$\underline{\mathbf{I}}$	1	Title:
--------------------------	---	--------

2	3 6 1 1		1	• 41	· · ·	•
7	Molecular responses	s to freshwater	limitation	in the mangrove	tree Avicennia	germinans
_						0

- 3 (Acanthaceae)
- 4
- 5 <u>Short running title:</u>
- 6 Black-Mangroves responses to water limitation
- 7
- 8 <u>Authors:</u>
- 9 Mariana Vargas Cruz¹, Gustavo Maruyama Mori², Dong-Ha Oh³, Maheshi Dassanayake³,
- 10 Maria Imaculada Zucchi⁴, Rafael Silva Oliveira¹, Anete Pereira de Souza¹.

11

- ¹Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp),
- 13 Campinas, SP 13083-863, Brazil.
- ¹⁴ ²Institute of Biosciences, São Paulo State University (Unesp), São Vicente, SP 11330-900,
- 15 Brazil.
- ³Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA 70803,
- 17 United States.
- ⁴São Paulo Agency for Agribusiness Technology (APTA), Piracicaba, SP 13400-790, Brazil.
- 19 *Author for correspondence. Tel: +55 19 3521 1132 Email: <u>anete@unicamp.br</u>
- 20
- 21
- 22
- 23
- 24

25 Abstract

26 Environmental variation along the geographical space can shape populations by natural 27 selection. In the context of global warming, accompanied by substantial changes in 28 precipitation regimes, it is crucial to understand the role of environmental heterogeneity in 29 tropical trees adaptation, given their disproportional contribution to water and carbon 30 biogeochemical cycles. Here we investigated how heterogeneity in freshwater availability 31 along tropical wetlands has influenced molecular variations of the Black-Mangrove 32 (Avicennia germinans). Fifty-seven trees were sampled in seven sites differing markedly on 33 precipitation regime and riverine freshwater inputs. Using 2,297 genome-wide single 34 nucleotide polymorphic markers, we found signatures of natural selection by the genotype 35 association with the precipitation of the warmest quarter and the annual precipitation. We also 36 found candidate loci for selection, based on statistical deviations from neutral expectations of 37 interpopulation differentiation. Most candidate loci present within coding sequences were 38 functionally associated with central aspects of drought-tolerance or plant response to drought. 39 Complementarily, our results strongly suggest the occurrence of a rapid evolution of a 40 population in response to sudden and persistent limitation in plant access to soil water, 41 following a road construction in 1974. Observations supporting rapid evolution included 42 reduction in tree size and changes in the genetic profile and in transcripts expression levels 43 associated with increased drought-tolerance, through accumulation of osmoprotectants and 44 antioxidants, biosynthesis of plant cuticle, proteins protection against stress-induced 45 degradation, stomatal closure, photorespiration and photosynthesis. We describe a major role 46 of spatial heterogeneity in freshwater availability in the specialization of the typically tropical 47 tree, A. germinans.

48 Keywords: Avicennia germinans (Black Mangrove), drought-tolerance, tropical tree,
49 nextRAD, RNA-Seq, ecological genomics.

50

51 **1.** Introduction

52 Natural ecosystems are characterized by wide environmental heterogeneity over the 53 geographical space. These spatial variations in several abiotic conditions can shape 54 populations specializations, particularly in widespread species, through changes in genotypes 55 and phenotypes frequencies (Kawecki & Ebert, 2004). Environmental gradients are, therefore, 56 natural laboratories for the study of environmental selection (De Frenne et al., 2013). As 57 sessile organisms, plants are incapable of escaping from unfavorable conditions and, 58 therefore, are ideal models for investigating adaptation through phenotypic plasticity and/or 59 adaptive genetic variation. They are often subject to a wide range of environmental factors, 60 such as water, light, temperature and nutrients availability. Among the various environmental 61 factors that determine adaptive phenotypic and genotypic diversity in plants, freshwater 62 availability has a prominent role (Choat et al., 2018; Phillips et al., 2010). Accordingly, 63 populational differentiation in drought-tolerance has been widely identified in various studies, 64 providing valuable insights on evolutionary consequences of spatial variation in freshwater 65 availability in plant species (Aranda et al., 2014; Donovan, Ludwig, Rosenthal, Rieseberg, & 66 Dudley, 2009; Etterson, 2004; Heschel & Riginos, 2005; Keller et al., 2011; Ramírez-67 Valiente et al., 2018). Understanding the role of selection by heterogeneity in freshwater 68 availability in plants diversification is increasingly relevant, as predictions indicate that we 69 will face a warmer future accompanied by marked changes in rainfall and higher frequency of 70 extreme climatic events in several regions worldwide (Dai, 2011; IPCC, 2014; Rodell et al., 71 2018). The combination of high atmospheric temperature with reduced rainfall and air

72 humidity represent a major threat to plants, especially tree species and forest ecosystems they 73 form (Allen, Breshears, & McDowell, 2015; Allen et al., 2010; Asner et al., 2016; Choat et 74 al., 2012; McDowell & Allen, 2015). These changes influence major components of resource-75 use in plants: it reduces the soil water potential, which limits the water and nutrients supply to 76 leaves, and raises the air vapor pressure deficit (VPD), increasing water loss through 77 transpiration (McRae, 1980; Novick et al., 2016). In response to these conditions, plants close 78 their stomata (McAdam & Brodribb, 2015; Tyree & Sperry, 1989), decreasing the chance of 79 death from hydraulic failure (Rowland et al., 2015), despite causing negative impacts on 80 photosynthesis and productivity (Lawlor, 2002).

81 Currently, there is a great interest in understanding genotypic and phenotypic basis of 82 trees resistance to drought, as these mechanisms are key to improve predictions of 83 environmental consequences of extreme events and to elaborate plans to mitigate forest loss 84 (Corlett, 2016; da Costa et al., 2010; Phillips et al., 2009). Substantial advances in the 85 understanding of phenotypic characteristics that enhance drought-tolerance in trees have been 86 achieved recently (Bartlett, Scoffoni, & Sack, 2012; Bennett, McDowell, Allen, & Anderson-87 Teixeira, 2015; Brodribb, Holbrook, Edwards, & Gutiérrez, 2003; Hacke, Sperry, Wheeler, & 88 Castro, 2006; Phillips et al., 2010; Powell et al., 2017), however little is known about the 89 molecular basis of water-stress tolerance, particularly in tropical species (Holliday et al., 90 2017), which contribute disproportionally to global carbon cycle (Corlett, 2016).

In this study, we investigated the role of environmental selection along a gradient of freshwater availability in shaping the molecular variation of a typically tropical and abundant tree, *Avicennia germinans* (L.) L. (Acanthaceae). The species is particularly suitable for the study of mechanisms involved in trees adaptation to drought, since it is the most widespread mangrove in the Atlantic East-Pacific biogeographic region (Ellison, Farnsworth, & Merkt,

96 1999), belonging to the most tolerant mangrove genus to limiting conditions for water 97 acquisition, as drought, freezing and salinity (Pranchai et al., 2017; Reef & Lovelock, 2015; 98 Stuart, Choat, Martin, Holbrook, & Ball, 2007). These trees occur naturally under highly 99 variable soil water potential and air VPD, caused by daily and seasonal fluctuations in 100 temperature, air humidity, freshwater inputs and soil salinity (Tomlinson, 1986). In tropical 101 arid zones or during dry seasons, VPD and soil salinity can reach extreme levels, hindering 102 the maintenance of water and ion homeostasis and thus limiting carbon gain and plant growth 103 (Clough, Sim, Inlet, Bay, & Rivers, 1989; Lin & Sternberg, 1992).

104 We hypothesized that spatial heterogeneity in freshwater availability shapes adaptive 105 variation in allele frequencies and in expression profiles of transcripts associated with the 106 response to and tolerance of limiting freshwater in tropical trees. We sampled A. germinans 107 individuals along a wide longitudinal range in an equatorial region (from 0°43'12" S to 108 8°31'48" S of latitude), showing narrow spatial heterogeneity in temperature and solar 109 radiation, but encompassing high variation in the intensity and duration of the dry season, in 110 annual precipitation levels and in riverine freshwater input, which influence levels of soil 111 salinity (Figure 1). We used the Nextera-tagmented reductively-amplified DNA (nextRAD) 112 sequencing approach for the identification and genotyping of genome-wide single nucleotide 113 polymorphisms (SNPs). We analyzed the organization of the genetic structure and performed 114 statistical tests to identify candidate loci for selection. To minimize false positives in the 115 detection of candidate loci (Lotterhos & Whitlock, 2015), we used distinct approaches: (1) 116 based on the identification of loci deviating from neutral models of interpopulational genetic 117 variation (FST outlier tests) and (2) based on direct genetic-environment (G-E) association 118 tests. RNA sequencing (RNA-Seq) was used to assemble and characterize the transcriptome 119 of the species, providing a functional basis for the annotation of candidate loci for selection.

6

120 Additionally, we examined the role of molecular adaptation to highly contrasting soil 121 freshwater availability and salinity via differential gene expression analysis between samples 122 from adjacent sites differing in tidal inundation frequency (Lara & Cohen, 2006; Pranchai et 123 al., 2017), acclimated in pots under homogeneous, watered conditions. Our results provide 124 converging signs of adaptive responses of A. germinans to the environmental heterogeneity in 125 freshwater availability, including a case suggesting the rapid evolution of a population, with 126 changes in phenotype and in the genetic profile, despite clear possibility of gene flow. We 127 highlight the relevance of environmental heterogeneity in freshwater availability as a key 128 selective pressure in tropical tree species.

