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ABSTRACT 13 

 14 

Experimental evolution of microbes can be used to empirically address a wide range of 15 

questions about evolution. Because fitness assays are a central component of experimental 16 

evolution, they can limit the scope and throughput of such studies. We created an experimental 17 

evolution system in Saccharomyces cerevisiae that utilizes genetic barcoding to overcome this 18 

challenge. We confirm that barcode insertions do not alter fitness and can be used to detect 19 

fitness differences of 2%. Using this system, we examine here the effects of ploidy, stress, and 20 

population bottleneck size on the evolutionary dynamics and fitness gains in a total of 76 21 

experimentally evolving populations by conducting 2,136 fitness assays and analyzing 532 22 

longitudinal-evolutionary samples collected from evolving populations. Our experimental 23 

treatments generated distinct fitness effects and evolutionary dynamics quantified via 24 

multiplexed fitness assays and barcode lineage tracking, respectively, demonstrating the utility 25 

of this new resource for designing and improving high-throughput studies of experimental 26 

evolution. The approach described here provides a framework for future studies using this 27 

experimental system. 28 

 29 

INTRODUCTION 30 

 31 

Experimental evolution in microorganisms such as yeast, bacteria, and viruses has been used to 32 

answer evolutionary questions that are experimentally intractable in organisms with longer 33 

generation times (de Varigny 1892; Garland and Rose 2009; Kassen 2014; Van den Bergh et al. 34 
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2018).  A central benefit of most experimental evolution systems is the ability to replicate and 35 

repeat evolution as well as the ability to store and compete evolved, intermediate, and 36 

ancestral strains (Van den Bergh et al. 2018). Indeed, if there is a single unifying theme to what 37 

we have learned from experimental evolution it is that adaptation is universal and often 38 

repeatable due to parallel changes down to the molecular level (Burke, Liti, and Long 2014; 39 

Kohn and Anderson 2014; Bailey et al. 2017; Graves et al. 2017; Bailey, Guo, and Bataillon 40 

2018). The power of this approach has led to numerous investigations of the effects of 41 

population size (Schoustra et al. 2009; A. C. Gerstein et al. 2011; Bailey et al. 2017) and 42 

structure (Bell and Gonzalez 2011; Kryazhimskiy, Rice, and Desai 2012; Low-Décarie et al. 2015), 43 

mutation rate (Lenski, Sniegowski, and Gerrish 1997; Loewe, Textor, and Scherer 2003; Perfeito 44 

et al. 2007; Swings et al. 2017), and various environmental treatments (B. S. Hughes, Cullum, 45 

and Bennett 2007; R. Dhar et al. 2011; Riddhiman Dhar et al. 2013; Zhou et al. 2013; Horinouchi 46 

et al. 2015; Huang et al. 2018).  47 

 48 

Measuring adaptation by changes in fitness is a core requirement of experimental evolution 49 

that often limits its implementation. Fitness assays involve direct competition of individuals or 50 

populations against one another or a common reference, and traditionally have been calculated 51 

using neutral markers scored by plating assays. For example, the long-term experimental 52 

evolution conducted by Lenski and colleagues is scored by counting colonies that can ferment 53 

arabinose based on colony color (Lenski et al. 1991). Many recent studies use fluorescently 54 

marked strains such that co-cultured strains can be counted by flow-cytometry (Gresham et al. 55 

2008; A. C. Gerstein et al. 2011; Selmecki et al. 2015). However, the number of fitness assays, 56 
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and thereby the resolution of those assays remain limited, which poses a challenge for large-57 

scale projects. The primary constraint limiting the scale of these studies is that measuring 58 

fitness requires replicate assays, often under a variety of  conditions. For example, an 59 

experiment with 100 strains evolved in a single environment would require 600 fitness assays if 60 

one were to measure, in triplicate, the fitness of each ancestral strain and each evolved strain 61 

in relation to a common reference. Additionally, each of these assays would require measuring 62 

the frequency of the two strains at the beginning and end of the competition. Equally important 63 

is the ability to detect small changes in fitness, which is directly related to the number of 64 

replicate assays per strain and the noise of the assay itself. 65 

 66 

Genetic barcodes can vastly increase the throughput of these analyses through pooled-fitness 67 

assay designs. In a barcoding approach, each strain is marked by insertion of a unique neutral 68 

DNA sequence into its genome (i.e., its barcode), enabling the easy quantification of the relative 69 

abundance of multiple strains when they are simultaneously competed against a common 70 

reference. Microarrays (Roth et al. 2009) and more recently, direct sequencing of barcodes 71 

(Giaever and Nislow 2014), have been used to measure the effects of thousands of single gene 72 

deletions using this approach. Barcodes have also been used in experimental evolution. A pool 73 

of half a million barcoded yeast strains made it possible to detect and track the fate of each 74 

barcoded lineage (Blundell and Levy 2014; Levy et al. 2015). Other research with these 75 

barcoded strains has focused on isolating strains with adaptive mutations, tracking lineages 76 

during evolution and quantifying fitness via competition-based fitness assays (Venkataram et al. 77 

2016; Li et al. 2018).  78 
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 79 

In this study we describe a novel set of barcoded yeast strains and characterize their utility for 80 

experimental evolution. The system is composed of a collection of Saccharomyces cerevisiae 81 

strains, individually barcoded with unique 20 bp sequences inserted upstream of the HO locus; 82 

this barcoding strategy offers a number of advantages for experimental evolution. First, cross-83 

contamination between populations with different barcodes can be detected and monitored. 84 

Second, populations can be initiated with mixtures of multiple barcodes for tracking adaptive 85 

dynamics (Kao and Sherlock 2008; Selmecki et al. 2015). Finally, fitness can be measured from 86 

the entire set of strains in a single pooled fitness assay, which dramatically increases efficiency 87 

relative to earlier methods. To demonstrate the capabilities of this system we began by 88 

conducting a series of proof-of-concept fitness assays and subsequently applied what we 89 

learned in a short, 25-day (~250-generation) experimental evolution. These analyses confirm 90 

that barcode insertions (1) do not alter the fitness of our source strains, (2) enable the 91 

detection of fitness differences as small as 2%, and (3) provide a means of measuring fitness 92 

differences and evolutionary dynamics for individual lineages from pooled samples obtained at 93 

different stages of experimental evolution. We highlight the advantages of multiplexing 94 

samples with indexing and the importance of limiting molecular contamination between initial 95 

sampling and library construction. Taken together, this system represents a new resource for 96 

designing and improving high-throughput studies in experimental evolution. 97 

 98 

MATERIALS AND METHODS 99 

 100 
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Strains, media and culture methods 101 

