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Effectiveness of normalizations 

The correlation structure revealed after different types of normalization supports the 

effectiveness of the normalizations (Supplementary Figure 1). The correlation matrix for the 

initial signal (number of mapped reads per window) showed the clustering by the feature that 

was emphasized with the normalized data, but it also presented a heterodisperse pattern of off-

diagonal correlations and substructure between different features. The off-diagonal correlations 

were reduced when normalized by sequencing depth, but some clustering within cell types with 

similar signal-to-noise ratio was observed. Utilization of S3norm to normalize for variation in 

both sequencing depth and signal-to-noise ratio removed much of the off-diagonal higher 

correlations, which indicates that with normalization by S3norm effectively removes much of the 

systematic biases in the data. 
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Supplementary Figure 1. Correlations across all features and cell types using raw data, data adjusted 

for sequencing depth, and data after normalization by S3norm. 

 

Accuracy of ATAC-seq peak calls in progenitor cells 

We examined whether differences in sequencing depth could explain the larger numbers of 

cCREs observed in progenitor and megakaryocytic cells. The number of ATAC-seq peaks was 

positively associated with sequencing depth (Supplementary Fig. 2A), measured as the number 

of mapped reads after filtering to remove reads mapping to the mitochondrial chromosome and 

blacklisted regions. The number of called peaks ranged widely for a given sequencing depth, 

but the association is positive. While the number of mapped, filtered reads were low for some 

monolineage cell types (e.g. the lymphoid cells), others such as CFUE, ERY, MON, and NEU 

were sequenced to a depth equivalent to that for the multilineage progenitor and 

megakaryocytic cells (Supplementary Fig. 2B). Thus, the differences in sequencing depth do not 

account fully for the trend observed for decreased numbers of cCREs during differentiation. 
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Supplementary Figure 2. Read counts and numbers of peak calls in ATAC-seq data. (A) Scatterplot of 

numbers of called peaks as a function of the numbers of mapped, filtered reads for each cell type. (B) Bar 

graph showing the numbers of mapped, filtered reads for each cell type.  

 

The decrease in the number of ATAC-seq peaks across differentiation was also observed after 

normalization of the signals. The S3 normalization method (Xiang et al. 2019b) adjusts signals 

to account for differences both in sequencing depth and signal-to-noise ratio. Using a simple 

peak calling threshold on the ATAC-seq and DNase-seq data after S3 normalization generated 

a profile of peak numbers across the cell types that was similar to that obtained from the peak 

calls by Homer (Heinz et al. 2010) (Supplementary Figure 3). Specifically, the higher number of 

ATAC-seq peaks observed in progenitor and megakaryocytic cells was still observed after 

normalization for differences in sequencing depth and signal-to-noise ratio. The same result was 

seen over a range of choices for threshold for peaks. Thus, the observed higher numbers of 

peaks were robust both to normalization for sequencing depth and signal to noise ratio and to 

changes threshold settings. Examining a histone gene locus as an illustrative example, the 

ATAC-seq signal track of one progenitor cell (CMP) and two mature cells (G1E and ERY) 
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showed more ATAC-seq peaks in the progenitor cell (Supplementary Figure 3F). The signal of 

these ATAC-seq peaks was also consistent with the H3K4me1 ChIP-seq signal. 

 

 

Supplementary Figure 3. The ATAC-seq peak number in the hematopoietic cell types. (A) Panel A plots 

numbers of ATAC-seq peaks called by Homer. (B) Panel B plots the numbers of the ATAC-seq peaks 

called by setting a threshold on the S3norm signal. The DNA intervals with S3norm greater than 3 are 
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called as peaks. (C-E) The panels C-E are the peak numbers of the ATAC-seq peaks called by using 

different S3norm signal thresholds. (F) The signal track of ATAC-seq and H3K4me1 ChIP-seq in 

progenitor cell (CMP) and mature cells (G1E and ERY). 