- 129
- 130 **2.** Materials and methods

131 **2.1** Study area

132 Sampling sites were located over more than 1,800 km of the north-northeast Brazilian 133 coastline, between 0.724° S and 8.526° S of latitude, along a spatial gradient in freshwater 134 availability (Table 1, Figure 1). We classified this area into three distinguishable regions, 135 based on rainfall regimes and riverine freshwater inputs: (1) the Amazon Macrotidal 136 Mangrove Coast (AMMC), the world's largest continuous mangrove belt (Nascimento Jr., 137 Souza-Filho, Proisy, Lucas, & Rosenqvist, 2013), which has a mean annual precipitation above 2,000 mm yr⁻¹ and is influenced by the mouth of the Amazon River; (2) mangroves of 138 139 Northeast Brazil, which show limited forest development (Schaeffer-Novelli, Cintrón-Molero, 140 Adaime, & de Camargo, 1990) and is characterized by the lack of riverine freshwater inputs and a mean annual precipitation below 2,000 mm yr⁻¹, with pronounced and long dry seasons, 141 142 and less than 30 mm of precipitation in the driest quarter; and (3) a region influenced by the 143 southward-flowing branch of the South Equatorial coastal current (SEC), characterized by

7

reduced riverine freshwater inputs, mean annual precipitation below 2,000 mm yr⁻¹, but less
pronounced dry season, showing more than 100 mm of precipitation in the driest quarter.

146 In the AMMC, two adjacent sites require a more detailed description, both of which 147 are located in the peninsula of Ajuruteua, state of Pará, between the Maiaú and Caeté 148 estuaries (Figure 2). These sites were previously covered by a preserved mangrove forest (Cohen & Lara, 2003) and were divided by the construction of a road, in 1974. The hydrology 149 150 part of the forest was dramatically changed, no longer being influenced by the Caeté River. 151 Instead, it started flooding exclusively during the highest spring tides of the Maiaú River. 152 These changes resulted in the local forest dieback and subsequent recolonization, mainly by 153 A. germinans. Soil pore water salinity accumulated to extremely high levels (100 ppt at a 50-154 cm depth), and the air surface temperature frequently exceeds 40 °C (Vogt et al., 2014). These 155 environmental features contributed to the dwarfism of recolonizing individuals (Cohen & 156 Lara, 2003; Pranchai et al., 2017), whose shrub architecture (up to 2.0 m in height) contrasts 157 to the former tall morphology (up to 30 m in height), still observed on surrounding areas, 158 where the hydrology remained unaltered (Menezes, Berger, & Mehlig, 2008) (Figure 2). 159 Throughout this work, we refer to the western side of the road as 'PA-arid' and to the eastern 160 side as 'PA-humid'.

161

162

2.2 DNA extraction and sequencing

Leaves from 57 adult *A. germinans* trees were sampled in seven distinct sites (Table 1) and stored in bags with silica gel. DNA extraction was performed using the DNeasy Plant Mini Kit (QIAGEN) and NucleoSpin Plant II (Macherey Nagel). DNA quality and quantity were assessed using 1% agarose gel electrophoresis and QuantiFluor dsDNA System in a Quantus fluorometer (Promega). NextRAD libraries were constructed by SNPsaurus

(SNPsaurus, LLC) (Russello, Waterhouse, Etter, & Johnson, 2015). Genomic DNA fragmentation and short-adapter ligation were performed with Nextera reagent (Illumina, Inc.), followed by amplification, in which one of the primers matched the adapter and extended by nine arbitrary nucleotides of DNA. Thus, amplicons were fixed at the selective end, and their lengths depended on the initial fragmentation, leading to consistent genotyping of amplified loci. Subsequently, nextRAD libraries were sequenced in a HiSeq 2500 (Illumina, Inc), with 100-bp single-end chemistry (Supplementary Figure S1).

- 175
- 176

2.3 SNP detection and genotyping

177 Genotyping-by-sequencing used custom scripts (SNPsaurus, LLC) to create a 178 reference catalog of abundant reads. Read mapping to the catalog allowed two mismatches. 179 Biallelic loci present in at least 10% of samples were selected for the following steps. Using 180 VCFtools 0.1.12b (Danecek et al., 2011), we selected high-quality sequences (Phred score > 181 30), allowing a maximum of 65% missing data and one SNP per sequence, requiring a 182 minimum coverage of 8x and a minor allele frequency ≥ 0.05 (Supplementary Figure S1). To 183 reduce false SNP detection rates due to paralogy or low-quality genotype calls, we used a 184 maximum read of 56, resulting from the product of the average read depth and 1.5 standard 185 deviation of the mean.

186

187 2.4 Genetic diversity analysis and identification of candidate SNP loci associated with 188 water-stress tolerance

For each sampling site, we estimated the genetic diversity using per-site nucleotide diversity (π), calculated using VCFtools (Danecek et al., 2011), loci presenting private alleles (pA), observed (H_o) and expected (H_E) heterozygosities, using poppr 2.8.2 (Kamvar, Tabima,

9

192 & Grünwald, 2014), and the percentage of polymorphic loci (%Poly), using adegenet 2.1.1 193 (Jombart & Ahmed, 2011). We also estimated the pairwise genetic differentiation among 194 populations (F_{ST}), the inbreeding coefficient (F_{IS}) and its 95% confidence interval through 195 1000 bootstrap resampling over all SNP loci using hierfstat 0.04-22 (Goudet, 2005). The 196 genetic structure of A. germinans was described by a multivariate model-free method, the 197 discriminant analysis of principal components (DAPC) (Jombart, Devillard, & Balloux, 198 2010), and ADMIXTURE 1.3.0 (Alexander, Novembre, & Lange, 2009). For DAPC, we 199 considered numbers of groups from 1 to 50 and the Bayesian information criteria to determine 200 the number of groups (K) and used the optim.a.score function to avoid overfitting during 201 discrimination steps. For ADMIXTURE analysis, we performed three separate runs for values 202 of K varying from 1 to 15, using the block-relaxation method for point estimation. Computing 203 was terminated when estimates increased by less than 0.0001. The lowest level of cross-204 validation error indicated the most likely K-value.

205 To detect signatures of natural selection, we used three distinct methods. Loci that 206 were highly correlated with the environmental structure (false discovery rate (FDR) <0.05) 207 were detected using the R package LEA (Frichot & François, 2015), which is based on 208 analyses of genetic structure and ecological association (G-E association tests). 209 Environmental data consisting of bioclimatic and oceanographic variables were retrieved 210 from the public databases WorldClim (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) (15 211 precipitation, radiation and air vapor pressure layers) and Marspec (Sbrocco & Barber, 2013) 212 (four sea surface salinity and temperature layers). To minimize the interdependence of 213 variables, we used a correlation threshold of 0.8 (Supplementary Figure S2). Because the 214 environmental data obtained for PA-arid could not be distinguished from those obtained for

10

PA-humid with the highest-resolution WorldClim and Marspec layers, despite their clearabiotic divergence (Figure 2), we excluded PA-arid individuals in LEA analysis.

217 To overcome limitations in the acquisition of environmental data for the PA-arid site, 218 two other methods were used to detect candidate loci for selection, which are solely based on 219 deviations from neutral expectations of allele frequency distributions, regardless of 220 environmental variation data across sampling sites (F_{ST} outlier tests). With Pcadapt 2.0 (Luu, 221 Bazin, & Blum, 2016), population structure is determined by a principal component analysis. 222 A disproportional relation to this structure (FDR < 0.05) is indicative of selection. With 223 Lositan (Antao, Lopes, Lopes, Beja-Pereira, & Luikart, 2008), which uses the FDIST2 224 method (Beaumont & Nichols, 1996), we assessed the relationship between F_{ST} and H_E to 225 describe the neutral distribution under an island migration model. Hence, we detected loci 226 with excessively high or low F_{ST} . Because Lositan may show partially divergent results 227 among independent simulations, we only considered candidate loci conservatively identified 228 in three independent simulations assuming an infinite allele model of mutation, with a confidence interval of 0.99 and a FDR < 0.05, using the neutral mean F_{ST} and forcing the 229 230 mean F_{ST} options.

231 Demographic histories can affect the statistical power of tests of selection (Lotterhos 232 & Whitlock, 2015); thus, type I and type II errors are frequently associated with these 233 approaches (Narum & Hess, 2011). We minimized the potential for false discovery by 234 identifying consensus candidate loci for selection among the distinct methods used for two 235 datasets: (1) the entire genotypic dataset, including PA-arid individuals, using Lositan and 236 Pcadapt consensus candidates and (2) a subset of genotypic data with environmental 237 information, which excluded the PA-arid samples, using Lositan, Pcadapt and LEA consensus 238 candidates (Supplementary Figure S1).

11

239

240 2.5 Functional annotation of candidate loci putatively under natural selection

We functionally annotated candidate loci through the reciprocal nucleotide alignment between nextRAD sequences and the reference transcriptome characterized in the present study. Blast+ 2.2.31 (Camacho et al., 2009) was used with a threshold of at least 50 aligned nucleotides, a maximum of one mismatch and no gaps (Supplementary Figure S1).

245

246

46 2.6 Plant material for transcriptome assembly and differential expression analysis

On August 16th, 2013, three similarly sized seedlings of A. germinans with 5-9 stem 247 248 nodes were collected from the PA-arid and PA-humid sites, separated by the Braganca-249 Ajuruteua road (Figure 2), and transplanted with the surrounding soil into 3.0-L pots. For 250 acclimation in a homogeneous environment, pots were placed in open-air and naturally 251 shaded conditions and were watered daily after the sunset, with 300 mL of tap water. Plants 252 were harvested at noon, after 72 hours of acclimation, washed with water and split into roots, 253 stems and leaves with a sterile blade to be stored in RNAlater (Ambion Inc., Austin, TX, 254 USA) and transported to the laboratory for RNA extraction (Figure 3).

255

256 2.7 RNA extraction, cDNA library preparation and RNA sequencing

RNA extraction was performed according to Oliveira, Viana, Reátegui, & Vincentz
(2015). To assess purity, integrity and concentration, we used 1% agarose gel electrophoresis
and a NanoVue spectrophotometer (GE Healthcare Life Sciences, Buckinghamshire, UK).
Subsequently, cDNA-enriched libraries were constructed using TruSeq RNA Sample
Preparation kits (Illumina Inc., California, USA). Libraries qualities were assessed using an
Agilent 2100 Bioanalyzer (Agilent Technologies, California, USA) and concentrations were

quantified using quantitative real-time PCR (qPCR), with a Sequencing Library qPCR
Quantification kit (Illumina Inc.). Sequencing was performed with two 36-cycle TruSeq SBS
paired-end kits (Illumina Inc.) on a Genome Analyzer IIx platform (Illumina Inc.).

