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Abstract 

 

We analyzed summary-level data from genome-wide association studies (GWAS) of European 

ancestry across fourteen cancer sites to estimate the number of common susceptibility variants 

(polygenicity) contributing to risk, as well as the distribution of their associated effect sizes. All 

cancers evaluated showed polygenicity, involving at a minimum thousands of independent 

susceptibility variants. For some malignancies, particularly chronic lymphoid leukemia (CLL) and 

testicular cancer, there are a larger proportion of variants with larger effect sizes than those for 

other cancers.  In contrast, most variants for lung and breast cancers have very small associated 

effect sizes. For different cancer sites, we estimate a wide range of GWAS sample sizes, 

required to explain 80% of GWAS heritability, varying from 60,000 cases for CLL to over 

1,000,000 cases for lung cancer. The maximum relative risk achievable for subjects at the 99th 

risk percentile of underlying polygenic risk scores, compared to average risk, ranges from 12 for 

testicular to 2.5 for ovarian cancer. We show that polygenic risk scores have substantial 

potential for risk stratification for relatively common cancers such as breast, prostate and 

colon, but limited potential for other cancer sites because of modest heritability and lower 

disease incidence.  
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Genome-wide association studies (GWAS) have led to the identification of hundreds of 

independent cancer susceptibility loci containing common, low-risk variants
1,2

. The number of 

discoveries varies widely across cancers, largely driven by available sample size, which reflects, 

in part, disease incidence in the general population. However, specific cancers, e.g., chronic 

lymphoid leukemia (CLL)
3
 and testicular cancer

4
, are notable for unexpectedly high numbers of 

genome-wide significant discoveries from GWAS of relatively small sample size. Previous 

studies have also reported that these two cancers have high heritability
5
. Across cancer types, 

polygenic risk scores (PRS) show varying levels of risk stratification depending on the  

heritability explained by the identified variants and the disease incidence rates in the 

population
6–12

. Their potential clinical utility would depend not only on the level of risk 

stratification, but also on other factors such as the availability of appropriate risk-reducing 

interventions for those identified as at high risk. 

  

Estimation of heritability due to additive effects of all single nucleotide polymorphisms (SNPs) 

included in GWAS arrays
13

, referred to as GWAS heritability in this article, have shown that 

common variants have substantial potential to identify individuals at different levels of risk for 

many cancer types
14

. It remains, however, unclear how large the sample sizes of GWAS need to 

be to reap the full potential of PRS-based risk prediction. Herein, we apply our recently 

published method
15

 to estimate the degree of polygenicity and the effect-size distribution 

associated with common variants (MAF>0.05) across fourteen different cancer types, based on 

summary-level association statistics from available GWAS
16–28

 from populations of European 

ancestry (Supplementary Table 1). From these inferred parameters, we then provide 

projections of the expected number of common variants to be discovered and predictive 

performance of associated PRS as a function of increasing sample size for future GWAS. Finally, 

by incorporating age-specific incidence 
29

 from population-based cancer registries, we explore 

the magnitude of absolute risk stratification potentially achievable by PRS. 

 

We found that cancers are highly polygenic, like other complex traits
15,30,31

. Estimates of the 

number of susceptibility variants with independent risk associations vary from ~1,000 to 7,500 

between the fourteen cancer sites (Table 1).  For comparability, effect-size distributions are 

shown in groups of similarly-sized GWAS with similar power for detecting associations (Figure 

1).  For GWAS with <10,000 cancer cases (group 1), CLL and testicular cancer are each 

associated with 2,000-2,500 variants and characterized by a much larger proportion of variants 

with larger estimated effect sizes than for the other group 1 cancers, as reflected by wider 

effect size distribution with heavier tails (Figure 1, Table 1). GWAS heritability estimates 

indicate that, in aggregate, common variants explain a high degree of variation of risk for these 

two cancers. In contrast, in group 1, esophageal and oropharyngeal cancers are associated with 

a larger proportion of variants with substantially smaller effect sizes, compared with CLL, 

testicular and pancreatic cancers in group 1.  