Barcoded yeast strains were constructed using two haploid derivatives of a diploid strain 102 

collected from an Oak tree in Pennsylvania (YPS163) (Sniegowski, Dombrowski, and Fingerman 103 

2002): YJF153 (MATa, HO::dsdAMX4) and YJF154 (MATalpha, HO::dsdAMX4). Barcoded kanMX 104 

deletion cassettes were amplified from the MoBY plasmid collection (Magtanong et al. 2009) 105 

with primers containing homology to the promoter region (-1,129 to -1,959) of HO. A set of 92 106 

barcoded cassettes were selected based on confirmation of correct barcodes by sequencing 107 

(Table S1), then transformed into YJF153 and confirmed by PCR. Barcoded diploid strains were 108 

made by mating barcoded haploids (YJF153) to YJF154, and confirming diploids by mating-type 109 

PCR (Huxley, Green, and Dunbam 1990). Strains were stored at -80°C as 15% glycerol stocks.  110 

 111 

All evolution and fitness assays were conducted in complete minimal medium (CM;2% dextrose, 112 

0.17% yeast nitrogen base without amino acid and ammonium sulfate, 0.5% ammonium 113 

sulfate, 0.13% dropout mix complete without yeast nitrogen base) with or without additional 114 

stresses in 96-deep well plates (2.2-ml poly-propylene plates, square well, v-conical bottom; 115 

Abgene AB-0932) covered with rayon acrylate breathable membranes (Thermo Scientific, 116 

1256705). Growth plates were incubated at 30°C for 24 hours inside an incubator (VWR, Forced 117 

Air Incubator, basic, 120v, 7 cu. ft.) with agitation using a horizontal electromagnetic microplate 118 

shaker (Union Scientific LLC, 9779-TC). Saturated 24-hour culture was diluted (1:1000) into 119 

fresh medium at the same time each day to initialize the next round of growth for all evolution 120 

and fitness assays.  121 

 122 
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Starting material for all evolution and fitness assays originated from -80°C freezer stocks of the 123 

barcoded yeast strains. Yeast were revived from -80°C freezer stocks via a single round of 124 

growth (1 day, 10 generations) under standard culture conditions for these assays. Samples 125 

collected during our experiments were stored as both (1) 15% glycerol stocks at -80°C to 126 

maintain viable freezer stocks of yeast populations, and (2) pelleted samples at -20°C for DNA 127 

extraction. 128 

 129 

Experimental design 130 

Proof-of-concept fitness assays: The design of this new system for experimental evolution 131 

began with a proof-of-concept analysis in which (1) methods were optimized, and (2) it was 132 

confirmed that the fitness of multiple strains in pooled samples could be simultaneously and 133 

accurately measured by sequencing-based competition assay methods. This initial step involved 134 

measuring the fitness of 91 barcoded yeast strains relative to an ancestral reference strain 135 

simultaneously using a sequencing-based fitness assay (Figure 1, A.). Ten replicate fitness assays 136 

were conducted under standard culture conditions. Briefly, 92 yeast strains were revived from -137 

80°C freezer stocks, mixed in equal proportions (i.e., such that each strain comprised 1/92 of 138 

the pooled population), and diluted (1:1000) into fresh medium to initialize the two-day proof-139 

of-concept fitness assays. Samples were obtained from the undiluted initial mixtures and, 20 140 

generations later, from the final overnight population cultures. Fitness was measured by the 141 

change in barcode abundance relative to a ‘reference’ strain (d1H10) from 10 replicates over 142 

the two-day period of approximately 20 generations, for a total of 920 fitness assays (92 143 

barcodes x 10 replicates). See “Fitness Calculations”, below for a full description of the 144 
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competition-based fitness assay methodology and for calculations of fitness from barcode 145 

abundance data. DNA was isolated separately for each sample using a ZR Fungal/Bacterial DNA 146 

Kit (Zymo Research D6005) in individual 2.0 mL screw-cap tubes following the manufacturer’s 147 

instructions. Physical cell disruption by bead-beating was carried out in a mixer mill (Retsch, 148 

MM 300) at 30 Hz (1800 min-1) for ten minutes (1-minute on, 1-minute off, times ten cycles). 149 

Following extraction, DNA was amplified with forward/reverse primers containing a 9-12 bp 150 

index for multiplex sequencing. PCR products were quantified, pooled and purified to form a 151 

single multiplexed library for sequencing. Additional control samples were also included in the 152 

library to track barcode cross-contamination. See “Library Construction and Sequencing”, 153 

below, for a detailed description of the library preparation protocol used for these and all other 154 

samples.  155 

 156 

250-Generation evolution experiment: After establishment of the feasibility of the analysis 157 

strategy and optimization of the culture, assay, and processing methods, yeast strains were 158 

evolved for 25 days (i.e., ca. 250 generations at 9.97 generations per day) under different 159 

scenarios of selection in a second set of experiments. Specifically, 152 yeast strains were 160 

evolved by serial dilution in one of six different treatments (Figure 1, B1.; See Table S2 for 161 

treatment descriptions). Evolutionary treatments involved growth in either complete media 162 

(CM), CM with ethanol (8% by volume) or CM with NaCl (0.342 M). Serial transfers were 163 

achieved either through standard dilution (1:1000), reduced dilution (1:250), or increased 164 

dilution (1:4000). Haploid and diploid yeast were evolved under standard conditions to assess 165 

the effects of ploidy. To initialize the evolution experiment, barcoded yeast strains were revived 166 
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from -80°C freezer stocks. Barcoded yeast pairs slated to evolve in sympatry were then mixed in 167 

equal proportions and diluted in fresh medium, according to the experimental design, to begin 168 

the 250 generations of evolution.  169 

 170 

Samples were obtained from the initial undiluted mixtures and on day 25 (ca. 250 generations 171 

later), from the final overnight population cultures to serve as the starting material for the 172 

Generation-0 fitness assays and Generation-250 fitness assays, respectively (See: End-point 173 

assay of relative fitness change). Additional Samples were obtained at generations 0, 100, 150, 174 