266

267 2.8 Transcriptome assembly and functional annotation of transcripts

268 Raw data were filtered by quality, using Phred >20 for 70% of the read length, and 269 adapters were trimmed using NGS QC Toolkit 2.3 (Patel & Jain, 2012). Filtered reads were 270 de assembled into transcripts using the CLC Genomics Workbench novo 271 (https://www.qiagenbioinformatics.com/). The distance between paired-end reads was set to 272 300-500 bp, the k-mer size was set to 45 bp, and the remaining default parameters were not 273 changed.

274 Reads were mapped to the transcriptome using Bowtie1 (Langmead, Trapnell, Pop, & 275 Salzberg, 2009), and contiguous sequences (contigs) without read-mapping support were 276 removed from the assembly. For transcript annotation, we used blast+ 2.2.31 (Camacho et al., 277 2009), with an e-value <1e-10, using reference sequences from manually curated databases, 278 as the National Center for Biotechnology Information (NCBI) RefSeq protein and RefSeq 279 RNA (O'Leary et al., 2016) and representative proteins and cDNA from The Arabidopsis 280 Information Resource (TAIR) (Berardini et al., 2015). We removed putative contaminant 281 contigs from the assembly, which did not match plant sequences but showed high similarity to 282 nonplant sequences from the NCBI's RefSeq database. Sequences were assigned to the Kyoto 283 Encyclopedia of Genes and Genomes (KEGG) orthology (KO) identifiers using the KEGG 284 Automatic Annotation Server (KAAS) (Moriya, Itoh, Okuda, Yoshizawa, & Kanehisa, 2007). 285 Protein family domains were searched using the Pfam database and the HMMER3 alignment 286 tool (Finn et al., 2014).

13

287 We identified putative open reading frames (ORFs) using the program TransDecoder 288 (http://transdecoder.sf.net) with default parameters. Redundant transcripts were detected using 289 Cd-hit-est 4.6.1 (W. Li & Godzik, 2006) in the local alignment mode, with 95% identity and 290 70% coverage of the shortest sequence thresholds. To minimize redundancy, in the final 291 assembly, we retained only sequences with the longest putative ORF and the longest putative 292 non-coding transcripts from each Cd-hit-est clusters. Functional categories were assigned to 293 putative coding sequences using the Arabidopsis thaliana association file from the Gene 294 Ontology Consortium website (Blake et al., 2015) (Supplementary Figure S1).

295

296 2.9 Analysis of differentially expressed transcripts (DET)

297 Counts of reads mapped to assembled transcripts per sequenced sample were used as 298 input files in DET analyses. Reads that mapped to multiple transcripts were excluded. The 299 count matrix was normalized and used to detect transcripts with significant differential 300 expression between PA-arid and PA-humid samples from the Bragança-Ajuruteua road 301 (Figures 2 and 3) with the EdgeR Bioconductor package (Robinson, McCarthy, & Smyth, 302 2010) at a FDR <0.05. Gene Ontology (GO) term enrichment analyses were performed using 303 the goseq R Bioconductor package (Young, Wakefield, Smyth, & Oshlack, 2010), which 304 takes the length bias into account, with the default Wallenius approximation method and a p-305 value cutoff set to <0.05 (Supplementary Figure S1).

- 306
- 307 **3.** Results

308 3.1 Population genetics analyses of A. germinans along the equatorial coast of Brazil

309 Population genetics statistics are shown in Table 2. The lowest levels of genetic 310 diversity were observed in the TMD site, as estimated by the mean π (0.123), H_o (0.130), H_E

311 (0.168) and %Poly (34.52%). The remaining sites, influenced by the northern branch of the 312 SEC, presented considerably higher levels of diversity (mean π ranging from 0.208 to 0.323; 313 H_F, from 0.195-0.296; H_O, from 0.234-0.328; %Poly 58.31-84,46%), including the PA-arid 314 site, one of the most genetically diverse across the study region. All sampling sites deviated 315 from Hardy-Weinberg equilibrium (HWE), with an excess of heterozygosity in all sites, 316 besides ALC, which showed a small heterozygosity deficit ($F_{IS}=0.03$). HWE deviation was 317 highest in TMD (F₁₅=-0.43) but relatively low in all remaining sites, ranging from -0.15 318 (PNB) to +0.03 (ALC).

319 A substantial genetic structure was observed over the Equatorial Brazilian coast, a 320 region subject to highly variable rainfall and riverine freshwater inputs (Figure 1). The genetic 321 diversity, based on 2,297 genome-wide SNPs genotyped in 57 individuals, was organized into 322 four distinct genetic clusters (K=4) (Figure 4a, Supplementary Figure S3a-b). The greatest 323 genetic divergences (F_{ST} >0.46; Nei's distance>0.255) were observed between individuals 324 from TMD and those from all other sites (Figure 4b-c, Supplementary Table S1). The TMD 325 site also presented the highest number of private alleles (pA=46). Most remarkable was the 326 divergence between individuals from PA-arid and its adjacent site, PA-humid ($F_{ST}=0.25$; 327 Nei's distance=0.181). This divergence was greater than the observed divergence of PA-arid 328 from PRC individuals (Supplementary Table S1), located approximately 900 km distant from 329 each other (F_{ST}=0.23; Nei's distance=0.177), on the semi-arid coast of Brazil. The divergent 330 gene pool of the PA-arid population was also evident when these samples were excluded from 331 structure analyses. The most likely number of ancestral populations dropped from four to 332 three (Figure 4c-d, Supplementary Figure S3c-d), and the overall structure remained 333 unchanged (Figure 4d). At a finer scale, individuals from PA-humid and MRJ sites, on the 334 Amazon Macrotidal Mangrove Coast (AMMC), seemed to be derived from the same ancestral

15

population. This population, in turn, diverged from the population that may have given rise toindividuals from ALC, PNB, and PRC sites, in Northeast Brazil (Figure 4a-b).

337

338 3.2 De novo assembly and annotation of the Avicennia germinans reference 339 transcriptome

340 We used RNA-Seq to sequence and *de novo* assemble a reference transcriptome from 341 leaves, stems and roots of A. germinans seedlings, providing a functional context for this 342 study. A total of 249,875,572 high-quality-filtered, paired-end, 72-bp reads, representing 343 78.25% of the raw data was used in the assembly. The reference transcriptome comprised 344 47,821 contigs, after removal of misassembled, redundant and contaminant sequences. 345 Putative ORFs were identified in 29,854 contigs, subsequently annotated as putative protein-346 coding transcripts. The remaining 17,967 contigs were classified as putative non-coding 347 transcripts. A detailed characterization of contigs can be found in Supplementary Table S2.

348 Raw reads were mapped back to the reference transcriptome, with over 82% uniquely 349 mapped to a single transcript and only 1.31% mapped to more than one transcript 350 (Supplementary Table S3). We found 91.74% of the plant universal orthologs from the 351 BUSCO database (Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015) 352 represented in the reference transcriptome (Supplementary Table S3). We also found from 353 20,529 to 31,348 putative orthologous sequences between the A. germinans transcriptome and 354 four other publicly available transcriptomes derived from the genus Avicennia L. 355 (Acanthaceae) (Supplementary Table S4).

As expected, most putative protein-coding transcripts of the reference transcriptome could be annotated using relevant databases (92.6%), whereas only a few putative non-coding transcripts could be annotated (33.6%) (Supplementary Figure S5). We found 2,207 putative

16

coding transcripts (7.4%) and 11,925 putative non-coding transcripts (66.4%) unique to *A*.
 germinans, which may represent lineage specific sequences.

- 361
- 362

2 3.3 Detection of candidate loci responding to environmental selection

Genome-wide signatures of selection were detected from genotypic data retrieved from samples from all seven sites of collection (Figure 4a-b). Fifty-six putative outlier loci were consistently identified by two F_{ST} outlier methods, solely based on deviations from neutral expectations of the distribution of genetic diversity. Eleven of these loci aligned to sequences in the reference transcriptome, of which eight were highly similar to proteins associated with the response or tolerance to drought in *A. thaliana* or *Sesamum indicum* (Supplementary Figure S5).

The exclusion of PA-arid samples was necessary for G-E association tests, due to limitations in the resolution of Marspec and WorldClim environmental layers. From the remaining subset of 48 individuals from six sampling sites, further 153 candidate loci for selection were identified by G-E correlation and two F_{ST} outlier approaches. Out of these candidate loci, 24 aligned to the reference transcriptome, of which 20 were putative proteincoding showing high similarity to gene models from *A. thaliana* or *S. indicum* (Supplementary Figure S5).

Among all candidate loci for selection detected along the sampling region, we found 14 loci associated with plant growth and development, wood formation, cell wall metabolism, biogenesis of the photosynthetic apparatus, abiotic stress perception and response and protein protection from stress-induced aggregation (Figure 5, Table 3). A complete characterization of candidate loci within putative coding sequences is available in Supplementary Table S5.

382

383 3.4 Differential transcript expression analysis

384 Transcriptome sequencing of seedlings grown under contrasting field conditions, 385 revealed significant expression differences in 2,454 transcripts, despite previous 386 acclimatization under homogeneous shaded, well-watered conditions (Figure 3). Most DETs 387 were detected in roots (2,337) and in stems (1,383), followed by leaves (361) (Supplementary 388 Figure S6). We refer to DETs that showed higher expression levels in samples from the PA-389 arid site than in samples from the PA-humid site as "DET-Arid" and to DET showing a 390 significantly higher expression in samples from the PA-humid than in samples from the PA-391 arid site as "DET-Humid".

