus carriers , irrespective of their
histologic diagnosis .

0.002 0.217

hematologic
cancer C7

serum antibody responses to four haemophilus in�uenzae
type b capsular polysaccharide-protein conjugate vaccines
( prp-d , hboc , c7p , and prp-t ) were studied and
compared in 175 infants , 85 adults and 140 2-year-old
children .

0.002 0.208

Table 5:  Contains the top ten Compound-treats-Disease con�dence scores after model calbration. Disease mentions
are highlighted in brown and Compound mentions are highlighted in red.

Compound
Name

Disease
Name Text Before

Calibration
After

Calibration
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Compound
Name

Disease
Name Text Before

Calibration
After

Calibration

Methylpredni
solone asthma use of tao without methylprednisolone in the treatment

of severe asthma . 1.0 0.895

Methyldopa hypertension atenolol and methyldopa in the treatment of
hypertension . 1.0 0.888

Prednisone asthma prednisone and beclomethasone for treatment of
asthma . 1.0 0.885

Prazosin hypertension experience with prazosin in the treatment of
hypertension . 1.0 0.883

Prazosin hypertension prazosin in the treatment of hypertension . 1.0 0.878

Prazosin hypertension prazosin in the treatment of [hypertension ] . 1.0 0.878

Methyldopa hypertension oxprenolol plus cyclopenthiazide-kcl versus methyldopa
in the treatment of hypertension . 1.0 0.877

Prednisolone
lymphatic
system
cancer

peptichemio : a new oncolytic drug in combination with
vincristine and prednisolone in the treatment of non-
hodgkin lymphomas .

1.0 0.871

Methyldopa hypertension
methyldopate , the ethyl ester hydrochloride salt of
alpha-methyldopa ( alpha-md ) , is used extensively in
the treatment of severe hypertension .

1.0 0.851

Haloperidol
Gilles de la
Tourette
syndrome

a comparison of pimozide and haloperidol in the
treatment of gilles de la tourette ’s syndrome . 1.0 0.839

Table 6:  Contains the bottom ten Compound-treats-Disease con�dence scores before and after model calbration.
Disease mentions are highlighted in brown and Compound mentions are highlighted in red.

Compound
Name

Disease
Name Text Before

Calibration
After

Calibration

Dexamethaso
ne hypertension dexamethasone and hypertension in preterm infants . 0.011 0.34

Reserpine hypertension reserpine in hypertension : present status . 0.01 0.336

Creatine coronary
artery disease

scintiphotographic �ndings were compared with the
size of myocardial infarcts calculated from
measurements of the activity of mb isoenzymes of
creatine kinase ( ck-mb ) in serum and in the
myocardium at autopsy , as described by sobel ’s
method .

0.009 0.334

Hydrocortiso
ne brain cancer

to explore the e�ects of repeated episodes of
hypercortisolemia on hypothalamic-pituitary-adrenal
axis regulation , we studied plasma acth and cortisol (
cort ) responses to 100 micrograms human crh ( hcrh )
in 10 dexamethasone ( 1.5 mg ) - pretreated elderly
endurance athletes who had abstained from physical
activity for at least 48 h before testing and 13 sedentary
age-matched controls .

0.009 0.333

Hydrocortiso
ne brain cancer

basal activity of the hypothalamic-pituitary-adrenal axis
was estimated by determinations of 24-h urinary free
cortisol-excretion , evening basal plasma total and free
cortisol concentrations , and the cortisol binding
globulin-binding capacity .

0.008 0.328
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Compound
Name

Disease
Name Text Before

Calibration
After

Calibration

Creatine coronary
artery disease

during successful and uncomplicated angioplasty ( ptca )
, we studied the e�ect of a short lasting myocardial
ischemia on plasma creatine kinase , creatine kinase
mb-activity , and creatine kinase mm-isoforms ( mm1 ,
mm2 , mm3 ) in 23 patients .

0.006 0.318

Benzylpenicilli
n

epilepsy
syndrome

it was shown in experiments on cats under nembutal
anesthesia that a lesion of the medial forebrain bundle (
mfb ) and partly of the preoptic region at the side of
local penicillin application on the cerebral cortex ( g.
suprasylvius medius ) results in depression of the
epileptiform activity in the penicillin-induced focus , as
well as in the secondary  mirror ’’ focus , which
appeared in the symmetrical cortex area of the other
hemisphere .