200, 220, 240, and 250 for evolutionary dynamics analysis (See: Evolutionary Dynamics).  Two 175 

assays, evolutionary dynamics and end-point relative fitness, were developed to characterize 176 

the evolutionary processes and fitness change outcomes observed in the 250-generation 177 

evolution experiment: 178 

 179 

Evolutionary Dynamics: Relative proportions of pairs of barcoded yeast strains evolved in 180 

sympatry were quantified at generations 0, 100, 150, 200, 220, 240, and 250 from a total of 532 181 

evolutionary dynamics samples collected from the evolving populations. Briefly, evolutionary 182 

dynamics samples were pooled for DNA extraction such that there was no barcode overlap 183 

within pools. DNA was subsequently extracted (see the “Proof-of-concept fitness assays” 184 

section, above, for details). Libraries were constructed for sequencing as described in the 185 

“Library construction and sequencing” section, below. From these evolutionary dynamics data, 186 

the time-point (t-max) and magnitude (m-max) of the maximum change in relative abundance 187 

in comparison to the starting conditions, the time-point (t-max-rate) and magnitude (m-max-188 
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rate) of the maximum rate of change between adjacent time-points, the time-point (t-max-diff) 189 

max difference (m-max-diff) in BC proportions, and the total cumulative change in sympatric 190 

barcode relative abundance across all time-points were quantified. Barcodes approaching 191 

fixation (hereafter referred to as “fixed barcodes”) were also noted and were defined as cases 192 

in which a single barcode from the sympatric barcode pair obtained (and maintained) a 193 

proportion of 0.95 or greater by (through) generation 250 of the evolution experiment.  194 

 195 

End-point assays of relative fitness: The second assay type, the “end-point assay of relative 196 

fitness”, was designed to assess the fitness of a given focal strain relative to a reference via 197 

barcoded competition-based fitness assay; these measures, if taken at the start and end of an 198 

experimental evolution, provide a means of measuring fitness change. In this case, the assay 199 

involved quantifying barcode fitness using pooled samples from generation 0  (Figure 1, B2.) 200 

and generation 250 (Figure 1, B3.) from the 250-generation evolution experiment (Figure 1, 201 

B1.). Briefly, Generation-0 and Generation-250 yeast strains were revived and samples from 202 

each time point were pooled such that there was no overlap in barcoded yeast strain identity 203 

within each pool. Pools of revived generation-0 and generation-250 yeast were independently 204 

combined in equal proportion (50 pooled-yeast : 50 ancestral reference) with an ancestral 205 

reference strain (re: an ‘unevolved’ barcoded yeast strain); these pooled samples were then 206 

diluted into fresh medium to initialize the fitness assays. Four replicate Fitness assays were 207 

conducted for each pool of generation-0 and generation-250 yeast. Fitness assays employed a 208 

standard 1:1000 transfer dilution across all samples. Samples evolved in CM plus additional 209 

stresses were assayed in the same media type that they were evolved in. Diploid yeast were 210 
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competed against a diploid reference strain (strain ID: d1H10), while haploid yeast were 211 

competed against the haploid version of this same reference (strain ID: h1H10). In these assays, 212 

yeast samples for DNA extraction were obtained from the undiluted initial mixtures (fitness 213 

assay starting material), and, 20 generations later, from the final overnight population cultures 214 

(fitness assay end) to assess fitness of generation-0 and generation-250 yeast strains. See 215 

“Fitness Calculations”, below, for a full description of fitness assay methodology and for 216 

calculations of fitness from fitness assay barcode abundance data. Libraries were constructed 217 

for sequencing as described in the “Library construction and sequencing section”, below. 218 

 219 

Library construction and sequencing: Barcode sequencing libraries for the proof-of-concept 220 

fitness assays and all samples from both components of the 250-generation evolution 221 

experiment were constructed by amplification of the MoBY barcodes (Magtanong et al. 2009) 222 

with primers containing Ion Torrent adaptors with indexes to distinguish samples from one 223 

another (Table S3). 224 

 225 

PCR products for library construction were initially generated using 25 cycles and quantified 226 

(Qubit 3.0 Flourometer, high sensitivity assay kit). These products were subsequently combined 227 

at equimolar concentrations and purified using a Zymo DNA Clean & Concentrator kit (Zymo 228 

Research D4014) to create a single library for sequencing. The extraction and PCR steps were 229 

repeated for samples that did not attain sufficient DNA concentrations.  230 

 231 
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DNA libraries were sequenced using an Ion Torrent sequencer (Ion Proton System, Ion Torrent) 232 

at the Genomics Core Facility at Saint Louis University with a customized parameter to assess 233 

polyclonality after 31bp (the start position of the forward Ion Torrent adapter index sequence). 234 

A single sequencing run was used for each pooled library (library 1 – proof-of-concept fitness 235 

assays, library 2 – evolution experiment: evolutionary dynamics samples, Generation-0 fitness 236 

assays, and Generation-250 fitness assays). An additional library was constructed for a set of 237 

samples from library 2 with elevated barcode contamination rates. 238 

 239 

Sequence data processing & calculations 240 

Sequence datasets: Sequence data in FASTQ format were parsed and demultiplexed using 241 

custom scripts in R (See Code and Data Availability statement, below) A total of 142,243,245 242 

raw reads that matched the forward Ion Torrent adapter indices included in our experiment 243 

(omitting reads that matched no forward adapter, polyclonal reads, low quality reads, and 244 

adapter dimer reads) were recovered across the three sequenced libraries.  104,365,740 reads 245 

(73.4%) were retained for analysis that perfectly matched a forward sequencing adapter index 246 

(9-12 bp), reverse sequencing adapter index (9-12 bp) pair, and a MOBY genetic barcode (20 247 

bp) included in the full experimental design. 248 

 249 

Barcode contamination rate: The barcoded yeast experimental evolution system has an innate 250 

ability to detect and track barcode contamination that could arise during evolution, over the 251 

course of short-term fitness assays, or during DNA library preparation. Barcode contamination 252 

rate was defined as the mean number of counts mapping to any given barcoded yeast strain 253 
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included in the full experimental design (sequenced library), but not expected to be present in 254 

the given sample (pair of forward and reverse IonTorrent adapter Indices). Barcode 255 

contamination rates were calculated separately for each unique forward-reverse index pair 256 

included in each sequencing library and are essentially a measure of how much noise an 257 

average contaminating barcode strain contributes to each sample. The barcode contamination 258 

rate of sample (primer pair) j, Bj, was measured as, 259 

 260 

Equation 1. 261 

𝐵" =
1
𝑚∑ 𝐶()