 

To evaluate more broadly the accuracy of ATAC-seq and DNase-seq peak calls in progenitor 

and megakaryocytic cells versus mature cells, we leveraged the information about histone 

modifications in these cell types. We posited that correct calls for peaks in nuclease sensitivity 

should be enriched in histone modifications associated with gene activation (H3K4me1, 

H3K4me3, and H3K27ac), and therefore incorrect ATAC-seq peaks (false positives) would be 

less likely to have histone modifications. The enrichment for such histone modifications was 

computed in nuclease sensitive peaks between all pairs of cell types, where each member of a 

pair came from either the (a) progenitor and megakaryocytic cell type group or (b) the mature 

cell type group (Supplementary Figure 4). The expected enrichment for H3K4me1, H3K27ac, 

and H3K4me3 was observed in peaks common to each cell type pair but not in DNA intervals 

that not peaks in either member of a pair (but they are ATAC-seq peaks in at least one other cell 

type). Importantly, the enrichment for the diagnostic histone modifications was also seen in the 

nuclease sensitive peaks that are specifically found in the progenitor and megakaryocytic cells 

but not in the mature cell type for each pair. A similar pattern was seen when the signal strength 

is used to evaluate the peaks and non-peaks. These data reject the hypothesis that the 

nuclease sensitive peaks specifically in progenitor and megakaryocytic cells are false positives. 

The lower enrichment for H3K4me3 in group-specific ATAC-seq peaks (progenitor and 

megakaryocytic cells vs. mature cells) suggests that these are less likely to be promoters. The 

increase in enrichment of H3K27ac in group-specific peaks in mature cells is consistent with the 

activation of many poised enhancers during maturation. 
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Supplementary Figure 4. The enrichment for histone modification (H3K4me1, H3K27ac, H3K4me3) in 

ATAC-seq peaks. Each box plot summarizes the results of enrichment calculations for histone 

modifications in the ATAC-seq peaks in groups determined for pairs of cell types, where one member of 

the pair is in the progenitor and megakaryocytic cell type group (LSK, HPC7, CMP, MEP, CFUE, CFUMK, 

iMK, GMP) (blue box-plot) and the other member of the pair is in the mature cell type group (G1E, ER4, 

ERY, ERY_fl, MON, NEU, NK, B, T_CD4, T_CD8) (red box-plot). The ATAC-seq peaks were grouped 

based on their presence or absence in each cell type of the cell type pair. The 1st and the 2nd box-plots 

summarize the enrichment for histone modification in the peaks common to both cell types in each pair. 

The 3rd and the 4th box are the enrichment for histone modification in the cCRE DNA intervals that are 

not ATAC-seq peaks in the two cell types for each pairwise comparison (common non-peak regions). The 

5th is the enrichment for histone modification in the progenitor and megakaryocytic cell group specific-

peak regions. The 6th is the enrichment for histone modification in the mature cell type group specific-

peak regions. The 7th is the enrichment for histone modification in the progenitor and megakaryocytic cell 
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type group specific-non-peak regions. The 8th is the enrichment for histone modification in the mature cell 

type group specific-non-peak regions.  

 

Not only were there fewer ATAC-seq peaks and active cCREs in mature cells, but there were 

fewer active regions among the cCRE DNA intervals in mature cells (Supplementary Figure 5). 

The DNA intervals called as a cCRE in any cell type were assigned to their IDEAS epigenetic 

state in each cell type, without requiring that each cCRE DNA interval also be an ATAC-seq 

peak or DNase-seq peak. As expected, more cCREs were assigned to a state, but the number 

of DNA intervals in activity-related states remained higher in progenitor and megakaryocytic 

cells than in mature cells. Specifically, the group of progenitor and megakaryocytic cell types still 

had more active states compared with the other mature cells (Supplementary Figure 5B). For 

the mature (non-iMK) cell types, many of the cCRE intervals were in a quiescent state, a 

repressed state, the H3K4me1 only state that could reflect a memory of a previously active 