0.005 0.315

Indomethacin hypertension e�ects of indomethacin in rabbit renovascular
hypertension . 0.004 0.308

Cyclic
Adenosine
Monophosph
ate

ovarian
cancer

the hormonal regulation of steroidogenesis and
adenosine 3 ’ :5 ’ - cyclic monophosphate in embryonic-
chick ovary .

0.002 0.292

Dobutamine coronary
artery disease

two-dimensional echocardiography can detect regional
wall motion abnormalities resulting from myocardial
ischemia produced by dobutamine infusion .

0.002 0.287

Table 7:  Contains the top ten Compound-treats-Disease con�dence scores before and after model calbration. Gene
mentions are highlighted in blue and Compound mentions are highlighted in red.

Compound
Name

Gene
Symbol Text Before

Calibration
After

Calibration

Hydrocortiso
ne SHBG

serum concentrations of testicular and adrenal androgens
and androgen precursors , cortisol , unconjugated ( e1 )
and total estrone ( te1 ; greater than or equal to 85 % e1
sulfate ) , pituitary hormones , sex hormone binding
globulin ( shbg ) and albumin were measured in 14 male
patients with non-diabetic end stage renal disease and in
28 age-matched healthy controls .

0.997 0.745

Minoxidil EGFR
direct measurement of the ability of minoxidil to compete
for binding to the egf receptor indicated that minoxidil
probably does not bind to the egf receptor .

0.99 0.706

Hydrocortiso
ne SHBG

gonadotropin , testosterone , sex hormone binding
globulin ( shbg ) , dehydroepiandrosterone sulphate ,
androstenedione , estradiol , prolactin , cortisol ,
thyrotropin , and free thyroxine levels were determined .

0.988 0.7

Cholecalcifer
ol DBP

cholecalciferol ( vitamin d3 ) and its 25-hydroxy metabolite
are transported in plasma bound to a speci�c protein , the
binding protein for cholecalciferol and its metabolites (
dbp ) .

0.983 0.685

Indomethacin AGT
indomethacin , a potent inhibitor of prostaglandin
synthesis , is known to increase the maternal blood
pressure response to angiotensin ii infusion .

0.982 0.68
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Compound
Name

Gene
Symbol Text Before

Calibration
After

Calibration

Tretinoin RXRA

the vitamin a derivative retinoic acid exerts its e�ects on
transcription through two distinct classes of nuclear
receptors , the retinoic acid receptor ( rar ) and the retinoid
x receptor ( rxr ) .

0.975 0.668

Dopamine NTS neurotensin binding was not modi�ed by the addition of
dopamine . 0.97 0.659

D-Tyrosine PLCG1

epidermal growth factor ( egf ) or platelet-derived growth
factor binding to their receptor on �broblasts induces
tyrosine phosphorylation of plc gamma 1 and stable
association of plc gamma 1 with the receptor protein
tyrosine kinase .

0.969 0.659

D-Tyrosine PLCG1

tyrosine phosphorylation of plc-ii was stimulated by low
physiological concentrations of egf ( 1 nm ) , was
quantitative , and was already maximal after a 30 sec
incubation with 50 nm egf at 37 degrees c. interestingly ,
antibodies speci�c for plc-ii were able to
coimmunoprecipitate the egf receptor and antibodies
against egf receptor also coimmunoprecipitated plc-ii .

0.964 0.651

Ketamine C5

additionally , reduction of glycine binding by the c-5
antagonists was reversed by both nmda receptor agonists
and c-7 competitive nmda antagonists , providing evidence
that the site of action of these c-5 antagonists is the nmda
recognition site , resulting in indirect modulation of the
glycine site .

0.957 0.643

Table 8:  Contains the bottom ten Compound-binds-Gene con�dence scores before and after model calbration. Gene
mentions are highlighted in blue and Compound mentions are highlighted in red.

Compound
Name

Gene
Symbol Text

Before
Calibratio

n

After
Calibratio

n

Iron NDUFB3

since gastric acid plays an important role in the absorption
process of iron and vitamin b12 , we determined levels of
iron , ferritin , vitamin b12 , and folic acid in 75 serum
samples obtained during continuous omeprazole therapy (
6-48 months after start of therapy ) from 34 patients with
peptic diseases ( primarily re�ux esophagitis ) .

0.006 0.276

D-Tyrosine PLAU

either the 55 kda u-pa form and the lower mw form ( 33 kda
) derived from the 55 kda u-pa are tyr-phosphorylated also
the u-pa secreted in the culture media of human
�brosarcoma cells ( ht-1080 ) is phosphorylated in tyrosine
as well as u-pa present in tissue extracts of tumors induced
in nude mice by ht-1080 cells .