392 The functional annotation and subsequent assignment of most putative protein-coding 393 transcripts to GO terms (76.24%) (Supplementary Figure S4) enabled the assessment of DETs 394 that highlighted key aspects of a differential response of A. germinans to contrasting source 395 environments, differing markedly in hydrological regime, soil pore water salinity and surface 396 temperature (Lara & Cohen, 2006; Vogt et al., 2014). We focused this analysis on enriched 397 biological processes previously identified to be involved in the tolerance, resistance or 398 response to osmotic and drought stress in various crops, model and non-model species, 399 including mangroves (Figure 6).

400

401 3.4.1. Photosynthesis

Mangroves have aerial, photosynthesizing roots, which contribute to carbon gain and enable root respiration in anaerobic soils, using both atmospheric and photosynthetically regenerated oxygen (Kitaya et al., 2002). Transcripts associated with photosynthesis were enriched in roots from the DET-Arid set. These transcripts included putative enzymes required for chloroplast biogenesis or development, such as HEAT SHOCK PROTEIN 90-5 (HSP90-5) (Oh, Yeung, Babaei-Rad, & Zhao, 2014), the THYLAKOID FORMATION 1

18

408 (THF1) (Q. Wang et al., 2004), RNA POLYMERASE SIGMA SUBUNIT 2 (SIGB) (Shirano 409 et al., 2000) and TRANSLOCASE SUBUNIT SECA1 (SECA1), which is also involved in 410 acclimation to fluctuating light (Liu et al., 2010). Additionally, transcripts supposedly 411 encoding several subunits of the photosynthetic apparatus and light-harvesting complexes 412 were identified in the DET-Arid set. These DETs included photosystem II (PSII) subunits 413 PSBX, PSBO-2, PSBQ-2, PSBR, PSBP-1, PSBY, PSII REACTION CENTER W (PSBW) 414 and CHLOROPHYLL A-B BINDING (PSBS); photosystem I (PSI) subunits PSAD-2, PSAE-415 2, PSAF, PSAG, PSAH-2, PSAL, PSAO, and PSI REACTION CENTER PSI-N (PSAN); 416 ATP SYNTHASE DELTA-SUBUNIT (ATPD); all subunits from the PSII light-harvesting 417 complex (LHCA1-5) and most subunits from PSI (LHCB1-6). The DET-Arid set of roots also 418 included transcripts associated with the C3 carbon fixation pathway, for instance, 419 GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE, subunits A and B (GAPA1, 420 GAPB) and their activator, THIOREDOXIN F-TYPE 1 (TRXF1) (Marri et al., 2009); two 421 CALVIN CYCLE PROTEINS (CP12-2, CP12-3), PHOSPHOENOLPYRUVATE 422 CARBOXYLASE 4 (PPC4), PYRUVATE ORTHOPHOSPHATE DIKINASE (PPDK), 423 RIBULOSE BISPHOSPHATE CARBOXYLASE SMALL CHAIN 1A (RBCS1A) and its 424 activator, RUBISCO ACTIVASE (RCA); and two FRUCTOSE-1.6-BISPHOSPHATASES 425 (CFBP1, CYFBP). Additionally, transcripts similar to chlorophyll biosynthesis enzymes were 426 enriched in the DET-Arid set, as ISOPENTENYL DIPHOSPHATE ISOMERASE 1 (IPP1), 427 MAGNESIUM-CHELATASE 12 (CHLI2) CHLH and the subunit (GUN5), 428 DICARBOXYLATE DIIRON PROTEIN (CRD1), the PROTOCHLOROPHYLLIDE 429 OXIDOREDUCTASE C (PORC) and GLUTAMYL-TRNA REDUCTASE (HEMA1).

430

431 3.4.2. Response to light

19

432 The DET-Arid set was enriched in transcripts associated with the response to light but 433 not directly associated with photosynthesis. These included transcripts associated with light 434 acclimation, similar to PSII dephosphorylating PROTEIN PHOSPHATASE 2C (PBCP) 435 (Samol et al., 2012) and RNA POLYMERASE SIGMA FACTOR A (SIGA), which are 436 essential for maintaining electron flow and photosynthetic efficiency under changing light 437 conditions (Privat, Hakimi, Buhot, Favory, & Lerbs-Mache, 2003). The DET-Arid set also 438 included putative light-signaling genes and photoreceptors, as the blue light photoreceptors 439 PHOTOTROPINS 1 and 2 (PHOT1, PHOT2), CRYPTOCHROME 1 (CRY1) and the red/far-440 red photoreceptors PHYTOCHROME E and A (PHYE, PHYA). These photoreceptors are 441 sensitive to light intensity and control complex light and stress responses, including 442 photoinduced movements as well as growth and development under limiting light (Correll et 443 al., 2003; Ohgishi, Saji, Okada, & Sakai, 2004; Pedmale et al., 2016). Complementarily, we 444 identified transcripts similar to proteins that interact with these photoreceptors in the 445 mediation of shade avoidance and phototropism under low light. For instance, B-BOX 446 DOMAIN PROTEIN 24 (STO), CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and 447 SPA PROTEINS (SPA2, SPA4) (Crocco et al., 2015; Holtkotte, Ponnu, Ahmad, & Hoecker, 448 2017; Indorf, Cordero, Neuhaus, & Rodríguez-Franco, 2007; Pacín, Semmoloni, Legris, 449 Finlayson, & Casal, 2016; Pedmale et al., 2016). Furthermore, we identified DETs similar to 450 the low light-induced transcription factors HOMEOBOX PROTEIN 1 and 52 (HB1, HB52), 451 regulatory of developmental processes (Henriksson et al., 2005); the PSEUDO-RESPONSE 452 REGULATOR 5 (PRR5) (Takase, Mizoguchi, Kozuka, & Tsukaya, 2013), which regulates 453 growth in the shade avoidance response; and a transcript associated with chloroplast 454 accumulation upon low blue light, J-DOMAIN PROTEIN REQUIRED FOR 455 CHLOROPLAST ACCUMULATION RESPONSE 1 (JAC1) (Suetsugu, Kagawa, Wada, &

20

456	Corporati	on, 2005). Rema	rkably, in the l	DET-Ari	d set, we detected	d putative	proteins requ	iired
457	during su	igar starvation i	nduced by dat	k, name	ely, THIAMIN I	DIPHOSP	HATE-BIND	ING
458	FOLD	PROTEIN	(THDP-bind	ing),	2-OXOACID	DEH	YDROGENA	SES
459	ACYLTR	ANSFERASE	(BCE2),	GLUT	AMINE-DEPEN	DENT	ASPARAG	INE
460	SYNTHA	ASE 1 (DIN6) a	and TRANSK	ETOLAS	SE (DIN4) (Fuj	iki, Ito,	Itoh, Nishida	ı, &
461	Watanabe	e, 2002; Fujiki, It	o, Nishida, & V	Vatanabe	e, 2000, 2001).			

462

463 *3.4.3. Response to water deprivation and response to salt*

464 The DET-Arid sets of roots and stems were enriched in transcripts associated with the 465 response to osmotic stress and water deprivation, including putative genes that play relevant 466 roles in drought and salt stress resistance. For example, various transcripts associated with the 467 positive regulation of abscisic acid (ABA)-dependent stomatal closure, such as 468 LIPASE/LIPOOXYGENASE PLAT/LH2 (PLAT1) (Hyun et al., 2014); THIAZOLE 469 BIOSYNTHETIC ENZYME (THI1) (C.-L. Li et al., 2016); CBL-INTERACTING PROTEIN 470 KINASE 1 (CIPK1) (D'Angelo et al., 2006); ZEAXANTHIN EPOXIDASE (ZEP) (Park et 471 al., 2008); the CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) (Moazzam-Jazi, 472 Ghasemi, Seyedi, & Niknam, 2018); FORMS APLOID AND BINUCLEATE CELLS 1B and 473 1C (FAB1B, FAB1C) (Bak et al., 2013); and PHOSPHOLIPASE D DELTA (PLDDELTA) 474 (Katagiri, Takahashi, & Shinozaki, 2001; Uraji et al., 2012). Additionally, in the DET-Arid 475 set, we detected putative ion transporters, as SLAC1 HOMOLOGUE 3 (SLAH3), essential 476 for efficient stomatal closure and opening and induced by drought stress (A. Zhang et al., 477 2016); SODIUM:HYDROGEN ANTIPORTER 1 (NHD1), which protects chloroplasts from deleterious Na^+ concentrations (Müller et al., 2014); and Na^+/Ca^{2+} EXCHANGER (NCL). 478 479 involved in Ca²⁺ homeostasis under abiotic stress (P. Wang et al., 2012). Complementarily, in

480 the DET-Arid set, we found transcripts associated with biosynthesis and accumulation of 481 oligosaccharides and increasing tolerance of osmotic stress, as GALACTINOL SYNTHASE 482 1 (GolS1) (A. Nishizawa, Yabuta, & Shigeoka, 2008) and RAFFINOSE SYNTHASE 483 (DIN10) (Taji et al., 2002). Transcripts induced by drought associated with epicuticular wax 484 biosynthesis and transport were also among the DET-Arid. For example, transcripts similar to 485 MYB DOMAIN PROTEIN 94 (MYB94), a key activator of wax biosynthesis genes (S. B. 486 Lee & Suh, 2015); to the fatty acid hydroxylase ECERIFERUM1 (CER1) (Bourdenx et al., 487 2011), activated by MYB94; WHITE-BROWN COMPLEX HOMOLOG PROTEIN 11 488 (WBC11), required for exporting wax and cutin monomers (Panikashvili et al., 2007); and to 489 LIPID TRANSFER PROTEIN 4 (LTP4), involved in wax or cutin deposition in cell walls 490 (Chae et al., 2010). Additionally, in the DET-Arid set, we detected several transcripts 491 associated with reactive oxygen species (ROS) dissipation for the control of cell damage 492 caused by drought, high light or salt stress, including putative COPPER/ZINC SUPEROXIDE 493 DISMUTASES 1 and 2 (CSD1, CDS2) (Attia, Arnaud, Karray, & Lachaâl, 2008), 494 CHLOROPLASTIC DROUGHT-INDUCED STRESS PROTEIN OF 32 kDa (CDSP32) 495 (Broin, Cuiné, Eymery, & Rey, 2002) and MAP KINASE 6 (MAPK6) (Teige et al., 2004).