enhancer, or the H3K36me3 only state associated with transcription (Supplementary Figure 5B). 
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Supplementary Figure 5. Numbers of cCRE DNA intervals in each IDEAS state at different schema for 

inclusion. The ~205,000 cCRE DNA regions (with ATAC-seq peaks determined by thresholding on the 

tracks after S3norm) were assigned to IDEAS states in each cell type using two different rules for 

inclusion, and the resulting numbers in each state are shown in the bar graphs. A. Each cCRE DNA 

interval was also an ATAC-seq peak in the indicated cell type. B. The cCRE DNA interval did not have to 

be an ATAC-seq peak in the indicated cell type, but the cCRE DNA intervals in the quiescent state were 

not counted. 

 

 

EP300 peaks that do or do not overlap with VISION cCREs 

While the overlap of the cCRE datasets with the collection of EP300 peaks supported the quality 

of those datasets, no set of cCREs captured all the EP300 peaks. This lack of full overlap raises 

the question of whether the EP300 peaks over-estimated the cCREs or the cCRE sets were 

missing regulatory elements. We examined the EP300 peaks that did or did not overlap with 

VISION cCREs for features that could distinguish the two groups and thus may shed some light 

on this issue. The signal strength of the EP300 peaks had a similar distribution for both the set 

that overlaps with VISION cCREs and the set that does not overlap. However, the set that 

overlaps VISION cCREs had a significant trend toward higher signals than did the peaks that do 

not overlap (Supplementary Figure 6). Thus we concluded that the VISION cCREs tended to 

capture the stronger EP300 peaks. 
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Supplementary Figure 6. Distributions of signal intensity (left) and enrichment Q-values for mouse 

phenotype terms (right) for EP300 peaks that did or did not overlap with VISION cCREs. 

 

Both sets of EP300 peaks were enriched for expected functional terms in various ontologies, but 

the set that overlapped with VISION cCREs was enriched in more terms with a greater level of 

significance. A subset of 10,000 EP300 peaks were randomly chosen from each set 

(overlapping VISION cCREs or not), and analyzed for functional term enrichment using the 

GREAT tool (McLean et al. 2010) Focusing on Mouse Phenotype (MGI) and MSigDB Pathways, 

lists of functional terms with hundreds to over a thousand terms relevant to hematopoiesis were 

enriched in both sets of EP300 peaks. However, the EP300 peaks that overlapped with VISION 

cCREs returned more terms with lower FDR Q-values when compared to the EP300 peaks not 

overlapping VISION. Using Mouse Phenotype as an example, peaks common to EP300 and 

VISION returned 1138 terms, many with extremely low Q-values, whereas the peaks only in 

EP300 returned 361 terms with higher, but still significant, Q-values. These distributions were 

significantly different (mean for EP300 peaks overlapping VISION cCREs was 33.2, mean for 

peaks not in VISION cCREs was 10.0; p-value<0.001 for both Student’s t-test and Wilcoxon 
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test). These indicators of higher significance suggest that the EP300 peaks overlapping with 

VISION cCREs may be more intimately involved in hematopoietic regulation than those that do 

not overlap. 

 

Transitions in epigenetic states of cCREs between cell types 

While the numbers of active cCREs tended to decrease during commitment and maturation of 

lineages (except iMK), the reduction was particularly pronounced for cCREs in a poised 

enhancer mode (state 9 EN)  or in a CTCF-bound nuclease accessible state (state 13 CN) 

(Supplementary Figure 7).  

 

 

Supplementary Figure 7. Transitions in epigenetic states at cCREs across hematopoietic differentiation. 