0.006 0.276

D-Leucine POMC

cross-reactivities of leucine-enkephalin and beta-endorphin
with the eia were less than 0.1 % , while that with gly-gly-
phe-met and oxidized gly-gly-phe-met were 2.5 % and 10.2
% , respectively .

0.006 0.273

Eprazinone GAST

in patients with renal failure there exists the inhibition of the
gastrin acid secretion which is the cause of the weakening of
the mechanism of the feedback connection between hcl and
gastrin , while because of a permanent stimulation of g-cells
, the hyperplasia of these cells develops , as well as the
increased secretory activity , and hypergastrinemia .

0.005 0.271
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Compound
Name

Gene
Symbol Text

Before
Calibratio

n

After
Calibratio

n

Hydrocortison
e GH1

luteinizing hormone responses to luteinizing hormone
releasing hormone , and growth hormone and cortisol
responses to insulin induced hypoglycaemia in functional
secondary amenorrhoea .

0.005 0.271

Hydrocortison
e GH1 group iv patients had normal basal levels of lh and normal lh

, gh and cortisol responses . 0.005 0.269

Bupivacaine AVP

plasma renin activity and vasopressin concentration ,
arterial pressure , and serum osmolality were measured in
17 patients before and after random epidural injection of
either 6.7 ml of 0.75 % bupivacaine ( n = 7 ) or the same
volume of saline ( n = 10 ) .

0.004 0.26

Epinephrine INS thermogenic e�ect of thyroid hormones : interactions with
epinephrine and insulin . 0.004 0.259

Hydrocortison
e GH1

cortisol and growth hormone ( gh ) secretion ( spontaneous
variations at night and the release induced by insulin
hypoglycaemia ) were investigated in 69 children and
adolescents .

0.002 0.241

Estriol LGALS1
[ diagnostic value of serial determination of estriol and hpl in
plasma and of total estrogens in 24-h-urine compared to
single values for diagnosis of fetal danger ] .

0.0 0.181

Table 9:  Contains the top ten Gene-interacts-Gene con�dence scores before and after model calbration. Both gene
mentions highlighted in blue.

Gene1
Symbol

Gene2
Symbol Text Before

Calibration
After

Calibration

INS HSPA4

conclusions : intact insulin only weakly interacts with the
hsp70 chaperone dnak whereas monomeric proinsulin and
peptides from 3 distinct proinsulin regions show substantial
chaperone binding .

0.834 0.574

NMT1 S100B
values for k ( cat ) indicated that , once gag or nef binds to the
enzyme , myristoylation by nmt1 and nmt2 proceeds at
comparable rates .

0.826 0.571

VEGFA HIF1A
mechanistically , we demonstrated that resveratrol inhibited
hif-1alpha and vegf expression through multiple mechanisms
.

0.82 0.569

ITGAV PECAM1

antigens expressed on emp and ec were assayed �ow
cytometrically and included constitutive markers ( cd31 ,
cd51/61 , cd105 ) , inducible markers ( cd54 , cd62e and cd106
) , and annexin v binding .

0.81 0.566

F10 PF4

these compounds inhibit both factor xa and thrombin , in the
presence of antithrombin , while they are devoid of
undesirable non-speci�c interactions , particularly with
platelet factor 4 ( pf4 ) .

0.766 0.554

NFKB2 RELB
the results indicate that dystrophic muscle is characterized by
increases in the whole cell expression of ikappab-alpha , p65 ,
p50 , relb , p100 , p52 , ikk , and traf-3 .

0.76 0.553

SSSCA1 CDKN1B conclusion : hl-60 / ht cells have lower p27 ( kip1 ) expression
compared with hl-60 cells . 0.757 0.552
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Gene1
Symbol

Gene2
Symbol Text Before

Calibration
After

Calibration

PTH2R PTH2
thus , the juxtamembrane receptor domain speci�es the
signaling and binding selectivity of tip39 for the pth2 receptor
over the pth1 receptor .

0.749 0.55

MMP9 MMP2 all these factors markedly in�uenced the secretion and/or
activation of mmp-2 and mmp-9 . 0.738 0.547

CCND1 ABL1

synergy with v-abl depended on a motif in cyclin d1 that
mediates its binding to the retinoblastoma protein ,
suggesting that abl oncogenes in part mediate their mitogenic
e�ects via a retinoblastoma protein-dependent pathway .

0.736 0.547

Table 10:  Contains the bottom ten Gene-interacts-Gene con�dence scores before and after model calbration. Both
gene mentions highlighted in blue.