(*+

𝑇"
 262 

 263 

where m is the number of barcoded strains that could potentially contribute to barcode 264 

contamination in experiment j (i.e., the number of unique strain IDs included in the full library, 265 

but not expected in sample j), Ci is the number of barcoded yeast strain counts recovered for 266 

contaminating barcode i, and Tj is the total number of counts recovered in sample j across all 267 

barcoded yeast strains included in the full experimental design. 268 

 269 

Contamination rate summaries are reported, separately, for the proof-of-concept fitness 270 

assays, and the evolution experiment (the latter containing evolutionary dynamics, generation-271 

0 fitness assay and generation-250 fitness assays samples). For the subset of evolution 272 

experiment samples that were sequenced in two separate libraries, only the replicate with a 273 

lower contamination rate was retained for contamination rate summary reporting and all 274 
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downstream analyses. In all statistical analyses reported below, contamination rate is initially 275 

included as a potential predictor; it is removed via model reduction if deemed nonsignificant.  276 

 277 

Fitness calculations: Fitness was evaluated via sequencing-based assays that involved 278 

competing barcoded yeast strains against a common ancestral reference strain for 2 days (20 279 

generations) at each timepoint in evolution for which fitness metrics were desired. All reported 280 

fitness values for the yeast strains in all fitness assays are relative to the same barcoded 281 

ancestral reference strain (strain ID: d1H10 for diploids; strain ID: h1H10 for haploids). Briefly, 282 

the relative fitness of barcoded yeast strain i at generation gn, wi gn, was measured as, 283 

 284 

Equation 2. 285 

 286 

𝑤(./ = 00𝑙𝑛
𝐶𝑖45
𝑅45

− 𝑙𝑛
𝐶𝑖5
𝑅5
8 20; 8

<

 287 

 288 

where Ci and R refer to barcode counts for the focal barcode and reference barcode at fitness 289 

assay generation 0 (initial mixtures; fitness assay initial measurement) and fitness assay 290 

generation 20 (final overnight cultures; fitness assay final measurement), and 20 is the number 291 

of generations between measurement at fitness assay generation 0 and fitness assay 292 

generation 20 (Hartl and Clark 1997). The change in fitness of strain i in the endpoint assays for 293 

our 250-generation evolution experiment, ∆𝑤(, we therefore computed as, 294 

 295 

Equation 3.   296 
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∆𝑤( = 𝑤(.>?@ − 𝑤(.@, 297 

 298 

where wi g0  and wi g250  are the strain’s fitness at generation 0 and 250 as measured from 299 

Equation 2.  300 

 301 

 302 

Statistical analysis 303 

Analysis & visualization tools: All Analyses and statistical test were conducted in R version 3.5.2 304 

(R Core Team 2012) using the RStudio IDE version 1.1.456 (RStudio Team 2016). Data 305 

processing uses almost entirely base-R functionality; the plyr package (Hadley Wickham 2011) is 306 

used in some cases for data frame manipulation. All Statistical models with linear mixed effects 307 

were generated using the lme4 (Bates et al. 2015), and lmerTest (Kuznetsova, Brockhoff, and 308 

Christensen 2017) packages. Weighted t-tests were assessed with the weights package (Pasek 309 

2018). Finally, figures and tables were generated with the ggplot2 (Wikham 2009) and sjPlot 310 

(Ludecke 2019) packages, respectively; multi-panel figures were built using the gridExtra 311 

package (Auguie 2017). Raw p-values are reported unless otherwise noted; the tables included 312 

in the supplement report raw and corrected p-values for these instances.  313 

 314 

Reads: Analysis of multiplex barcode sequencing data requires careful consideration of sample 315 

size. Because counts data are ultimately handled as relative frequencies (proportions), it was 316 

necessary to consider underlying sample size or “confidence” in each piece of data within the 317 

full dataset for all calculations and analyses. That is, entries with more reads were explicitly 318 
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assumed to contribute more to summary calculations and statistical analyses. Variation in 319 

sample size was thus controlled for by weighting all calculations by the read sample size and by 320 

including such weights in downstream statistical models. This sample size metric considers both 321 

the total counts recovered for a multiplexed sample (unique forward and reverse index 322 

sequence adapter pair) and the number of counts recovered for the focal barcoded yeast 323 

strain(s) for that entry. In the analyses presented here, read calculations utilize harmonic means 324 

rather than arithmetic means when data for multiple entries was summarized. Harmonic means 325 

were used because they are sensitive to the small values that were typically associated with low 326 

focal barcoded strain reads in the dataset.  327 

 328 

Proof-of-concept fitness assays: Fitness differences among 92 constructed barcoded yeast 329 

strains used for proof-of-concept were assessed using a linear model with mean-corrected 330 

fitness as the response variable and yeast strain ID as the predictor variable. 331 

 332 

Multiplex barcode sequencing and cross-contamination: Barcode contamination rate was 333 

assessed (Equation 2.) and summarized, separately for the proof-of-concept fitness assay and 334 

the 250-generation experiment. The effects of barcode contamination rate change in fitness 335 

were assessed using a linear mixed effects model with barcode cross-contamination rate as the 336 

predictor variable and change in fitness as the response variable. Strain identifier (evolutionary 337 

treatment plus yeast strain barcode ID) was included as a random effect nested within 338 

evolutionary treatment and was applied only to the intercepts for these models. Additionally, a 339 

weighted 1-tailed t-test was utilized to assess whether barcode cross-contamination rates for 340 
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samples collected in either the fitness assay or the evolution experiment decreased after re-341 

extracting DNA and resequencing. 342 

 343 

Fitness change in 250 generations of experimental evolution: Barcoded yeast strains that 344 

exhibited increases in fitness over the 250-generation fitness experiment were identified using 345 

a linear model with change in fitness as the response variable and a strain identifier (treatment 346 

plus yeast strain Barcode ID) as the predictor variable. 347 

 348 

The effects of evolutionary treatment (medium type, ploidy, and transfer dilution) on change in 349 

fitness over 250 generations of experimental evolution were assessed using a linear mixed 350 

effects model with change in fitness (𝛥𝑤) as the response variable, and treatment and barcode 351 

cross-contamination rate as predictor variables. Additionally, a random effect of a strain 352 

identifier (treatment plus yeast strain Barcode ID) was placed on the model intercept. 353 