A. The numbers of cCREs in each cell type are colored by their IDEAS epigenetic state, in numerical 

order from bottom to top of each bar. B. The composition of each state (heatmap in shades of blue) and 

the fraction of genome assigned are shown with the states in numerical order to facilitate comparison with 

panel A. States 9 and 13, which are prominent in multilineage progenitor cells, are emphasized.  
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We then determined the states into which these cCREs tended to transition by computing the 

enrichment for each state transition between all pairs of cell types, as illustrated for state 

transitions in cCREs for comparison between CMP and ERY (Supplementary Figure 8A) and 

between CMP and iMK (Supplementary Figure 8B). This examination of all state transitions in 

cCREs between pairs of cells revealed that the decrease in cCREs in state 9 (EN) occurred 

both through conversion of the cCRE to a different state and via a loss of accessibility (state 0). 

More specifically, cCREs in the poised enhancer state 9 (EN) in CMP tended to transition either 

to the active enhancer-like state 12, the polycomb-repressed state 3, or the low signal quiescent 

state 0 in erythroid cells (Supplementary Figure 8A). In contrast, those CMP state 9 cCREs 

transitioned most frequently to state 12 (active enhancer) in iMK, with less enrichment for 

transitioning to the quiescent state 0 and almost no enrichment for transitioning to the repressed 

polycomb state (Supplementary Figure 8B). Notably, cCREs in several different states in CMP 

were enriched for transitions to the polycomb state 3 in ERY (vertical blue box in 

Supplementary Figure 8A). These results illustrate specific mechanisms for the recent report 

of more substantial changes in epigenomic landscape during differentiation of CMP to ERY than 

to iMK (Heuston et al. 2018). 



12 

 

Supplementary Figure 8. Transitions between IDEAS epigenetic states for cCREs in CMP after 

differentiation to ERY (A) or iMK (B). The numbers of cCREs in all state transition pairs were determined, 

and the enrichment was calculated as observed numbers over those expected given the numbers of 

cCREs in states across the whole genome in all cell types. The intensity of the red color in each cell 

reflects the level of enrichment. Boxes around cells emphasize transitions in states; yellow and purple for 

transitions from state 9 and state 13, respectively, in CMP, and blue for transitions to state 3 in ERY.  

 

Surprisingly, for another major state in progenitor and megakaryocytic cells, much of the 

decrease in numbers of cCREs in state 13 (CTCF and nuclease accessible) occurred through a 

loss of accessibility while retaining occupancy by CTCF (state 7, Supplementary Figure 8). 

This transition from state 13 to state 7 was observed for cCREs overall during differentiation to 

both ERY and iMK (Supplementary Figure 8A and B). 
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Examination of state transitions in discrete groups of cCREs with the same pattern of 

appearance across cell types 

A complementary approach to studying state transitions examined the transitions within well-

defined discrete groups of cCREs, which were clustered by their appearance pattern across cell 

types. The clusters were generated by an indexing approach that gives discrete categories of 

presence (1) or absence (0) of a nuclease accessible peak call in each cell type (Xiang et al., 

2019 Snapshot). Thus, each cCRE had an 18-character index string, and cCREs with identical 

indices were placed in a group termed an index set. This clustering by discrete presence-vs.-

absence calls across cell types gave insights into the history and progression of cCRE states. 

 

The decrease in cCREs in state 9 (EN) occurred both through conversion of the cCRE to a 

different state and via a loss of accessibility. The former was exemplified by index set 122 

(Supplementary Figure 9A), in which the poised enhancer-like state 9 became an active 

enhancer-like state 12 in erythroid cells. Index set 207 showed a loss of nuclease accessibility 

in maturing cells (Supplementary Figure 10).  