Gene1
Symbol

Gene2
Symbol Text Before

Calibration
After

Calibration

IFNG IL6
in the control group , the positive rate for il-4 , il-6 , il-10 were
0/10 , 2/10 and 1/10 , respectively , and those for il-2 and ifn-
gamma were both 1/10 .

0.012 0.306

ACHE BCHE

anticholinesterase activity was determined against
acetylcholinesterase ( ache ) and butyrylcholinesterase ( bche )
, the enzymes vital for alzheimer ’s disease , at 50 , 100 and
200 g ml ( -1 ) .

0.011 0.306

CCL2 AGT
we found no signi�cant increase in mcp-1 concentrations by
ang ii alone ; but it enhanced the tnf-alpha-induced mcp-1
mrna expression in a dose-dependent manner .

0.011 0.306

CXCL8 IL1B
furthermore , somatostatin completely abrogated the
increased secretion of il-8 and il-1beta after invasion by
salmonella .

0.011 0.303

SULT1A2 SULT1A3

to date , the laboratory has cloned seven unique human
sulfotransferases ; �ve aryl sulfotransferases ( hast1 , hast2 ,
hast3 , hast4 and hast4v ) , an estrogen sulfotransferase and a
dehydroepiandrosterone sulfotransferase .

0.009 0.295

IFNG IL10
results : we found weak mrna expression of interleukin-4 ( il-4
) and il-5 , and strong expression of il-6 , il-10 and ifn-gamma
before therapy .

0.008 0.292

IL2 IFNG
prostaglandin e2 at priming of naive cd4 + t cells inhibits
acquisition of ability to produce ifn-gamma and il-2 , but not il-
4 and il-5 .

0.007 0.289

IL2 IFNG
the detailed distribution of lymphokine-producing cells
showed that il-2 and ifn-gamma-producing cells were located
mainly in the follicular areas .

0.007 0.287

IL2 IFNG

pbl of ms patients produced more pro-in�ammatory cytokines
, il-2 , ifn-gamma and tnf/lymphotoxin , and less anti-
in�ammatory cytokine , tgf-beta , during wk 2 to 4 in culture
than pbl of normal controls .

0.006 0.283

NFKB1 TNF nf-kappab-dependent reporter gene transcription activated by
tnf was also suppressed by calagualine . 0.005 0.276

Baseline Comparison
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Figure 10:  Comparion between our model and CoCoScore model [13]. We report both model’s performance in terms
of AUROC and AUPR. Our model achieves comparable performance against CoCoScore in terms of AUROC. As for AUPR,
CoCoScore consistently outperforms our model except for CtD.

Once our discriminator model is calibrated, we grouped sentences based on mention pair (edges). We
assigned each edge the maximum score over all grouped sentences and compared our model’s ability
to predict pairs in our test set to a previously published baseline model [13]. Performance is reported
in terms of AUROC and AUPR (Figure 10). Across edge types our model shows comparable
performance against the baseline in terms of AUROC. Regarding AUPR, our model shows hindered
performance against the baseline. The exception for both cases is CtD where our model performs
better than the baseline.

Reconstructing Hetionet

Figure 11:  A scatter plot showing the number of edges (log scale) we can add or recall at speci�ed precision levels. The
blue depicts edges existing in hetionet and the orange depicts how many novel edges can be added.

We evaluated how many edges we can recall/add to Hetionet v1 (Supplemental Figure 11 and Table
11). In our evaluation we used edges assigned to our test set. Overall, we can recall a small amount of
edges at high precision thresholds. A key example is CbG and GiG where we recalled only one exisiting

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 8, 2019. ; https://doi.org/10.1101/730085doi: bioRxiv preprint 

https://doi.org/10.1101/730085
http://creativecommons.org/licenses/by/4.0/


edge at 100% precision. Despite the low recall, we are still able to add novel edges to DaG and CtD
while retaining modest precision.

Table 11:  Contains the top ten predictions for each edge type. Highlighted words represent entities mentioned within
the given sentence.

Edge
Type Source Node Target Node Gen Model

Prediction
Disc Model
Prediction

Number of
Sentences Text

DaG lung cancer VEGFA 1.000 0.912 3293

conclusion : the plasma vegf
level is increased in nsclc
patients with
approximate1y one fourth
to have cancer cells in the
peripheral blood.

DaG hematologic
cancer TP53 1.000 0.905 8660

mutations of the p53 gene
were found in four cases of
cml in blastic crisis ( bc ).