496

497 *3.4.4. Response to heat*

Transcripts similar to genes that confer tolerance to heat were enriched among the DET-Arid sets of roots and stems. We detected several putative chaperones that modulate thermotolerance, such as the heat-shock proteins (HSPs) HSP17.4 (Wehmeyer, Hernandez, Finkelstein, & Vierling, 1996), HSP17.6 (Sun, Bernard, Cotte, Montagu, & Verbruggen, 2001), HSP18.2 (Lim et al., 2006), HSP70 (S. Lee et al., 2009), HSP90.1 (Cha et al., 2013) and HSP101 (Queitsch, Hong, Vierling, & Lindquist, 2000), five HSP20-LIKE 504 CHAPERONE PROTEINS (AT1G52560, AT1G53540, AT2G27140, AT2G29500, 505 AT5G51440) (Helm, Schmeits, & Vierling, 1995; Ayako Nishizawa et al., 2006), 506 UNIVERSAL STRESS PROTEIN (AT3G53990) (Jung et al., 2015), the chloroplast 507 chaperone CASEIN LYTIC PROTEINASE B3 (CLPB3) (Myouga, Motohashi, Kuromori, 508 Nagata, & Shinozaki, 2006), and co-chaperones, as ROTAMASE FKBP 1 and 2 (ROF1 and 509 ROF2) (Meiri & Breiman, 2009; Meiri et al., 2010). Additionally, we identified transcripts 510 associated with heat-shock response initiation and putative components of thermomemory, as 511 HEAT SHOCK TRANSCRIPTION FACTOR A2 (AT2G26150) and HEAT-STRESS-512 ASSOCIATED 32 (AT4G21320), required for long-term maintenance of acquired 513 thermotolerance (Charng et al., 2006). 514

515 3.4.5. Photorespiration

516 In the DET-Arid set of roots, we detected enrichment of putative genes associated 517 with photorespiration similar to enzymes participating in transamination, namely. 518 PYRIMIDINE 4 (PYD4), ALANINE:GLYOXYLATE AMINOTRANSFERASE (SGAT) 519 and ALANINE-2-OXOGLUTARATE AMINOTRANSFERASE 2 (GGT2) (Liepman & 520 Olsen, 2001); similar to PEROXISOMAL NAD-MALATE DEHYDROGENASE 1 521 (PMDH1), which is required for maintaining photosynthesis under photorespiratory 522 conditions and for carbon flow during photorespiration (Cousins, Walker, Pracharoenwattana, 523 Smith, & Badger, 2011); and D-GLYCERATE 3-KINASE (GLYK), which catalyzes the 524 concluding reaction of photorespiration (Boldt et al., 2005).

525

526 **4. Discussion**

23

527 Our study suggests a major role of variation in freshwater availability driving adaptive 528 molecular responses in the typically tropical and widespread tree. Gradual changes in 529 freshwater inputs from both precipitation and rivers along a spatial gradient (Figure 1) seem 530 to play an important role in the specialization of individuals of Avicennia germinans, via 531 natural selection. Limited gene flow, likely caused by geographical distance and the flow 532 direction of superficial sea currents, may have facilitated the accumulation of adaptive 533 differences. Additionally, we described how drastic and persistent restriction in soil 534 freshwater availability caused the evolution of phenotype, gene pool and gene expression 535 profile of a recently founded population of A. germinans, without depletion in genetic 536 diversity and despite clear possibility of gene flow with an adjacent, unchanged population.

537

538 4.1 Gradual environmental variation in freshwater availability might partly explain the 539 organization of non-neutral genetic variation in A. germinans

540 The genetic structure inferred by genome-wide SNP loci (Figure 4) suggested the 541 importance of both neutral and non-neutral environmental drivers of variation. Remarkable 542 divergence was observed between samples influenced by the northern and southern branches 543 of the South Equatorial sea current (SEC), corroborating previous results found for various 544 coastal trees using putatively neutral molecular markers (Francisco, Mori, Alves, Tambarussi, 545 & Souza, 2018; Mori, Zucchi, & Souza, 2015; Takayama, Tateishi, Murata, & Kajita, 2008). 546 The bifurcated flow of coastal currents provides a neutral explanation to the north-south 547 divergence, due to restrictions in the dispersal of buoyant propagules, which likely facilitate 548 the accumulation of random north-south genetic divergences (Figure 4). Our results also 549 suggest that the lower precipitation of the warmest quarter in northern sites (AMMC and 550 Northeast Brazil regions) (Figure 1) may play an additional, non-neutral role in shaping this

551 north-south divergence. The closely related species, Avicennia marina, has the ability of 552 directly absorbing rainwater through its leaves, presenting substantial growth spurts following 553 precipitation events (Steppe et al., 2018). This mechanism has been observed in plants from 554 dry lands (Breshears et al., 2008), cloud forests (Eller, Lima, & Oliveira, 2013) and in 555 conifers (Mayr et al., 2014), and might also be present in A. germinans. Complementarily, 556 both aridity and salinity enhance the leaf water storage for transient growth under favorable 557 conditions in A. marina, requiring the use of alternative water sources to that supplied by 558 roots (Nguyen et al., 2017). Therefore, our results suggest that the more even distribution of 559 rainfall throughout the year in the TMD site likely alleviates water-stress in A. germinans, 560 whereas more limited rainfall in the warmest quarter of northern regions reduces opportunities 561 for rehydration via foliar water uptake (Figure 1), potentially favoring traits, which increase 562 drought-tolerance. It is plausible that this environmental filter contributes to the genetic 563 divergence observed between TMD and remaining populations (Figure 4). This hypothesis is 564 corroborated by the detection of 21 loci candidate for selection correlated to the spatial 565 variation in the precipitation of the warmest quarter over the study area (Figure 1). Although 566 seven out of these loci were poorly characterized, hampering inferences about their functional 567 relevance in the environmental context, we were able to associate 11 candidate loci with 568 biological processes influenced by drought, as photosynthesis, cell wall metabolism, cell 569 elongation, plant growth, protein protection from stress-induced degradation and regulation of 570 abscisic acid signaling (Figure 5, Table 3). The adaptive importance of freshwater limitation 571 in tropical trees was also suggested in the mangrove, A. schaueriana (M. V. Cruz et al., 572 2018), and in tropical forests and savannas (Ciemer et al., 2019), for which it was similarly 573 suggested that an environmental filtering mechanism driven by high rainfall variability 574 favored the survival of more drought resistant taxa.

25

575 Although Avicennia propagules can remain viable for long periods and present 576 transoceanic dispersal (Mori, Zucchi, Sampaio, & Souza, 2015), at a finer scale, we observed 577 a genetic divergence between sites in the AMMC region (MRJ and PA-humid) and samples 578 from Northeast Brazilian mangroves (ALC, PNB and PRC) (Figure 4). The AMMC region 579 shows higher annual precipitation and is more strongly influenced by riverine freshwater 580 inputs than the remaining sites, due to its closer proximity to the Amazon River Delta (Figure 581 1). Conversely, reduced rainfall and the lack of riverine freshwater inputs in Northeast Brazil 582 could limit plants access to soil freshwater, due to increased soil salinity, potentially 583 contributing to the local specialization of individuals. Even though we do not have soil 584 salinity data to perform direct G-E association tests for selection, we were able to detect two 585 loci correlated with the variation in total annual precipitation: one associated with a poorly 586 characterized protein kinase and the other, with an RNA hydrolase, also correlated with 587 heterogeneity in mean sea surface salinity (Supplementary Table S5). Given the unclear 588 functional relevance of these putative adaptive loci in the environmental context, we 589 recommend future efforts to analyze the role of other neutral and non-neutral variables, as soil 590 salinity or the demographic history of A. germinans, to find additional explanations for the 591 genetic divergence observed between AMMC and Northeast Brazilian mangroves (Figure 4). 592 Candidate loci detected in our study play a significant role in drought adaptations, but their 593 molecular functions need to be further characterized in plants adapted to physiological 594 drought. These proteins may not get highlighted in genetic screenings performed on drought-595 sensitive model plants, distantly related to A. germinans.

596

597 4.2 Rapid evolution of A. germinans in response to abrupt limitation in access to soil
598 freshwater

599 The PA-arid population of A. germinans, was originated after 1974, when the 600 construction of the Bragança-Ajuruteua road altered the hydrology of part of the mangrove 601 forest in the AMMC region (Figure 2) (Cohen & Lara, 2003). This sudden environmental 602 change caused a large dieback of the mangrove vegetation. Gradually, the impacted area was 603 recolonized, mainly by A. germinans. We estimate that the approximately 40 years since this 604 event occurred, represent from 4 to 40 reproductive cycles of A. germinans, based on previous 605 studies of closely related Avicennia sp. (Almahasheer, Duarte, & Irigoien, 2016; M. V. Cruz 606 et al., 2018; Polidoro et al., 2010). Recolonizing individuals of PA-arid started presenting a 607 dwarf, shrub architecture, very distinct from the former tall, arboreal architecture, still 608 observed in surrounding areas where the hydrology remained unchanged (Figure 2) (Pranchai 609 et al., 2017). This observation suggests that limitation in plant access to soil water favored 610 smaller tree sizes, one of the most integrative characteristic of drought resistance (Bennett et 611 al., 2015; Corlett, 2016; Naidoo, 2006; Rowland et al., 2015). On the one hand, we cannot 612 determine how much of the difference in tree size is inherited or determined by phenotypic 613 plasticity. On the other hand, our results revealed that a substantial and rapid change in the 614 gene pool of the PA-arid population occurred without reduction in levels of overall genetic 615 diversity, estimated by various parameters (Figure 2, Figure 4a-b, Table 2). The presence of 616 high levels of genome-wide genetic variation, simultaneously with strong selection on 617 individual traits may be a signature of substantial multivariate genetic constraints (B. Walsh 618 & Blows, 2009). Interestingly, this divergence in allele frequencies was observed despite 619 clear possibility of gene flow, given the geographical proximity (<10.0 m) of the PA-arid site 620 to well preserved populations. Consistent with an adaptive response to selection by limited 621 access to soil freshwater, F_{ST} outlier tests detected eight candidate loci within transcripts 622 associated with functions as suppression of cell elongation, wood and xylem tracheids

623 formation, photosynthetic machinery biogenesis and repair, regulation of adaptation to stress624 and of protection from stress-induced protein degradation (Table 3, Figure 5).