 

For GWAS with 10,000-25,000 cases (group 2), melanoma is noteworthy because it is associated 

with a wider effect size distribution than other group 2 cancers. The estimated number of 

susceptibility variants in this group ranges from 1,000 to 2,000. GWAS heritability estimates 

indicate that aggregated common variants make a relatively small contribution to ovarian and 
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endometrial cancer susceptibility. Finally, for the three GWAS with >25,000 cases each (group 

3), prostate cancer is remarkable for having more variants with large effect sizes, namely, the 

underlying effect-size distribution has a heavier tail, compared with cancers of the breast and 

lung (Figure 1). In this group, all three cancer types tend to have large numbers of associated 

variants (>4,500) compared with cancer sites in other groups, but this pattern could partially be 

due to the very large sample sizes of group 3 GWAS
15

.  

 

For a large majority of the fourteen cancer sites, a two-component normal-mixture model for 

non-null effects provides a substantially better fit to observed summary-statistics than a single-

normal distribution; this indicates the presence of a fraction of variants with distinctly larger 

effect sizes than the remaining (Supplementary Figures 1-2). In contrast, a single normal 

distribution appears to be adequate for esophageal and oropharyngeal cancer, indicating the 

presence of a large number of variants with a continuum of small effects, similar to our 

previous findings for traits related to mental health and abilities
15

. Across all fourteen cancers, 

the predicted number of discoveries and their associated genetic variance explained for current 

GWAS sample sizes match well to those observed empirically (Supplementary Table 2), 

indicating good fit of our model to the observed data. 

 

GWAS heritability estimates indicate that the potential of PRS for risk discrimination in the 

population varies widely among cancer types (Table 1). The area under the curve (AUC) 

statistics associated with the best achievable PRS varies from 64% (endometrial and ovarian 

cancer) to 88% (testicular cancer), and in the range of 70 to 80% for most cancers. The 

percentage of GWAS heritability explained by known variants varies widely, depending on study 

sample size and the underlying trait genetic architecture (Figure 2). Known variants explain 

more than a quarter of heritability for cancer sites based on very large sample sizes (e.g., breast 

and prostate cancer) or for cancer sites that have susceptibility variants with relatively large 

effect sizes (e.g., CLL, melanoma and testicular cancer). Oropharyngeal cancer, in contrast, has 

both a small sample size and small effect sizes; its percentage heritability currently explained is 

almost zero. 

 

The sample size needed to identify common variants that could explain approximately 80% of 

the total GWAS heritability for the cancers evaluated is generally very large, requiring 200,000 

to 1,000,000 cancer cases, with a comparable number of controls (Figure 2). However, for three 

sites, namely, testicular cancer, CLL, and melanoma, the required sample size is smaller, 60,000, 

80,000 and 110,000 cases, respectively, due to the large effect sizes of their associated variants. 

By quadrupling the sample sizes of currently published GWAS, the percentage of GWAS 

heritability explained would rise to more than 40% across all cancers, except for oropharyngeal 

cancer. Such sample size increases would also lead to appreciable improvements in PRS 

discriminatory power across all these sites (Figures 3-4). For cancers that were found to be the 

most polygenic and that had small effect sizes (e.g., cancers of breast, lung and oropharynx), 

improvement would occur at a slower rates as sample sizes increase, and these sites would 

require the largest sample sizes to generate PRSs with discriminatory power close to theoretical 

limits. Of note, for a number of cancers, the achievable relative risks for subjects at the 99
th

 

percentile of PRS distribution compared with those at average risk, are comparable to those for 
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monogenic disorders
32

 (e.g., relative-risk more than 3-4 fold) (Figure 4). Across all fourteen 

cancer types, inclusion of SNPs using more liberal but optimized p-value thresholds (see 

Methods) would improve performance of PRS-based risk prediction versus using the stringent 

genome-wide significance level, but the anticipated gains would be generally modest 

(Supplementary Figures 3-4).  