DaG obesity MC4R 1.000 0.901 1493

several mutations in the
melanocortin 4 receptor
gene are associated with
obesity in chinese children
and adolescents.

DaG Alzheimer’s
disease VLDLR 1.000 0.886 86

the 5-repeat allele in the
very-low-density lipoprotein
receptor gene
polymorphism is not
increased in sporadic
alzheimer ’s disease in
japanese.

DaG lung cancer XRCC1 1.000 0.885 662

results : xrcc1 gene
polymorphism is associated
with increased risk of lung
cancer when the arg/arg
genotype was used as the
reference group.

DaG prostate
cancer ESR1 1.000 0.883 500

conclusion : these results
suggest that variants of the
ggga polymorphism from
the estrogen receptor alpha
gene may be associated
with an increased risk of
developing prostate cancer.

DaG breast cancer REG1A 1.000 0.878 37

conclusion : high levels of
reg1a expression within
tumors are an independent
predictor of poor prognosis
in patients with breast
cancer.

DaG breast cancer INSR 1.000 0.877 200

we have previously
reported that insulin
receptor expression is
increased in human breast
cancer specimens ( v. papa
et al. , j. clin.
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DaG rheumatoid
arthritis AR 1.000 0.877 53

conclusion : our results
suggest no correlation
between cag repeat
polymorphism in the ar
gene and response to
treatment with lef in
women with ra.

DaG coronary
artery disease CTLA4 1.000 0.875 12

conclusion : the g/g
genotype polymorphism of
the ctla-4 gene is associated
with increased risk of ami.

CtD Zonisamide epilepsy
syndrome 1.000 0.943 1011

adjunctive zonisamide
therapy in the long-term
treatment of children with
partial epilepsy : results of
an open-label extension
study of a phase iii ,
randomized , double-blind ,
placebo-controlled trial.

CtD Metformin
polycystic
ovary
syndrome

1.000 0.942 3217

in the present study , 23
pcos subjects [ mean ( + / -
se ) body mass index 30.0 +
/ -1.1 kg/m2 ] were
randomly assigned to
double-blind treatment with
metformin ( 500 mg tid ) or
placebo for 6 months ,
while maintaining their
usual eating habits.

CtD Piroxicam rheumatoid
arthritis 1.000 0.928 184

methods : a double-blind ,
randomized , crossover trial
in 49 patients with active ra
compared 6 weeks of
treatment with tenidap (
120 mg/day ) versus 6
weeks of treatment with
piroxicam ( 20 mg/day ).

CtD Irinotecan stomach
cancer 1.000 0.918 968

randomized phase ii trial of
�rst-line treatment with
tailored irinotecan and s-1
therapy versus s-1
monotherapy for advanced
or recurrent gastric
carcinoma ( jfmc31-0301 ).

CtD Treprostinil hypertension 1.000 0.913 536

oral treprostinil for the
treatment of pulmonary
arterial hypertension in
patients receiving
background endothelin
receptor antagonist and
phosphodiesterase type 5
inhibitor therapy ( the
freedom-c2 study ) : a
randomized controlled trial.
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CtD Colchicine gout 1.000 0.911 78

this is the �rst in vivo data
to provide a biological
rationale that supports the
implementation of low dose
, non-toxic , colchicine
therapy for the treatment of
gouty arthritis.

CtD Propranolol stomach
cancer 1.000 0.898 45

74 cirrhotic patients with a
history of variceal or gastric
bleeding were randomly
assigned to treatment with
propranolol ( 40 to 360
mg/day ) or placebo.

CtD Reboxetine endogenous
depression 1.000 0.894 439

data were obtained from
four short-term ( 4-8-week )
, randomized , placebo-
controlled trials of
reboxetine for the
treatment of mdd.

CtD Diclofenac ankylosing
spondylitis 1.000 0.892 61

comparison of two di�erent
dosages of celecoxib with
diclofenac for the treatment
of active ankylosing
spondylitis : results of a 12-
week randomised , double-
blind , controlled study.

CtD Tapentadol osteoarthritis 1.000 0.880 29

driving ability in patients
with severe chronic low
back or osteoarthritis knee
pain on stable treatment
with tapentadol prolonged
release : a multicenter ,
open-label , phase 3b trial.

CbG Dexamethaso
ne NR3C1 1.000 0.850 1119

submicromolar free calcium
modulates dexamethasone
binding to the
glucocorticoid receptor.