 354 

Evolutionary dynamics: For all analyses of evolutionary dynamics, only the first barcoded yeast 355 

strain from each well (sympatric pair) was included to ensure that data were not ‘double-356 

counted’. Linear models, with treatment as the predictor variable and either (1) t-max, (2) m-357 

max, (3) t-max-rate, (4) m-max-rate, (5) t-max-diff,  (6) m-max-diff, or (7) total cumulative 358 

change in barcoded relative abundance across all time-points as the dependent variable were 359 

employed to assess treatment differences in evolutionary dynamics. Full models also included 360 

initial barcode abundance as a predictor term (in addition to contamination rate) because initial 361 

barcode abundance could impact subsequent dynamics. Initial barcode abundance was 362 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2019. ; https://doi.org/10.1101/731349doi: bioRxiv preprint 

https://doi.org/10.1101/731349
http://creativecommons.org/licenses/by-nc/4.0/


subsequently removed from models when nonsignificant, resulting in removal from all but one 363 

model (t-max-diff). Barcode fixation rate was not assessed statistically due to the small number 364 

of fixation events observed (n=7/76 populations).  365 

 366 

Code & data availability 367 

Raw sequence data are available from NCBI’s Sequence Read Archive  (SRA BioProject ID 368 

PRJNA555990). Data formatted for analysis, intermediate data frames, as well as the custom R 369 

scripts utilized for all data processing, statistical analysis, and figure generation are available 370 

from GitHub (github.com/VinceFasanello/MM_Code_Supplement). A readme file is available in 371 

the GitHub repository with the instructions necessary to reproduce the analyses and to confirm 372 

the results presented in this article. Supplementary figures, tables, and files are described 373 

throughout the main text; detailed descriptions of all supplemental files can be found in File S1. 374 

Strains are available upon request.  375 

 376 

RESULTS 377 

 378 

Proof-of-concept fitness assays 379 

We constructed 92 diploid yeast strains, each with a unique 20 bp barcode inserted upstream 380 

of the deleted HO gene. We conducted Proof-of-Concept fitness assays to measure any fitness 381 

differences among these constructed “barcoded” strains, to estimate our power to detect small 382 

fitness differences, and to assess our ability to measure fitness using multiplexed barcode 383 

sequencing. We measured fitness simultaneously for our pool of 92 barcodes by the change in 384 
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barcode abundance relative to a ‘reference’ strain (barcode ID: d1H10) in 10 replicates over a 385 

two-day period of approximately 20 generations, for a total of 920 fitness assays (92 barcodes x 386 

10 replicates). 387 

 388 

A few of the barcoded strains showed significant differences in fitness (3/92 at a 5% FDR, 1/92 389 

at a 1% FDR) (Figure 2, Table S4). The root mean squared error (rMSE) among replicated 390 

measures of fitness was 0.0176, indicating good power to detect a 2% fitness difference at 391 

nominal significance of 0.05 and a 5% fitness difference at a more stringent cutoff of 0.01 with 392 

four replicates (Table S5). With these promising results, we proceeded to conduct a more 393 

comprehensive test of the utility of barcoded strains in a practical experimental evolution 394 

context.  395 

 396 

Experimental evolution 397 

To evaluate the strengths of this barcoded-strain system for studies of experimental evolution, 398 

we conducted a 25 day, approximately 250 generation, evolution experiment. Our design 399 

included 76 populations, each initiated with two sympatric barcodes. Samples spanned six 400 

treatments, which varied in yeast strain ploidy, growth medium, and daily transfer dilution 401 

(Table S2). To measure any changes in fitness we competed the evolved generation-250 strains 402 

and their generation-0 ancestors against a common reference strain over a two-day period of 403 

approximately 20 generations. With four replicate fitness assays for each barcode, this 404 

amounted to 1,216 fitness assays (2 barcodes * 2 time-points * 76 populations * 4 replicates). 405 

We also measured the change in barcode frequency of sympatric barcoded strains within each 406 
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evolving population from 532 longitudinal-evolutionary dynamics samples (76 barcoded pairs * 407 

7 timepoints). From these samples we quantified the magnitude and timing of changes in 408 

barcode frequency, which should be influenced by changes in the fitness of the evolving, 409 

sympatric barcoded strains present within each population.  410 

 411 

Multiplex barcode sequencing: We utilized a two-step multiplexed design to obtain high 412 

throughput estimates of fitness based on barcode sequencing in our fitness assays. In the first 413 

step we leveraged the strain-identifying barcodes by pooling multiple strains together and 414 

simultaneously competing them against an ancestral reference strain to estimate relative 415 

fitness. In our second multiplexing step we PCR amplified each fitness assay sample with unique 416 

forward and reverse indexed sequencing adaptors. This latter step enabled us to assign 417 

sequencing reads to the appropriate fitness assay after sequencing many samples in concert as 418 

a single library. We constructed one library for each experiment (Library 1 – Proof-of-Concept 419 

fitness assays; Library 2 – 250-generation evolution experiment evolutionary dynamics and 420 

fitness assays samples). 421 

 422 

From 84,776,627 demultiplexed reads, we obtained a median of 2,961 reads per barcode in 423 

each sample.  However, we also detected cross-contamination, defined as strain barcodes with 424 

sample indexes that shouldn't exist in our sequenced libraries. The average rate of cross 425 

contamination per sample was low, 0.04%, and consistently present in nearly all of our samples 426 

(Figure S1 A, B.). Contamination could occur during culturing of yeast strains, liquid handling 427 

during preparation of libraries (Lenski et al. 1991; Van den Bergh et al. 2018), or via index 428 
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switching during sequencing procedures (Illumina 2017; Sinha et al. 2017; Costello et al. 2018). 429 

The low but uniform rate of cross contamination we observe is more consistent with library 430 

preparation and sequencing than yeast contamination. Additionally, no growth was observed in 431 

culture blanks during any fitness assays nor during the 25-day experimental evolution 432 

experiment. 433 

 434 

To test whether the cross-contamination rate depends on liquid handling during library 435 

preparation, we reprocessed a subset of samples with high cross contamination rates using 436 

identical starting material (multiple sample aliquots were created at the time of sample 437 

collection). Cross contamination rates decreased significantly in these reprocessed samples (t = 438 

22.3, df = 65, p < 10e-6), but a low level of background contamination remained (Original 439 