 

Projections of residual lifetime cancer risks for the US non-Hispanic white population show that 

the discriminatory power of PRS built from current or foreseeable studies will depend heavily 

on the underlying cancer incidence in the population (Figure 5, Supplementary Figures 5-7). 

The potential clinical utility of PRS depends on the degree of risk stratification and specific 

prevention or early detection strategies for a given cancer, should they exist. For common 

cancers, such as breast, colorectal and prostate, a PRS with even modest discriminatory power 

(maximum AUC of approximately 70%, Figure 3) can provide substantial stratification of 

absolute risk in the population. In contrast, for CLL and testicular cancer, even though its PRS 

could achieve a higher AUC (e.g. in the range 80-90%, Figure 3), the degree of absolute risk 

stratification will be modest because of the infrequency of these cancers. Thus, a PRS by itself 

has the least impact on risk stratification for cancer sites that are infrequent or/and that have 

low heritability. However, it is possible that PRS could have clinical utility for some of these 

cancers in the presence or in combination with other risk factors and biomarkers. For example, 

a PRS for lung cancer may provide larger stratification for absolute risk among smokers than 

never smokers because of the higher baseline risk in smokers. 

 

Our study is subject to several limitations. We may have underestimated the number of 

underlying common susceptibility loci, especially for those cancers for which current GWAS 

have small sample sizes
15

. Thus, the interpretation of comparisons of the underlying genetic 

architecture across cancer types with very different sample sizes requires caution. 

Nevertheless, the major patterns are unlikely to be due to differences in sample size. For 

example, we estimated oropharyngeal and esophageal cancers to be two of the most polygenic 

sites, though the GWAS sample sizes for these two sites were relatively small. Further, Q-Q 

plots of observed and expected p-values indicate that the inferred models for effect-size 

distributions explain observed GWAS summary-statistics well, regardless of GWAS sample size. 

Another important limitation is that we only included data from subjects of European ancestry, 

since GWAS data for other ancestries are currently too small to permit reliable projections for 

most cancer sites. In addition, several cancers (e.g., lung, ovary, glioma, and breast) consist of 

etiologically heterogeneous subtypes that were not considered in our analyses due to lack of 

adequate sample sizes for appropriate subtypes for most of these cancer sites. Further studies 

of ancestry- and subtype-specific genetic architectures are needed to address these limitations.  

 

In our projections, we assume standard agnostic association analysis of SNPs without 

incorporating any external information on population genetics or functional characteristics of 

SNPs. It is, however, possible to incorporate various types of external information to improve 

power for discovery of associations
33–36

 and genetic risk prediction
37

 . We have evaluated the 

merit of future GWAS only in terms of their ability to explain heritability and improve risk 

prediction. However, current and future discoveries have other major implications, including 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 9, 2019. ; https://doi.org/10.1101/723825doi: bioRxiv preprint 

https://doi.org/10.1101/723825


provident insights to biological pathways and mechanisms, potential gene-environment 

interactions and understanding causal relationships through Mendelian Randomization 

analyses
38

. A number of these cancers are known to have rare high-penetrant risk variants, but 

for this study we have focused on estimating effect-size distribution associated with common 

variants. Furthermore, heritability analysis indicate that uncommon and rare variants could 

explain a substantial fraction of the variation of complex traits
39

 , and thus, it is likely that there 

are many unknown uncommon and rare variants associated with these cancers as well. In the 

future, characterization of heritability and effect-size distribution associated with the full 

spectrum of allele frequencies will require individual level sequencing data on a substantially 

larger number of cases and controls.   