625 Besides genotypic changes, we also identified transcripts expression differences 626 between seedlings from PA-arid and PA-humid sites (Table 1, Figure 6) after three days 627 acclimatization in pots under shaded, well-watered conditions (Figure 3). Because differential 628 gene expression influences trait variation (Wolf, Lindell, & Backstrom, 2010), it can be 629 substantial between distinct locally adapted populations (Akman, Carlson, Holsinger, & 630 Latimer, 2016; Gould, Chen, & Lowry, 2018). Increased transcripts expression, mainly in 631 roots of PA-arid samples, were associated with biological processes previously identified to 632 be involved in central aspects of drought-tolerance in model and non-model plants (Ding et 633 al., 2013; Fan et al., 2018; C. Zhang et al., 2015). For instance, we found transcripts 634 associated with ABA-mediated stomatal closure, a well-known mechanism for maintaining 635 water status under drought, which severely compromises growth (Murata, Mori, & 636 Munemasa, 2015). Stomatal closure reduces the $CO_2:O_2$ ratio in mesophyll cells, increasing 637 photorespiration, also an enriched process in DET-Arid. Although photorespiration decreases 638 photosynthesis efficiency, it plays an essential role in protecting the photosynthetic machinery 639 from damage caused by excessive photochemical energy (Kozaki & Takeba, 1996; Wingler, 640 Lea, Quick, & Leegood, 2000). Conversely, we also observed an enrichment of genes 641 involved in photosynthesis, shade avoidance and response to low light intensity. Being sessile 642 under extremely arid conditions, PA-arid plants might need to rapidly adjust photosynthesis 643 gene expression to intermittent freshwater availability (Chaves, Flexas, & Pinheiro, 2009; 644 Urban, Aarrouf, & Bidel, 2017). The increased freshwater availability and decreased solar 645 irradiance under experimental conditions, compared to source-site (Figure 3), likely required 646 that PA-arid individuals broadly adjust their photosynthetic machinery. Additionally, we

28

647 observed several putative HSPs and heat-shock factors among DET-Arid, contributing to the 648 protection of proteins and membranes against water-stress-induced changes (Al-Whaibi, 649 2011). Various transcripts associated with epicuticular wax and cutin synthesis, export and 650 deposition also showed higher expression in PA-arid than in PA-humid seedlings, likely 651 reflecting an increased protection of cells against detrimental effects of drought by the plant 652 cuticle of PA-arid plants (Aharoni et al., 2004; Javelle, Vernoud, Rogowsky, & Ingram, 653 2011). Complementarily, we found transcripts associated with the accumulation of raffinose 654 among DET-Arid, functioning as osmoprotectants and antioxidants under drought and 655 osmotic stress and maintaining cell turgor (ElSayed, Rafudeen, & Golldack, 2014). Overall, 656 our comparative transcriptomic analyses suggest that PA-arid plants deal better with heat, 657 UV, salt and drought than PA-humid plants, through changes in key regulatory mechanisms, 658 which increase abiotic stress tolerance. These strategies may have enhanced the relative 659 capacity of PA-arid seedlings to grow under high leaf water-deficit status and infrequent 660 freshwater inputs.

661 We acknowledge that we cannot disentangle effects from genetic and epigenetic 662 divergences underlying the differential transcripts expression observed. Nevertheless, both 663 genetic and epigenetic changes might contribute to the observed trait divergence. Epigenetic 664 changes can emerge faster than adaptive genetic changes, playing an important role, 665 especially in early adaptive process (Kenkel & Matz, 2016; Pavey, Nosil, & Rogers, 2010). 666 Although the mechanisms are not entirely clear, our results suggest, through independent 667 approaches, that a rapid evolution of this population occurred, with phenotypic, genetic and 668 gene expression changes. The desertification of the PA-arid site represents a drastic and 669 persistent environmental change, analogous to a climate change, freshwater exclusion

29

670 experiment for mangroves of the tropical Brazilian coastline, in which limited access to soil671 freshwater likely caused the rapid evolution of recolonizing *A. germinans* individuals.

Although it is difficult to demonstrate rapid evolution in nature, there is growing empirical evidence that when environmental selection is very intense, evolutionary processes may occur on a very fast time scale (Amorim et al., 2017; Donihue et al., 2018; Schoener, 2011).

676

677 4.3 Implications for conservation

678 Wetlands of the Northeastern coast of Brazil and the ecosystem services they provide 679 are predicted to be particularly impacted by future reductions in precipitation and freshwater 680 availability (Osland et al., 2018). Despite these threats, the extant gene pool of northern 681 populations of A. germinans seems to harbor sufficient diversity to enable species persistence 682 through natural selection of drought-resistant plants, as observed in the PA-arid site. 683 Recolonizing individuals in this location share alleles with individuals from distant areas, as 684 the PRC site (Figure 4a), located over 1,200 km away, in Northeast Brazil. Therefore, our 685 results suggest that forests from Northeastern Brazilian mangroves contributed as source of 686 adaptive variation through sea-dispersed propagules in the recolonization of the PA-arid site, 687 additional to the selection on seed-bank or on migrants from closer areas.

Our findings indicated limited gene flow between populations influenced by northern and southern branches of the SEC (Figure 4), suggesting the contribution of neutral forces, but also of environmental selection by variation in precipitation of the warmest quarter. Given the substantial north-south genetic divergence, we recommend that northern and southern populations should be treated as two independently evolving management units (Moritz, 1999). In the context of an increasingly drying climate, reforestation plans for populations of

30

A. germinans located south of the SEC should consider the use of mixed stocks of seedlings
(Moritz, 1999), to introduce genetic variation associated with increased drought-tolerance in
Northeaster mangroves, while also maintaining local alleles, possibly associated with sitespecific environmental characteristics.

698

699 4.4 Concluding remarks

700 We provide novel insights into the consequences of limited access to soil freshwater to 701 the variation in allele frequencies, gene expression and phenotypes of a dominant tropical 702 tree. Research on the genomic basis of tree adaptation are often limited by difficulties in 703 implementing empirical tests, given their long generation time and the scarcity of basic 704 biological information. In tropical forests, mostly found in developing countries, the lack of 705 resources imposes additional challenges. Advances in the understanding of the genomic basis 706 of drought-tolerance in tropical trees can support effective protection plans and mitigating 707 climate change. As shown in this study, such knowledge can improve predictions of the 708 persistence of the ecosystems they form and services they provide and generate key insight 709 for conservation and management efforts (Holliday et al., 2017; Moran, Hartig, & Bell, 2016).

710

711 Acknowledgments

712 We acknowledge Ilmarina Menezes for assistance with fieldwork. M.V.C. and 713 G.M.M. received fellowships from the São Paulo Research Foundation (FAPESP 714 2013/26793-7, 2013/08086-1, 2014/22821-9). M.V.C. received a fellowship from the 715 Coordination for the Improvement of Higher Education Personnel (CAPES 716 99999.008084/2015-07, 88887.177158/2018-00). G.M.M. received a grant from the Brazilian

- 717 National Council for Scientific and Technological Development (CNPq 448286/2014-9).
- A.P.S. received a research fellowship from CNPq (309661/2014-5).

719

720 Conflicts of interest

The authors have no conflict of interest to disclose.

722

723 6. References

724	Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., Arkel, G. van, & Pereira, A. (2004). The
725	SHINE Clade of AP2 Domain Transcription Factors Activates Wax Biosynthesis, Alters
726	Cuticle Properties, and Confers Drought Tolerance when Overexpressed in Arabidopsis.
727	The Plant Cell Online, 16(9), 2463-2480. doi:10.1105/tpc.104.022897
728	Akman, M., Carlson, J. E., Holsinger, K. E., & Latimer, A. M. (2016). Transcriptome

- rikinan, ivi., Canson, J. E., Horsinger, R. E., & Eathler, A. W. (2016). Hansenptone
 sequencing reveals population differentiation in gene expression linked to functional
 traits and environmental gradients in the South African shrub Protea repens. *New Phytologist*, 210(1), 295–309. doi:10.1111/nph.13761
- Al-Whaibi, M. H. (2011). Plant heat-shock proteins □: A mini review. *Journal of King Saud University Science*, 23(2), 139–150. doi:10.1016/j.jksus.2010.06.022
- Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry
 in unrelated individuals. *Genome Research*, *19*(9), 1655–1664.
 doi:10.1101/gr.094052.109
- Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global
 vulnerability to tree mortality and forest die-off from hotter drought in the
 Anthropocene. *Ecosphere*, 6(8), 1–55. doi:10.1890/ES15-00203.1
- Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M.,
 ... Cobb, N. (2010). A global overview of drought and heat-induced tree mortality
 reveals emerging climate change risks for forests. *Forest Ecology and Management*,
 259(4), 660–684. doi:10.1016/j.foreco.2009.09.001
- Almahasheer, H., Duarte, C. M., & Irigoien, X. (2016). Phenology and Growth dynamics of
 Avicennia marina in the Central Red Sea. *Scientific Reports*, 6, 37785.
 doi:10.1038/srep37785
- Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. de M., & Sparovek, G. (2013).
 Köppen's climate classification map for Brazil. *Meteorologische Zeitschrift*, 22(6), 711–
 728. doi:10.1127/0941-2948/2013/0507
- Amorim, M. E., Schoener, T. W., Ramalho, G. C. C. S., Lins, A. C. R., Piovia-Scottd, J., &
 Brandão, R. A. (2017). Lizards on newly created islands independently and rapidly adapt
 in morphology and diet. *Proceedings of the National Academy of Sciences*, *114*(33),
 8812–8816. doi:10.1073/pnas.1709080114
- Antao, T., Lopes, A., Lopes, R. J., Beja-Pereira, A., & Luikart, G. (2008). LOSITAN: A
 workbench to detect molecular adaptation based on a F st -outlier method. *BMC Bioinformatics*, 9(1), 1–5. doi:10.1186/1471-2105-9-323
- 757 Aranda, I., Cano, F. J., Gascó, A., Cochard, H., Nardini, A., Mancha, J. A., ... Sánchez-