 

Another major state in progenitor and megakaryocytic cells is state 13 (CTCF and nuclease 

accessible), and the decrease in numbers of cCREs occurred through a loss of accessibility 

while retaining occupancy by CTCF (state 7, Supplementary Figure 8). This transition from 

state 13 to state 7 was observed in specific index sets, such as index set 165 (Supplementary 

Figure 9B). 
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Supplementary Figure 9. State transitions for groups of cCREs related by their patterns of presence or 

absence across cell types. A. The state transitions and changes in nuclease accessibility across cell 

types are shown for the cCREs in index set 122, which undergo a transition from state 9 (poised 

enhancer) to state 12 (active enhancer). The index, which is a vector of presence or absence calls, is 

shown on the right, between the violin plot of nuclease accessibility and the bar plot for numbers of 

cCREs colored by their epigenetic states. The dominant state for this group of cCREs in each cell type is 

shown by the coloring of the circles in the differentiation tree on the left. The state compositions for the 

initial and final states are shown on the lower left. B. Results as in panel A for the cCREs in index set 13, 

which are CTCF-bound sites that undergo a transition from nuclease accessible to inaccessible. The 

results in panels A and B are from the Snapshot tool (Xiang et al. 2019a). Similar visualizations for all 
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index sets can be viewed and downloaded both via our VISION website (http://usevision.org) or from 

GitHub (https://github.com/guanjue/vision_index_set). 

 

Fates of cCREs that are in a poised enhancer state in progenitor cells 

A large fraction of cCREs in progenitor cells were in state 9 (EN, similar to a poised enhancer). 

Some of them transitioned to a state associated with active enhancers, exemplified by cCREs in 

index set 122 (Fig. 7B, main text). Another major trend for the state 9 cCREs was a loss of 

histone modifications and nuclease sensitivity to transition to state 0 (quiescent; Supplementary 

Figure 8). This transition is exemplified by cCREs in index set 207 (Supplementary Figure 10). 

 

 

Supplementary Figure 10. Transition from epigenetic state 9 (EN) to state 0 (quiescent). The state 

transitions and changes in nuclease accessibility across cell types are shown for the cCREs in index set 

207. The index, which is a vector of presence or absence calls, is shown on the right, between the violin 

plots of nuclease accessibility and the bar plot for numbers of cCREs colored by their epigenetic states. 

The dominant state for this group of cCREs in each cell type is shown by the coloring of the circles in the 
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differentiation tree on the left. The state compositions for the initial and final states are shown on the 

lower left. These results are from the Snapshot tool (Xiang et al. 2019a). 

 

Method for calculating epigenetic Regulatory Potential (eRP) scores 

This section presents Supplementary Figure 11, which has more detailed information on the 

results of the multivariate regression modeling to estimate the impact of epigenetic states and 

individual cCREs on expression of potential target genes. A summary of the method is given in 

the Results, and a detailed description is in the Materials and Methods. Very briefly, we start 

with our catalog of  cCREs, including their epigenetic states across cell types, and expression 

levels of genes in 12 cell types, specifically the ones in which RNA-seq was done using the 

same protocol in the same laboratories  (Supplementary Figure 11A). We then use a 

multivariate regression approach to relate RNA-seq levels with epigenetic states of cCREs 

around each gene. The proportion of base pairs in the pooled cCREs in each state for a gene 

was used as the predictor variable for each state. We hypothesized epigenetic states of cCREs 

in the proximal cCREs and distal cCREs have different effects on regulating the gene 

expression. We thus treated them as two distinct components in the model. We also 

hypothesized the contributions of cCREs on different types of genes are different. We thus 

trained the multivariate regression models were trained using all genes or genes in four 

expression categories based on their average expression levels and the variance of expression 

level across different cell types, specifically those with (1) consistently low, (2) differentially low, 

(3) differentially high, and (4) consistently high expression across cell types. Within a certain 

window, there can be a large amount of cCREs. However, it is unlikely that all of them can 

contribute to the regulation of a specific gene. Thus, a sub-selection iterative routine was used 

to remove cCREs that contribute little to explaining expression (Supplementary Figure 11B). 