 

The observed differences in the underlying genetic architecture of susceptibility across cancers 

could be due to various factors, including the effect of negative selection
30,40

, tissue-specific 

genetic regulation of gene-expression
41

, cell of origin
42

, the number of biological steps needed 

to transition from normal to malignant tissue
43

, mediation of genetic effects by underlying 

environmental exposures
44

, and the presence of heterogeneous cancer-specific 

subtypes
21,25,27,28

. A number of cancer types, including those of lung, oropharynx and 

esophagus, which were associated with large numbers of SNPs with small average effect sizes, 

have known strong environmental risk factors and distinct etiologic subtypes. It is also 

noteworthy that testicular cancer also stands out for a large number of discoveries in cross-

tissue expression quantitative trait loci analyses, likely indicating a stronger association of SNPs 

on gene expression levels for this tissue compared to others
41

.  

 

In conclusion, our comprehensive analysis of fourteen cancer sites in adults of European 

ancestry reveals that while all sites have polygenic influences, there is substantial diversity 

observed in their underlying genetic architectures, which reflects important biology and also 

influences the utility of polygenic risk prediction for individual cancers. Our projections for 

future yields of GWAS across these cancers provide a roadmap for important returns from 

future investment in research, including the potential clinical utility of polygenic risk prediction 

for stratification of absolute risks in the population. 

 

 

Methods 

 

Description of GWAS studies. We analyzed summary data from GWAS studies across fourteen 

cancer types. For select cancer sites
26,28

, we downloaded publicly available genome-wide 

summary-level statistics from the latest consortium-based analyses. For others, we obtained 

access to data through collaborative efforts with individual consortia. Details about individual 

studies, including the number of cases and controls, are provided in Supplementary Table 1.  

 

Quality control for summary GWAS data. Across all cancers, we applied several filtering steps 

analogous to those used earlier for estimation of heritability
45,46

 and effect-size distribution 

using summary-level data
15

. First, we restricted analysis to SNPs within a set of reference ~1.07 

million SNPs included in the HapMap3 and which had minor allele frequency > 0.05 in the 1000 
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Genome European Ancestry sample. Second, we excluded SNPs having substantial amounts of 

missing genotype data: sample sizes less than 0.67 times the 90
th

 percentile of the distribution 

of sample sizes across all SNPs. Third, we excluded SNPs within the major histocompatibility 

complex (MHC) region (i.e., SNPs between 26,000,000 and 34,000,000 base pairs on 

chromosome six) which is known to have very complex allelic architecture and can have 

uncharacteristically large effects on some traits. Fourth, we removed regions that have SNPs 

with extremely large effect sizes to reduce possible undue influence of them on estimation of 

parameters associated with overall effect-size distributions. We identify all top SNPs which 

have associated chi-square statistics greater than 80 (i.e., OR (in standardized scale) >2.19) and 

removed all SNPs which were within 1MB distance of or had an estimated larger than 0.1 with 

the top SNPs. We added back the contribution of these top independent SNPs in the final 

reporting of the total number of susceptibility SNPs, estimates of total heritability, and various 

projections we made as a function of sample size of the GWAS.  

 

Statistical model. We inferred common variant genetic architecture of the different cancers 

using GENESIS
15

, a method we recently developed to characterize underlying effect-size 

distributions in terms of the total number of susceptibility SNPs (polygenicity) and a normal 

mixture model for the distribution of their effects. Specifically, it is assumed that standardized 

effects of common SNPs in an underlying logistic regression model on the risk of a cancer can 

be specified in the mixture distribution in the form �� � �1 � ����� 	 ��
�0, 
�� (two-

component model), or �� � �1 � ����� 	 �����
�0,  
��� 	 ��
�0, 
���� (three-component 

model) where �� is the Dirac delta function indicating that a fraction, 1 � ��, of the SNPs have 

null effects, and remaining �� fraction of SNPs have non-null effects. Under the three-

component model, �� � 1 � �� denotes the proportion of SNPs allocated to mixture 

component with larger variance component (assuming 
��> 
��) models. Under these models, 

��� characterizes the degree of polygenicity, i.e., the number of susceptibility SNPs with 

independent effects on disease risk. Under both models, we defined “GWAS heritability” of a 

disease as �� � ��������, where ����� denotes the average variance size of the non-null 