Samples: mean = 0.75%; reprocessed samples: mean = 0.05%) (Figure S2).  440 

 441 

In our analyses, the presence of low abundance cross contamination was removed from all 442 

samples in which a barcode is not expected to occur. However, this doesn't eliminate 443 

contamination in samples where a barcode is expected to occur. In such cases, error in 444 

estimates of barcode frequency is highest when a barcode’s frequency is low and approaches 445 

the cross-contamination rate. Although results did not greatly change using cross-446 

contamination as a covariate, we included cross-contamination rate in our models (when 447 

significant) because it was negatively associated with fitness (P < 10e-6) between generation 0 448 

and generation 250 in the fitness assays data from the 250-generation experimental evolution 449 

(Figure S3; Table S6).  450 
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 451 

End-point fitness assays: We assessed fitness in the 154 evolved strains (evolution experiment 452 

generation-250 strains) as well as their ancestors (evolution experiment generation-0 strains). 453 

For each strain and timepoint, fitness was measured in comparison to a common ancestral 454 

reference strain via a two-day competition-based fitness assay in the same conditions under 455 

which the strain had been evolved. 456 

 457 

Twenty three percent (35/154) of the strains showed significant increases in fitness between 458 

generation 0 and generation 250 at a 1% FDR (Figure 3, Table S7). Within this subset, the 459 

average fitness increase was 6.80% with a range of 2.75% to 23.5%. Relatively few strains with 460 

significant increases in fitness were found in the CM treatment (3/42; 7.14%) and ethanol stress 461 

treatment (2/22; 9.09%). A higher proportion of strains exhibited significant increases in fitness 462 

in the lower 1:250 dilution treatment (9/22; 40.9%), the salt stress treatment (11/22; 50.0%), 463 

and the haploid treatment (10/22; 45.5%). No strains in the 1:4000 dilution treatment (0/22) 464 

exhibited increases in fitness. None of strains (0/154) across all of our treatments exhibited a 465 

significant overall decrease in fitness in the course of our experiments.  466 

 467 

Next, we evaluated the effect of evolutionary treatment on fitness change. We found 468 

significant variation in fitness among treatments (P < 10e-6). Relative to our standard culture 469 

conditions -- diploids in CM (“no stress”) with 1:1000 transfer dilution, we found greater (more 470 

positive) fitness change in diploid strains evolved in salt stress (P < 10e-6), in haploid strains 471 

evolved in standard culture conditions (p = 1.13e-2), and in diploid strains evolved with a 472 
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reduced (1:250) daily transfer dilution (p = 9.49e-4). Relative to the CM (“no stress”) diploid 473 

treatment (our standard culture conditions), we found less (less positive) fitness change in 474 

diploid strains evolved in ethanol stress (p = 3.99e-3). We found no significant effect of a more 475 

extreme daily transfer dilution (1:4000) on fitness change (p=0.39). Contamination rate had a 476 

significantly negative effect on fitness (P < 10e-6) (Figure 4, Table S8), which is consistent with 477 

the idea that cross-contamination can reduce the power to detect fitness differences. 478 

 479 

Evolutionary dynamics: In experimental evolution, adaptation can influence the relative 480 

abundance of barcodes evolving in sympatry (Kao and Sherlock 2008; Selmecki et al. 2015). We 481 

tracked the relative proportions of 76 barcoded-yeast pairs evolving in sympatry at seven 482 

timepoints during our 250-generation evolution experiment (days 0, 10, 15, 20, 22, 24, and 25) 483 

to examine the evolutionary dynamics generated by adaptation and other processes (e.g., 484 

drift). We collected 8 measurements from these 532 evolutionary dynamics samples (76 485 

populations * 7 timepoints): (1) barcode fixation, (2) the time-point and (3) magnitude of the 486 

maximum change in relative abundance in comparison to the starting conditions, (4) the time-487 

point and (5) magnitude of the maximum rate of change between adjacent time-points, (6) the 488 

time-point and (7) magnitude of the maximum difference in BC proportions, and (8) the total 489 

cumulative change in barcoded relative abundance summed across all time-points. 490 

 491 

Out of the seven measures of adaptive dynamics that were amenable to statistical testing, six 492 

significantly differed by treatment (Table 1; see supplemental figures S4:S10 and supplemental 493 

tables S9:S15 for individual adaptive dynamics plots and results tables). Relative to the CM-494 
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diploid treatment (our standard culture conditions) both the salt and haploid treatments were 495 

associated with a larger maximum change in relative abundance in comparison to the start (p = 496 

5.24e-5, p = 5.85e-3, respectively) and a more extreme maximum difference in BC proportion (p 497 

= 2.77e-4, p = 6.01e-6, respectively). The salt treatment was also associated with an earlier 498 

time-point of the maximum change in abundance relative to the start (p = 0.01), and the 499 

haploid treatment was associated with an earlier maximum rate of change (p = 1.35e-5). The 500 

total cumulative change in barcode abundance was greater for the 1:4000 dilution treatment 501 

than the 1:1000 dilution treatment (p = 1.77e-3). Total cumulative change in barcode 502 

abundance was significantly less for haploids than diploids (p = 4.9e-2), and significantly less in 503 

the ethanol stress treatment than in the CM with no stress treatment (p = 2.98e-2).  Finally, we 504 

observed barcodes that approached fixation in eleven percent (9/76) of our sympatric 505 

populations.  Most near-fixation events were in the sympatric populations from the salt (3/11; 506 

27.3%) and haploid (5/11; 45.5%) treatments, one instance was observed in the CM-diploid 507 

treatment and no instances of near-fixation were observed in the ethanol 1:4000 dilution, nor 508 

1:250 dilution treatments.  509 

 510 

DISCUSSION 511 

 512 

Experimental evolution has proven to be a valuable approach for studying a range of 513 

evolutionary questions. In this study we implemented a genetic barcoding system in S. 514 

cerevisiae to increase the efficiency and throughput of these types of studies. The premise of 515 

our system is that barcoding microbial strains allows us to engage in increasingly complex 516 
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experimental designs by enabling multiplexing of independent samples, which increases the 517 

throughput of fitness assays, and by providing a relatively simple means to track barcode 518 

lineage dynamics. Accordingly, we have demonstrated our system’s potential for detecting 519 

fitness differences in six experimental evolution treatments and have shown that while the 520 

typically low levels of barcode cross-contamination we observe cannot be completely 521 

eliminated, their effects on inference can be minimized through simple statistical procedures. 522 