758	gómez, D. (2014). Variation in photosynthetic performance and hydraulic architecture
759	across European beech (Fagus sylvatica L.) populations supports the case for local
760	adaptation to water stress. <i>Tree Physiology</i> , 35(1), 34–46. doi:10.1093/treephys/tpu101
761	Asner, G. P., Brodrick, P. G., Anderson, C. B., Vaughn, N., Knapp, D. E., & Martin, R. E.
762	(2016). Progressive forest canopy water loss during the 2012 – 2015 California drought.
763	Proceedings of the National Academy of Sciences, 113(2), 249–255.
764	doi:10.1073/pnas.1523397113
765	Attia, H., Arnaud, N., Karray, N., & Lachaâl, M. (2008). Long-term effects of mild salt stress
766	on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette
767	leaves. Physiologia Plantarum, 132(3), 293–305. doi:10.1111/j.1399-3054.2007.01009.x
768	Bak, G., Lee, EJ., Lee, Y., Kato, M., Segami, S., Sze, H., Lee, Y. (2013). Rapid
769	Structural Changes and Acidification of Guard Cell Vacuoles during Stomatal Closure
770	Require Phosphatidylinositol 3,5-Bisphosphate. The Plant Cell, 25(6), 2202–2216.
771	doi:10.1105/tpc.113.110411
772	Bang, W. Y., Hata, A., Jeong, I. S., Umeda, T., Masuda, T., Chen, J., Bahk, J. D. (2009).
773	AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential
774	for early embryogenesis. Plant Molecular Biology, 71(4-5), 379-390.
775	doi:10.1007/s11103-009-9529-3
776	Bartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of leaf turgor loss point
777	and prediction of drought tolerance of species and biomes: A global meta-analysis.
778	Ecology Letters, 15, 393–405. doi:10.1111/j.1461-0248.2012.01751.x
779	Beaumont, M. A., & Nichols, R. A. (1996). Evaluating Loci for Use in the Genetic Analysis
780	of Population Structure. Proceedings of the Royal Society B: Biological Sciences,
781	263(1377), 1619–1626. doi:10.1098/rspb.1996.0237
782	Bennett, A. C., McDowell, N. G., Allen, C. D., & Anderson-Teixeira, K. J. (2015). Larger
783	trees suffer most during drought in forests worldwide. Nature Plants, 1, 1–5.
784	doi:10.1038/NPLANTS.2015.139
785	Berardini, T. Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., & Huala, E. (2015).
786	The Arabidopsis Information Resource: Making and Mining the "Gold Standard"
787	Annotated Reference Plant Genome. <i>Genesis</i> , 53, 474–485. doi:10.1002/dvg.22877
788	Blake, J. A., Christie, K. R., Dolan, M. E., Drabkin, H. J., Hill, D. P., Ni, L., Westerfeld,
789	M. (2015). Gene ontology consortium: Going forward. <i>Nucleic Acids Research</i> , 43,
790	D1049–D1056. doi:10.1093/nar/gku1179
791	Bohne, A. V., Schwenkert, S., Grimm, B., & Nickelsen, J. (2016). Roles of Tetratricopeptide
792	Repeat Proteins in Biogenesis of the Photosynthetic Apparatus. International Review of
793	<i>Cell and Molecular Biology</i> , <i>324</i> , 187–227. doi:10.1016/bs.ircmb.2016.01.005
794 705	Boldt, R., Edner, C., Kolukisaoglu, Ü., Hagemann, M., Weckwerth, W., Wienkoop, S.,
795	Bauwe, H. (2005). Prosthesis Retention and Effective Use of Denture Adhesive in
796 707	Complete Denture Therapy. <i>The Plant Cell</i> , 17(8), 2413–2420.
797	doi:10.1105/tpc.105.033993.enzyme
798 700	Bourdenx, B., Bernard, A., Domergue, F., Pascal, S., Leger, A., Roby, D., Joubes, J.
799	(2011). Overexpression of <i>Arabidopsis</i> ECERIFERUM1 Promotes Wax Very-Long-
800	Chain Alkane Biosynthesis and Influences Plant Response to Biotic and Abiotic
801	Stresses. Plant Physiology, 156(1), 29–45. doi:10.1104/pp.111.172320 Prochastra D. D. MaDowall, N.G. Goddard, K.L. Davam, K.E. Martons, S. N. Mayar, C.
802 803	Breshears, D. D., McDowell, N. G., Goddard, K. L., Dayem, K. E., Martens, S. N., Meyer, C.
803	W., & Brown, K. M. (2008). Foliar absorption of intercepted rainfall improves woody
804	plant water status most during drought. <i>Ecology</i> , 89(1), 41–47. doi:10.1890/07-0437.1 Brodribb, T. J., Holbrook, N. M., Edwards, E. J., & Gutiérrez, M. V. (2003). Relations
003	brouriou, 1. J., noibrook, IV. IVI., Edwards, E. J., & Gutterrez, IVI. V. (2005). Relations

between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest

trees. Plant, Cell and Environment, 26(3), 443-450. doi:10.1046/j.1365-

808	3040.2003.00975.x
809	Broin, M., Cuiné, S., Eymery, F., & Rey, P. (2002). The plastidic 2-cysteine peroxiredoxin is
810	a target for a thioredoxin involved in the protection of the photosynthetic apparatus
811	against oxidative damage. The Plant Cell, 14(6), 1417-32. doi:10.1105/tpc.001644.been
812	Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden,
813	T. L. (2009). BLAST+: architecture and applications. <i>BMC Bioinformatics</i> , 10, 421.
814	doi:10.1186/1471-2105-10-421
815	Cha, J. Y., Ahn, G., Kim, J. Y., Kang, S. Bin, Kim, M. R., Su'udi, M., Son, D. (2013).
816	Structural and functional differences of cytosolic 90-kDa heat-shock proteins (Hsp90s)
817	in Arabidopsis thaliana. Plant Physiology and Biochemistry, 70, 368–373.
818	doi:10.1016/j.plaphy.2013.05.039
819	Chae, K., Gonong, B. J., Kim, S. C., Kieslich, C. A., Morikis, D., Balasubramanian, S., &
820	Lord, E. M. (2010). A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-
821	like <i>Arabidopsis</i> lipid transfer proteins (LTPs) suggests diversified roles for these LTPs
822	in plant growth and reproduction. <i>Journal of Experimental Botany</i> , 61(15), 4277–4290.
823	doi:10.1093/jxb/erq228
824	Charng, Yy., Liu, Hc., Liu, Ny., Chi, Wt., Wang, Cn., Chang, Sh., & Wang, Tt.
825	(2006). A Heat-Inducible Transcription Factor, HsfA2, Is Required for Extension of
826	Acquired Thermotolerance in <i>Arabidopsis</i> . <i>Plant Physiology</i> , 143(1), 251–262.
827	doi:10.1104/pp.106.091322
828	Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., & Medlyn, B. E.
829	(2018). Triggers of tree mortality under drought. <i>Nature</i> , 558(7711), 531–539.
830	doi:10.1038/s41586-018-0240-x
831	Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Zanne, A. E.
832	(2012). Global convergence in the vulnerability of forests to drought. <i>Nature</i> , 491(7426),
833	752–755. doi:10.1038/nature11688
834	Ciemer, C., Boers, N., Hirota, M., Kurths, J., Müller-hansen, F., Oliveira, R. S., &
835	Winkelmann, R. (2019). Higher resilience to climatic disturbances in tropical vegetation
836	exposed to more variable rainfall. <i>Nature Geoscience</i> , 12, 174–179. doi:10.1038/s41561-
837	019-0312-z
838	Clough, B. F., Sim, R. G., Inlet, T., Bay, M., & Rivers, I. (1989). Oecologia of mangroves in
839	response to salinity and vapour pressure deficit. <i>Oecologia</i> , (459), 38–44.
840	Cohen, M. C. L., & Lara, R. J. (2003). Temporal changes of mangrove vegetation boundaries
841	in Amazonia: Application of GIS and remote sensing techniques. Wetlands Ecology and
842	Management, 11(4), 223–231. doi:10.1023/A:1025007331075
843	Corlett, R. T. (2016). The Impacts of Droughts in Tropical Forests. Trends in Plant Science,
844	21(7), 584–593. doi:10.1016/j.tplants.2016.02.003
845	Correll, M. J., Coveney, K. M., Raines, S. V., Mullen, J. L., Hangarter, R. P., & Kiss, J. Z.
846	(2003). Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots.
847	Advances in Space Research, 31(10), 2203–2210. doi:10.1016/S0273-1177(03)00245-X
848	Cousins, A. B., Walker, B. J., Pracharoenwattana, I., Smith, S. M., & Badger, M. R. (2011).
849	Peroxisomal hydroxypyruvate reductase is not essential for photorespiration in
850	Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory
851	CO2 release. Photosynthesis Research, 108(2-3), 91-100. doi:10.1007/s11120-011-
852	9651-3
853	Crocco, C. D., Locascio, A., Escudero, C. M., Alabadí, D., Blázquez, M. A., & Botto, J. F.