SNPs.  We observed that under the above model, �� is also the population variance of the 

underlying “true” polygenic risk score, defined as ��� � ∑ �����
��� , where �� denotes the 

standardized genotype associated with the m-th SNP.  Under the two-component model, which 

assumes a single normal distribution for the effect of all susceptibility SNPs, ����� � 
�. Under 

the three-component model, which allows mixture of two-normal distributions with distinct 

variance components and thus can better accommodate the presence of a group of 

susceptibility SNPs with much larger effects than others, we have ��
�� 	 ��
��. Under the 

three-component model, we use the fraction � � ��
��/���
�� 	 ��
��� to characterize the 

proportion of heritability explained by SNPs associated with the larger variance component 

parameter. As we removed SNPs with extremely large effects (��� � 80) and the associated 

regions from the analysis, in reporting the final heritability estimates, we added back the 

contribution of the top SNPs from these excluded regions as ∑ ��!�� � "����  where �!  is the 

estimate of log-odds ratio (in standardized scale) and "�  is the corresponding standard error for 

the #-th SNP.  
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Genetic variance projection. Given the estimated effect-size distribution, we calculated 

expected discoveries and genetic variance explained using 

�$ � ��%� & �'(	,���� ∑ �̂�
�0, 
%��� +�

����

 and 

�, � ��%� & ���'(	,���� ∑ �̂�
�0, 
%��� +�

����

, respectively, at α � 5 / 10�� for a GWAS of 

sample size 0, where �'(	,���� � 1 � 1 23�
�

� √0�5 	 1��3�
�

� √0�� with 1�6� the 

standard normal cumulative density function and 3	 �  1���1 � 7� the 7-th quantile for the 

standard normal distribution. Similar to heritability calculations, we added back the 

contributions of top SNPs with very large effects to the number of expected discoveries and 

associated variances explained by the quantities ∑ �'(	,���!���  and ��� ∑ ��!�� ��

"����'(	,���!��. We observed that for projections involving sample sizes bigger than the current 

study �'(	,���!�� for the large effect SNPs will all be very close to 1.0. 

 

Projection for AUC and relative risk at top 1%. As we quantify heritability in terms of the 

variability of the underlying “true” polygenic risk-score, we used the formula
12,47,48

, AUC �
1�;��

�
� to characterize the best discriminatory power achievable in limiting using common 

variant PRS.  We used the same formula to calculate the AUC associated with PRSs that could 

be built using SNPs either reaching genome-wide significance (p-value < 5/ 10��) or a weaker 

but optimized threshold, for a GWAS of given sample size based on the projected variance of 

the respective PRS. Given sample size of GWAS and an effect-size distribution for the underlying 

cancer, an optimal threshold for SNP selection that will maximize the expected predictive 

performance of PRS is calculated using analytic formula we have derive earlier
48

. The relative 

risk for those estimated to be at the 99
th

 percentile or higher of the distribution of a PRS 

(compared to the average risk of the population) was calculated using the formula
12

 

<=� �� ��

�
	 1���0.99�√��� where �� is the population variance of the PRS.  

 

Absolute risk projection. For each cancer site, we projected the distribution of residual lifetime 

risk (up to age 80 years) for Non-Hispanic White individuals in the general US population 

according to PRSs which could be built from GWAS of different sample sizes. For any given age, 

we first obtain the distribution of residual lifetime risks based on a model for absolute risks 

developed using the iCARE tool that we have described earlier
12,29

. The iCARE tool uses 

projected standard deviations of PRS at different GWAS sample sizes and age-specific cancer 

incidence rates available from the US National Cancer Institute-Surveillance, Epidemiology, and 

End Results Program (NCI-SEER) (2015) to obtain absolute risk distributions. In deriving absolute 

risks, we adjusted for competing risk of mortality due to other causes using the age-specific 

mortality rates from the Center for Disease Control (CDC) WONDER database (2016). We then 

weighted the projected residual lifetime risk distribution at different baseline ages (in five-year 

categories) based on the US population distribution of ages within 30 to 75 years, as observed 

in the estimated 2016 US Census. For cancers of the reproductive system, weights were based 

on the age distributions among males or females, as appropriate.  
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Table 1: Estimated number of independent common susceptibility variants and heritability across 14 

cancer sites using the best fitted (two- or three-component) normal mixture model for effect-size 

distributions. All results are reported with respect to a reference panel of 1.07 million common SNPs 

included in the Hapmap3 panel after removal of MHC region.  