Below we discuss the merits and drawbacks of our system, and its capabilities to increase 523 

efficiency and throughput in experimental evolution research. 524 

 525 

One potential caveat of a barcoding system like the one we propose here, is that barcoded 526 

strains are not necessarily identical to one another at the beginning of an experiment even if all 527 

barcoded variants are produced from a single ancestral clone. Although we found no significant 528 

fitness differences among the majority of barcoded strains, we note that we did indeed observe 529 

a few strains with significant deviations from the population mean fitness. Given the location of 530 

our barcode insertions (i.e., a currently non-functional region of the genome) it is unlikely that 531 

the barcodes themselves generated these fitness differences. A perhaps more likely explanation 532 

is that these differences arose from mutations that occurred during transformation (Giaever 533 

and Nislow 2014) or shortly thereafter. Regardless of the reason, future users of our 534 

experimental approach could either remove strains with fitness differences entirely from their 535 

analyses or could instead quantify initial fitness differentials and include them as a covariate in 536 

downstream analyses or fitness assays. We note that initial fitness differentials may be of 537 

interest themselves, given that they can potentially impact evolutionary outcomes (Barrick et 538 
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al. 2010; Kryazhimskiy et al. 2014; Jerison et al. 2017) and the types of mutations that 539 

successfully spread through an experimental population (MacLean, Perron, and Gardner 2010).  540 

 541 

An ideal experimental evolution system must be able to detect changes in fitness with 542 

confidence. Studies are typically designed to carefully measure large fitness effects; these 543 

studies commonly report significant fitness changes or advantages in the range of 5-25% (De 544 

Visser and Rozen 2006; B. S. Hughes, Cullum, and Bennett 2007; Gresham et al. 2008; R. Dhar et 545 

al. 2011; Selmecki et al. 2015). (De Visser and Rozen 2006)(B. S. Hughes, Cullum, and Bennett 546 

2007)(Gresham et al. 2008)(R. Dhar et al. 2011)(Selmecki et al. 2015)Some studies are able to 547 

detect fitness effects of ~2%; these typically rely on a large amount of replication and/or 548 

sequencing-based census techniques to detect small effect sizes. We show that our 549 

experimental evolution system can detect fitness effects of 2% with high power using a 550 

relatively small number of replicates (n = 4). The high-throughput nature of this system makes it 551 

amenable for studies in which either expected fitness changes are small or replication is 552 

difficult due to complex experimental designs that require assaying fitness in multiple contexts; 553 

the system is particularly advantageous when many strains (tens to hundreds) are included in 554 

each treatment. 555 

 556 

Another important consideration when designing an experimental evolution system is that it 557 

must be fairly robust to contamination. While culture contamination is rare in experimental 558 

evolution (Lenski et al. 1991; T. F. Cooper and Lenski 2010), barcode (or cross-), contamination 559 

is possible. Our results are consistent with prior work on this topic. Specifically, while we found 560 
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no evidence of culture contamination in blank cultures, we detected a uniformly low level of 561 

barcode contamination in multiplexed fitness assays and evolutionary dynamics samples. 562 

Because there was no conspicuous pattern of cross-contamination, we suggest that the 563 

observed contamination was likely to be introduced in our system during sample preparation 564 

for DNA sequencing. DNA extraction is a likely source of cross-contamination in samples 565 

processed in strip-tubes or 96-well plate formats that prioritize throughput. However, we 566 

minimized the chance for contamination in the DNA isolation step in our experiments by 567 

isolating DNA with individual reaction tubes for each sample. Still, other sources of 568 

contamination are possible, these include primer contamination during the index addition via 569 

PCR (Lo, Mehal, and Fleming 1988) and index switching during library construction or 570 

sequencing (Illumina 2017; Sinha et al. 2017; Costello et al. 2018). The latter possibility seems 571 

nevertheless unlikely because all PCR steps were performed separately prior to pooling of 572 

libraries.  573 

 574 

The strength and efficiency of our system is further evidenced by its numbers. A barcode 575 

system enabled us to evolve a large number of strains (176) for 250 generations across six 576 

treatments, and to conduct a total of 532 evolutionary dynamics measurements and 1,216 577 

fitness assays related to these manipulations in a relatively short amount of time. Reassuringly, 578 

our results are largely consistent with prior work. We find greater fitness increases, i.e., a 579 

greater rate of adaptation, in haploids than diploids. This finding agrees with another study that 580 

found faster rates of adaptation and larger effective population sizes in haploids relative to 581 

diploids (A. C. Gerstein et al. 2011). In a related study, Selmecki et al., (Selmecki et al. 2015) 582 
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found faster adaptation in tetraploids than diploids, but no difference in rate of adaptation 583 

between haploids and diploids, potentially suggesting a trend opposite to ours of increasing 584 

adaptive rate with increasing ploidy. However, differences between haploids and diploids must 585 

be treated with caution because there is mounting evidence that haploid yeast evolves towards 586 

diploidy under experimental evolution conditions (Aleeza C. Gerstein and Otto 2011; R. Dhar et 587 

al. 2011; Selmecki et al. 2015). We also find greater fitness increase in complete medium (CM) 588 

plus NaCl stress than in CM alone, which was not surprising given what is known about 589 

adaptation to NaCl stress in S. cerevisiae (Blomberg 1995; R. Dhar et al. 2011; Park, Yang, and 590 

Kim 2015; Tekarslan-Sahin, Alkim, and Sezgin 2018). In contrast, we were surprised to detect 591 

less fitness increase in CM plus EtOH stress than in CM alone. There are several non-mutually 592 

exclusive explanations for this result: It is possible that ethanol did not present a significant 593 

stress (selective pressure) to the cells once they had attained physiological adaptation to the 594 

medium, i.e., acclimation (Huang et al. 2018). It is also possible that adaptations to CM and 595 

adaptations to ethanol exhibit antagonistic pleiotropy, similar to what has been found in 596 

experiments contrasting rich and poor media (Minty et al. 2011) or exploring adaptation to 597 

other chemical stressors (Reyes, Abdelaal, and Kao 2013). Pleiotropy could also shed light on 598 

the marked adaptation observed in the NaCl treatment given that adaptation to CM and NaCl 599 

stress may exhibit complementarity via synergistic or positive pleiotropy (Ostman, Hintze, and 600 

Adami 2012; Riddhiman Dhar et al. 2013; McGee et al. 2016; K. A. Hughes and Leips 2017). 601 