The prediction accuracy in testing data after the sub-selection increased in all of the models 

(Supplementary Figure 11C). It indicates the sub-selection step effectively reduced the 
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overfitting issue in the models. Each regression coefficient, beta, from this method estimates the 

contribution of a specific state to gene expression (Supplementary Figure 11D). The 

coefficients were computed using all genes or genes in four expression categories. The 

contribution of individual cCREs to expression was estimated as a weighted sum of the 

regression coefficients for the component states, termed an epigenetic Regulatory Potential 

(eRP) score for each cCRE (Supplementary Figure 11E). Each cCRE has a different eRP 

score for each potential target gene in each category in each cell type.  
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Supplementary Figure 11.  Initial estimates of regulatory output and target gene prediction using 

regression models of IDEASs states in cCREs versus gene expression. A. Illustration of cCREs around 

two potential target genes, showing expression profiles of the genes across cell types (shades of blue, 

left) and cCREs with one or more epigenetic states assigned in each cell type. Note that cCREs that are 

proximal to one gene can be distal to another gene. B. Diagram illustrating the linear regression of 

proportion of pooled cCREs in each state against expression levels of potential target genes, keeping 

proximal and distal cCREs separate and learning the regression coefficients iteratively in a sub-selection 

strategy (indicated by dotted lines for omitted and solid lines for included cCREs in the lower diagram). C. 
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Ability of eRP scores of cCREs to explain levels of expression on chr1-chr19 and chrX in the twelve cell 

types WITH and WITHOUT (S) sub-selection for all genes and (1-4) in the four categories of genes. A 

leave-one-out strategy was employed to calculate the accuracy predicting expression. The distribution of 

adjusted r2 values are shown as box-plots for proximal, distal, and combined cCREs. D. Values of the 

regression coefficients beta for each epigenetic state for proximal and distal cCREs. The values of the 

regression coefficients for each epigenetic state are presented as a blue to red heatmap, with the 

coefficients expressed relative to that for state 0 (quiescent). These are aligned with a heatmap for the 

composition of each state, shown as shades of blue. The regressions were conducted for all genes (left 

three columns) or with genes in four distinct expression groups. E. Diagram illustrating the calculation of 

epigenetic Regulatory Potential (eRP) scores for cCREs as weighted sums of regression coefficients for 

the states covering each cCRE in each cell type.  

 

Discriminative motif analysis for cCREs with different epigenetic state transitions  

In CMP cell, we observed the cCREs with the same poised enhancer state (state 9 EN) can 

change to different states such as active enhancer state (state 12 ENA) and polycomb-

repressed state (state 3 Pc) in ERY cell. To explore the potential factors associated with these 

different state transitions, we used a machine learning method called SeqUnwinder to analyzed 

the difference of sequence features in these cCREs (Kakumanu et al. 2017). Specifically, we 

first extracted the cCREs with poised enhancer state in CMP cell. The cCREs that become 

active enhancer state in ERY cell were clustered into the first group. The others that become 

polycomb state in ERY cell were clustered into the second group. We then applied the 

SeqUnwinder with the default setting to identify the motifs that can distinguish those two groups 

of cCREs. The results were shown in Supplementary Figure 12. Eight DNA binding motifs 

which include GATA motif, PU.1 motif, and motif of ETS transcription factor family were 

identified as the discriminative motifs between the two groups of cCREs. The GATA motif has a 

higher discriminative score for a certain for the first group of cCREs that transition from poised 

enhancer state to active enhancer state. While the PU.1 motif and the motif of ETS transcription 
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factor family have higher discriminative scores for the second group of cCREs that transition 

from poised enhancer state to polycomb state. These results suggested the different binding 

pattern of these transcription factors could be associated with epigenetic history of poised 

enhancer during cell differentiation.  

 

 

Supplementary Figure 12.  Discriminative motif analysis of cCREs that transition from poised enhancers 

state (state 9 EN) in CMP cell to active enhancer state (state 12 ENA) or polycomb-repressed state (state 

3 Pc) in ERY cell. The discriminative motifs from SeqUnwinder are shown on the right side of the figure. 

The heatmap on the left shows the discriminative scores of each motif. The cCRE with the motif that has 

a higher discriminative score for a certain cCRE group are more likely to be classified as members of that 

cCRE group. 
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