CbG Vitamin A RBP4 1.000 0.807 5512

the authors give serum
retinol binding protein ( rbp
) normal values ,
established by
immunonephelometry , for
two healthy populations in
their hospital laboratory.

CbG D-Proline IGFBP4 1.000 0.790 1

the insulin-like growth
factor-i-stimulated l-proline
uptake was inhibited by one
of its binding protein ,
insulin-like growth factor
binding protein-4 , in a
concentration-dependent
manner.
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CbG Sucrose AR 0.996 0.789 37

the amount ( maximal
binding capacity of 24 to 30
fmol/mg protein ) and
hormone binding a�nity (
half-maximal saturation of
0.2 nm ) of the androgen
receptor in cultured skin
�broblasts was normal , but
the receptor was
qualitatively abnormal as
evidenced by instability on
sucrose density gradient
centrifugation.

CbG D-Lysine PLG 1.000 0.787 403

in both elisa and rocket
immunoelectrophoresis
systems , complex
formation was inhibited by
10 mm epsilon-amino-n-
caproic acid , implying that
there is a role for the lysine
binding sites of plg in
mediating the interaction.

CbG Adenosine INSR 1.000 0.785 129

these �ndings demonstrate
basal state binding of atp to
the ckd leading to cis-
autophosphorylation and
novel basal state regulatory
interactions among the
subdomains of the insulin
receptor kinase.

CbG Adenosine PLK1 1.000 0.783 104

most kinase inhibitors
interact with the atp binding
site on plk1 , which is highly
conserved.

CbG Calcium
Chloride ITPR3 0.995 0.777 1954

control of ca2 + in�ux in
human neutrophils by
inositol 1,4,5-trisphosphate
( ip3 ) binding : di�erential
e�ects of micro-injected ip3
receptor antagonists.

CbG D-Arginine C5AR1 1.000 0.775 808

thus , selected out of a
multiplicity of possibilities
by the natural binding
partner , arg37 as well as
arg40 appear to be anchor
residues in binding to the
c5a receptor.

CbG Ticagrelor P2RY12 1.000 0.773 322

purpose : ticagrelor is a
reversibly binding p2y12
receptor antagonist used
clinically for the prevention
of atherothrombotic events
in patients with acute
coronary syndromes ( acs ).
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GiG ABL1 ABL1 0.999 0.600 9572

the acquired resistance in
patients who failed to
respond to imatinib seemed
to be induced by several
point mutations in the bcr-
abl gene , which were likely
to a�ect the binding of
imatinib with bcr-abl.

GiG TP63 TP53 1.000 0.595 2557

tp63 , a member of the p53
gene family gene , encodes
the np63 protein and is one
of the most frequently
ampli�ed genes in
squamous cell carcinomas (
scc ) of the head and neck (
hnscc ) and lungs ( lusc ).

GiG FERMT1 FERMT1 0.004 0.590 194
ks is caused by mutations in
the fermt1 gene encoding
kindlin-1.

GiG GRN GRN 1.000 0.590 3842

background : mutations in
the progranulin gene ( pgrn
) have recently been
identi�ed as a cause of
frontotemporal lobar
degeneration with
ubiquitin-positive inclusions
( ftld-u ) in some families.

GiG FASN EP300 0.999 0.589 6

here , we demonstrated
that p300 binds to and
increases histone h3 lysine
27 acetylation ( h3k27ac ) in
the fasn gene promoter.

GiG SETBP1 SETBP1 1.000 0.588 354
the critical deleted region
contains setbp1 gene ( set
binding protein 1 ).

GiG BCL2 BAK1 0.118 0.587 1220

di�erent expression
patterns of bcl-2 family
genes in breast cancer by
estrogen receptor status
with special reference to
pro-apoptotic bak gene.

GiG SP1 INSR 0.948 0.587 23

thus , the e�cient
expression of the human
insulin receptor gene
possibly requires the
binding of transcriptional
factor sp1 to four g-c boxes
located -593 to -618 base
pairs upstream of the atg
translation initiation codon.
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GiG ABCD1 ABCD1 1.000 0.586 410

x-linked
adrenoleukodystrophy ( x-
ald ) is caused by mutations
in the abcd1 gene encoding
the peroxisomal abc
transporter
adrenoleukodystrophy
protein ( aldp ).

GiG CYP1A1 AHR 0.996 0.586 1940

the liganded ah receptor
activates transcription by
binding to a speci�c dna-
recognition motif within a
dioxin-responsive enhancer
upstream of the cyp1a1
gene.

1. Labeled sentences are available here.↩
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