Finally, we find no difference between the 1:1000 and 1:4000 daily dilution treatments, but we 602 

find a greater increase in fitness when a 1:250 transfer dilution was used instead of the 603 

standard 1:1000 dilution. While this finding is not necessarily expected (Gerrish and Lenski 604 
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1998; De Visser et al. 1999; De Visser and Rozen 2006; Kryazhimskiy, Rice, and Desai 2012), it 605 

nevertheless supports earlier findings that less extreme bottlenecks may favor the maintenance 606 

of adaptive mutants (Wahl, Gerrish, and Saika-Voivod 2002), and is consistent with evidence for 607 

greater mean fitness increase in wide vs. narrow bottleneck populations (Schoustra et al. 2009). 608 

It is also consistent with earlier observations that large populations are less adaptively 609 

constrained than small ones in simple environments (Rozen et al. 2008). 610 

 611 

In addition to high-throughput fitness assays, barcoding enabled us to track sympatric barcoded 612 

lineages during the course of experimental evolution (Blundell and Levy 2014; Levy et al. 2015; 613 

V. S. Cooper 2018). As expected, we found general agreement between the evolutionary 614 

dynamics results and endpoint fitness assay results in our six experimental treatments. For 615 

example, the haploid and NaCl stress treatments both displayed dynamics consistent with more 616 

extreme increases in fitness, including greater change in barcode abundance relative to the 617 

starting conditions and a greater maximum difference in sympatric barcode abundance than 618 

diploids in CM. Interestingly, haploids also showed signs of earlier adaptation than diploid 619 

strains in similar conditions, as evidenced by an earlier generation of maximum rate of change 620 

in barcode abundance (Blundell and Levy 2014; Levy et al. 2015; Selmecki et al. 2015) and a 621 

lower total change in barcode abundance over 250 generations. Although this latter result 622 

seem paradoxical, it is consistent with the observation that haploids adapt earlier than diploid 623 

strains (A. C. Gerstein et al. 2011), and is expected if a greater proportion of the total change in 624 

barcode abundance of haploids in our experiments happened in the first 100 generations. 625 

 626 
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Despite significant differences in barcode dynamics, there are some limitations to interpreting 627 

these results. Because we mostly assessed abundance every 50 generations, it is possible that 628 

we missed some of the adaptive dynamics. Furthermore, barcode frequencies over time were 629 

not measured in replicate. Finally, changes in barcode abundance may not be related to final 630 

fitness. For example, the 1:4000 transfer dilution bottleneck treatment had elevated rates of 631 

change in barcode abundance and a high amount of total change in barcode abundance 632 

without a concomitant increase in fitness. We therefore suggest that future studies employ a 633 

denser and more even longitudinal-evolutionary dynamics sampling scheme, with replication, 634 

to maximize the value of this type of lineage tracking data.  635 

 636 

In summary, we conclude that the barcoded yeast system that we describe here greatly 637 

increases the throughput of fitness measurements and provides a relatively simple means for 638 

lineage tracking, thereby enabling more complex and potentially more useful experimental 639 

evolution designs. We observe that although barcode contamination imposes some limitations 640 

on the implementation of this system, it is possible to track the origin and rates of such 641 

contamination and, therefore, consider its effects on experimental outcomes. Overall, our 642 

findings indicate that this system represents a significant step forward toward the design and 643 

implementation of high throughput studies in this field.  644 
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FIGURES 885 

 886 

 887 

 888 

Figure 1 889 

Overview of experimental design. Barcoded yeast strains were used for proof-of-concept fitness 890 

assays (A, 2 days) and experimental evolution (B, 25 days) with gray boxes indicating one day 891 

(10 generations). During the 25-day, 250-generation, experimental evolution (B1), evolutionary 892 

dynamics samples were collected at generations 0, 100, 150, 200, 220, 240, and 250 (cyan 893 

arrows). Fitness of the ancestral (B2) and evolved (B3) strains were quantified via (2-day, 20-894 

generation) fitness assays (red arrows).   895 
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 898 

Figure 2 899 

Histogram of fitness from 92 barcoded yeast strains. Fitness is the deviation from the 900 

population mean and was quantified by competition against a common reference strain via 901 

Proof-of-concept fitness assay. Orange and cyan bars indicate yeast strains with fitness values 902 

significantly and not significantly different from the population mean at a false discovery rate of 903 

5%, respectively. 904 
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 907 

Figure 3   908 

Change in fitness over 250 generations of experimental evolution. Histogram depicts fitness 909 

increase quantified by competition against a common reference strain. Fitness increase is 910 

generation-250 fitness minus generation-0 fitness. Orange and cyan bars indicate strains with 911 

fitness values significantly greater or not significantly greater than their own fitness at 912 

generation 0 at a false discovery rate of 1%, respectively. No strains significantly decreased in 913 

fitness.  914 
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 917 

Figure 4  918 

Change in fitness across six treatments in 250 generations of experimental evolution. Violin 919 

plots show the density of 152 yeast strains' change in fitness with treatment labels indicating 920 

the medium, ploidy and dilution rate. Points indicate individual barcodes with sizes reflecting 921 

the number of reads underlying each datapoint and colors indicate evolutionary treatments. 922 

Treatment mean fitness changes are depicted as heavy black crossbars. Treatments significantly 923 

different from the control treatment are marked with an asterisk. The treatment with diploid 924 

yeast evolved under a standard 1:1000 transfer dilution in CM is the reference level in this 925 

model.  926 
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  Treatment 

 
CM + ETOH CM + NaCl 1:4000 dil. 1:250 dil. Haploid 

t-max N.S. -48.702 ** N.S. N.S. N.S. 

m-max N.S. 0.292 *** N.S. N.S. 0.178 ** 

t-max-rate N.S. N.S. N.S. N.S. -52.717 *** 

m-max-rate N.S. N.S. 0.006 * N.S. N.S. 

t-max-diff N.S. N.S. N.S. N.S. N.S. 

m-max-diff N.S. 0.175 *** N.S. N.S. 0.204 *** 

total change -0.007 * N.S. 0.018 * N.S. -0.007 * 

 929 

Table 1 930 

Associations between evolutionary dynamics and evolutionary treatments. Estimates for 931 

significant differences between each evolutionary treatment and the control (CM-diploid, 932 

1:1000 transfer) are shown for seven different measures of barcoded dynamics (t-max, m-max, 933 

t-max-rate, m-max-rate, t-max-diff, m-max-diff, and total change). 934 
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