 

Number of 

cases in the 

analysis 

Cancer site 

Total 

Number of 

susceptibility 

SNPs
a
 (SE

b
) 

Total 

heritability
c
 

(SE) 

Average 

heritability 

explained 

per 

susceptibility 

SNP
d
 (SE), in 

��
�� 

Number of 

SNPs 

associated 

with larger 

variance 

component  

(SE)
 

% of 

heritability 

explained 

by SNPs 

with larger 

variance 

component 

AUC 

associated 

with the 

best PRS
e
 

(SE) 

<10,000
 

 

CLL
f 

2025 (1501) 1.62 (0.37) 7.2 (4.4) 52 (15) 41 0.82 (0.03) 

Esophageal 3641 (2515) 1.24 (0.36) 3.4 (1.9) NA
g 

NA 0.78 (0.03) 

Testicular 2598 (2088) 2.81 (0.40) 9.2 (6.6) 196 (75) 54 0.88 (0.02) 

Oropharyngeal 3623 (2060) 0.68 (0.27) 1.9 (0.5) NA NA 0.72 (0.04) 

Pancreas 1757 (1490) 0.60 (0.16) 3.2 (2.2) 47 (27) 31 0.71 (0.03) 

10,000 - 25,000 

 

Renal 2220 (1555) 0.57 (0.12) 2.4 (1.4) 46 (36) 24 0.70 (0.02) 

Glioma 2364 (1593) 0.87 (0.11) 2.2 (1.2) 61 (25) 55 0.75 (0.01) 

Melanoma 1098 (533) 0.65 (0.09) 4.4 (1.6) 106 (58) 52 0.72 (0.01) 

Colorectal 1484 (696) 0.43 (0.10) 2.9 (0.8) 14 (11) 7 0.68 (0.02) 

Endometrial 1052 (772) 0.27 (0.07) 2.5 (1.3) 46 (34) 26 0.64 (0.02) 

Ovarian 1015 (715) 0.24 (0.06) 2.2 (1.1) 49 (31) 36 0.64 (0.02) 

>25,000 

 

Lung 6096 (2750) 0.39 (0.06) 0.6 (0.2) 15 (7) 15 0.67 (0.01) 

Prostate 4530 (1052) 0.77 (0.04) 1.1 (0.2) 276 (99) 51 0.73 (0.01) 

Breast 7599 (1615) 0.60 (0.03) 0.6 (0.1) 587 (133) 56 0.71 (0.00) 
a
SNP: single nucleotide polymorphism. 

b
Standandard errors. 

c
Total heritability is characterized by population variance of the underlying true 

PRS as �� � ����∑ ��	��

���

 � ���
���
, where 
���
 denotes per-SNP effect-size of the non-null SNPs. 

d
Average heritability explained 

per susceptibility SNP excludes SNPs with extremely large effects (see Methods). 
e
Area under the curve (AUC) associated with best PRS is 

calculated using the formula AUC=�����/2 
 where ���
 is the cumulative density function of standard normal distribution. 
f
CLL = chronic 

lymphocytic leukemia. 
g
NA indicates a two-component model is favorable compared to three-component model.  
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Fig. 1. Estimated effect-size distributions for susceptibility SNPs across 14 cancer sites. Effect-size 

distribution of susceptibility SNPs is modelled using a two-component normal mixture model for all sites, 

except esophagus, oropharynx and melanoma. For these sites, effect-sizes are modelled using a single 

normal distribution that provided similar fit as the two-component normal mixture model (see 

Supplementary Fig. 1 & 2).  SNPs with extremely large effects are excluded from the analysis (see 

Methods). Plots are stratified by sample size of the GWAS for comparability. Distributions with fatter 

tails imply the underlying traits have relatively greater number of susceptibility SNPs with larger effects. 

Note here the effect-size distribution is plotted on the log scale of odds ratio (x-axis).  

 

 
CLL = chronic lymphocytic leukemia.  
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Fig. 2. Projections of percentage of GWAS heritability explained by SNPs as sample size for GWAS 

increases. Results are shown for projections including SNPs at the optimized p-value threshold (solid 

curve) and at genome-wide significance (P<5 � 10
��) level (dashed curve). Colored dots correspond to 

sample size for largest published GWAS and those for doubled and quadruped sizes.  

 

 
For oropharyngeal cancer, the projections at the “current sample size” are based on a sample size of 25K cases and 25K controls. For breast and 

esophageal cancer, the projections at the “current sample size” are based on the current largest GWAS sample sizes: 123K cases and 106K 

controls, and 10K cases and 17K controls, respectively. For all other cancer sites, the projections at the “current sample size” are based on the 

GWAS sample sizes in Supplementary Table 1. CLL = chronic lymphocytic leukemia. 
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Fig. 3. Projections of area under the curve (AUC) characterizing predictive performance of PRS as 

sample size for GWAS increases. Results are shown for PRS including SNPs at the optimized p-value 

threshold. The dotted horizontal red line indicates the maximum AUC achievable according to the 

estimate of GWAS heritability. Colored dots correspond to sample size for largest published GWAS and 

those for doubled and quadruped sizes.  

 

 
For oropharyngeal cancer, the projections at the “current sample size” are based on a sample size of 25K cases and 25K controls. For breast and 

esophageal cancer, the projections at the “current sample size” are based on the current largest GWAS sample sizes: 123K cases and 106K 

controls, and 10K cases and 17K controls, respectively. For all other cancer sites, the projections at the “current sample size” are based on the 

GWAS sample sizes in Supplementary Table 1. CLL = chronic lymphocytic leukemia. 
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Fig. 4. Projections of relative risks for individuals at or higher than 99
th

 percentile of PRS distribution 

(compared to average risk) as sample size for GWAS increases. Results are shown where PRS is built 

based on SNPs at optimized p-value threshold. The dotted horizontal red line indicates the maximum 

relative risk achievable according to estimate of GWAS heritability. Colored dots correspond to sample 

size for largest published GWAS and those for doubled and quadruped sizes. 

 
For oropharyngeal cancer, the projections at the “current sample size” are based on a sample size of 25K cases and 25K controls. For breast and 

esophageal cancer, the projections at the “current sample size” are based on the current largest GWAS sample sizes: 123K cases and 106K 

controls, and 10K cases and 17K controls, respectively. For all other cancer sites, the projections at the “current sample size” are based on the 

GWAS sample sizes in Supplementary Table 1. CLL = chronic lymphocytic leukemia.  
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Fig. 5.  Projected distribution of average residual lifetime risk in the US population of Non-Hispanic 

Whites aged 30 to 75 years, according to variation of polygenic risk scores. The projections are shown 

for PRS built based on GWAS with current, doubled and quadrupled sample sizes and the best PRS that 

corresponds to limits defined by heritability. The projections are obtained by combining information on 

projected population variance of PRS, age-specific population incidence rate, competing risk of mortality

and current distribution of age according to US 2016 census.  

For oropharyngeal cancer, the projections at the “current sample size” are based on a sample size of 25K cases and 25K controls. For breast and

esophageal cancer, the projections at the “current sample size” are based on the current largest GWAS sample sizes: 123K cases and 106K 

controls, and 10K cases and 17K controls, respectively. For all other cancer sites, the projections at the “current sample size” are based on the 

GWAS sample sizes in Supplementary Table 1. CLL = chronic lymphocytic leukemia. 

y 

 
d 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 9, 2019. ; https://doi.org/10.1101/723825doi: bioRxiv preprint 

https://doi.org/10.1101/723825