- 854 (2015). The transcriptional regulator BBX24 impairs della activity to promote shade
- avoidance in *Arabidopsis thaliana*. *Nature Communications*, 6.
- doi:10.1038/ncomms7202
- 857 Cruz, M. V., Mori, G. M., Müller, C. S., Cristina, C., Oh, D., Dassanayake, M., ... Silva, R.
 858 (2018). Local adaptation insights from genomics and ecophysiology of a neotropical
 859 mangrove. *Biorxiv*, 1–43. doi:10.1101/378612
- Cruz, M. V., Mori, G. M., Oh, D., Dassanayake, M., Zucchi, M. I., Oliveira, R. S., & Souza,
 A. P. (2019). Data from: Molecular responses to freshwater limitation in the mangrove
 tree Avicennia germinans (Acanthaceae). *Dryad Digital Repository*.
 doi:doi:10.5061/dryad.h11t255
- B'Angelo, C., Weinl, S., Batistic, O., Pandey, G. K., Cheong, Y. H., Schültke, S., ... Kudla,
 J. (2006). Alternative complex formation of the Ca²⁺ regulated protein kinase CIPK1
 controls abscisic acid-dependent and independent stress responses in *Arabidopsis. Plant Journal*, 48(6), 857–872. doi:10.1111/j.1365-313X.2006.02921.x
- da Costa, C. L., Galbraith, D., Almeida, S., Tanaka Portela, B. T., da Costa, M., de Athaydes
 Silva Junior, J., ... Meir, P. (2010). Effect of seven years of experimental drought on the
 aboveground biomass storage of an eastern Amazonian rainforest. *New Phytologist*, *187*,
 579–591. doi:10.1111/j.1469-8137.2010.03309.x
- B72 Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews:
 B73 Climate Change, 2(1), 45–65. doi:10.1002/wcc.81
- B74 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., ... Durbin,
 R. (2011). The variant call format and VCFtools. *Bioinformatics*, 27(15), 2156–2158.
 doi:10.1093/bioinformatics/btr330
- Baniel, B., Pavkov-Keller, T., Steiner, B., Dordic, A., Gutmann, A., Nidetzky, B., ...
 Macheroux, P. (2015). Oxidation of monolignols by members of the berberine bridge
 enzyme family suggests a role in plant cell wall metabolism. *Journal of Biological Chemistry*, 290(30), 18770–18781. doi:10.1074/jbc.M115.659631
- Be Frenne, P., Graae, B. J., Rodríguez-Sánchez, F., Kolb, A., Chabrerie, O., Decocq, G., ...
 Verheyen, K. (2013). Latitudinal gradients as natural laboratories to infer species'
 responses to temperature. *Journal of Ecology*, *101*(3), 784–795. doi:10.1111/13652745.12074
- Biology, 13(1). doi:10.1186/1471-2229-13-229
 Ding, Y., Liu, N., Virlouvet, L., Riethoven, J. J., Fromm, M., & Avramova, Z. (2013). Four
 distinct types of dehydration stress memory genes in *Arabidopsis thaliana*. *BMC Plant*
- Bonihue, C. M., Herrel, A., Fabre, A. C., Kamath, A., Geneva, A. J., Schoener, T. W., ...
 Losos, J. B. (2018). Hurricane-induced selection on the morphology of an island lizard. *Nature*, 560(7716), 88–91. doi:10.1038/s41586-018-0352-3
- Bonovan, L. A., Ludwig, F., Rosenthal, D. M., Rieseberg, L. H., & Dudley, S. A. (2009).
 Phenotypic selection on leaf ecophysiological traits in Helianthus. *New Phytologist*, *183*(3), 868–879. doi:10.1111/j.1469-8137.2009.02916.x.
- Eller, C. B., Lima, A. L., & Oliveira, R. S. (2013). Foliar uptake of fog water and transport
 belowground alleviates drought effects in the cloud forest tree species, Drimys
 brasiliensis (Winteraceae). *New Phytologist*, *199*(1), 151–162. doi:10.1111/nph.12248
- Ellison, A. M., Farnsworth, E. J., & Merkt, R. E. (1999). Origins of mangrove ecosystems and
 the mangrove biodiversity anomaly. *Global Ecology and Biogeography*, 8(2), 95–115.
 doi:10.1046/j.1466-822X.1999.00126.x
- ElSayed, A. I., Rafudeen, M. S., & Golldack, D. (2014). Physiological aspects of raffinose
 family oligosaccharides in plants: Protection against abiotic stress. *Plant Biology*, *16*(1),

902	1–8. doi:10.1111/plb.12053
903	Etterson, J. R. (2004). Evolutionary potential of Chamaecrista fasciculata in relation to
904	climate change. I. Clinal patterns of selection along and environmental gradient in the
905	great plains. Evolution, 58(7), 1446–1458. doi:10.1111/j.0014-3820.2004.tb01726.x
906	Fan, L., Wang, G., Hu, W., Pantha, P., Tran, K., Zhang, H., Qiu, Q. (2018). Plant
907	Physiology and Biochemistry Transcriptomic view of survival during early seedling
908	growth of the extremophyte Haloxylon ammodendron. Plant Physiology and
909	Biochemistry, 132(9), 475–489. doi:10.1016/j.plaphy.2018.09.024
910	Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Punta,
911	M. (2014). Pfam: The protein families database. Nucleic Acids Research, 42(D1), 222-
912	230. doi:10.1093/nar/gkt1223
913	Francisco, P. M., Mori, G. M., Alves, F. M., Tambarussi, E., & Souza, A. P. De. (2018).
914	Population genetic structure, introgression, and hybridization in the genus Rhizophora
915	along the Brazilian coast. Ecology and Evolution, 8(6), 3491–3504.
916	doi:10.1002/ece3.3900
917	Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological
918	association studies. Methods in Ecology and Evolution, 6(8), 925–929.
919	doi:10.1111/2041-210X.12382
920	Frydman, J. (2001). Folding of newkly translated proteins in vivo: the role of molecular
921	chaperones. Annual Review of Biochemistry, 701(1), 603-647.
922	Fujiki, Y., Ito, M., Itoh, T., Nishida, I., & Watanabe, A. (2002). Activation of the promoters
923	of Arabidopsis genes for the branched-chain & alpha;-keto acid dehydrogenase complex
924	in transgenic tobacco BY-2 cells under sugar starvation. Plant and Cell Physiology,
925	<i>43</i> (3), 275–280. doi:10.1093/pcp/pcf032
926	Fujiki, Y., Ito, M., Nishida, I., & Watanabe, A. (2000). Multiple signaling pathways in gene
927	expression during sugar starvation. Pharmacological analysis of din gene expression in
928	suspension-cultured cells of Arabidopsis. Plant Physiology, 124(3), 1139–1148.
929	doi:10.1104/pp.124.3.1139
930	Fujiki, Y., Ito, M., Nishida, I., & Watanabe, A. (2001). Leucine and its keto acid enhance the
931	coordinated expression of genes for branched-chain amino acid catabolism in
932	Arabidopsis under sugar starvation. FEBS Letters, 499(1–2), 161–165.
933	doi:10.1016/S0014-5793(01)02536-4
934	Goudet, J. (2005). Hierfstat, a package for R to compute and test hierarchical F -statistics.
935	Molecular Ecology Notes, 5(1), 184–186. doi:10.1111/j.1471-8278
936	Gould, B. A., Chen, Y., & Lowry, D. B. (2018). Gene Regulatory Divergence Between
937	Locally Adapted Ecotypes in Their Native Habitats. <i>Molecular Ecology</i> , 27(21), 4174–
938	4188. doi:10.1111/mec.14852
939	Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006). Scaling of angiosperm xylem
940	structure with safety and efficiency. <i>Tree Physiology</i> , 26(6), 689–701.
941	doi:10.1093/treephys/26.6.689
942	Helm, K. W., Schmeits, J., & Vierling, E. (1995). An Endomembrane-Localized Small Heat-
943	Shock Protein from Ara bidopsis tha bana '. <i>Plant Physiology</i> , 107(1 995), 287–288.
944 045	doi:10.1104/pp.107.1.287
945	Henriksson, E., Olsson, A. S. B., Johannesson, H., Johansson, H., Hanson, J., Engstro, P.,
946 047	Soderman, E. (2005). Homeodomain leucine zipper class I genes in <i>Arabidopsis</i> .
947	Expression patterns and phylogenetic relationships. <i>Plant Physiology</i> , <i>139</i> (1), 509–518.
948	doi:10.1104/pp.105.063461

949 Heschel, M. S., & Riginos, C. (2005). Mechanisms of selection for drought stress tolerance

950	and avoidance in Impatiens capensis (Balsaminaceae). American Journal of Botany,
951	92(1), 37–44. doi:10.3732/ajb.92.1.37
952	Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high
953	resolution interpolated climate surfaces for global land areas. International Journal of
954	Climatology, 25(15), 1965–1978. doi:10.1002/joc.1276
955	Holliday, J. A., Aitken, S. N., Cooke, J. E. K., Fady, B., González-Martínez, S. C., Heuertz,
956	M., Plomion, C. (2017). Advances in ecological genomics in forest trees and
957	applications to genetic resources conservation and breeding. Molecular Ecology, 706-
958	717. doi:10.1111/mec.13963
959	Holtkotte, X., Ponnu, J., Ahmad, M., & Hoecker, U. (2017). The blue light-induced
960	interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light
961	signaling. PLoS Genetics, 13(10), 1-15. doi:10.1371/journal.pgen.1007044
962	Hussey, S. G., Mizrachi, E., Spokevicius, A. V., Bossinger, G., Berger, D. K., & Myburg, A.
963	A. (2011). SND2, a NAC transcription factor gene, regulates genes involved in
964	secondary cell wall development in Arabidopsis fibres and increases fibre cell area in
965	Eucalyptus. BMC Plant Biology, 11, 1-17. doi:10.1186/1471-2229-11-173
966	Hyun, T. K., Van Der Graaff, E., Albacete, A., Eom, S. H., Großkinsky, D. K., Böhm, H.,
967	Roitsch, T. (2014). The Arabidopsis PLAT domain protein 1 is critically involved in
968	abiotic stress tolerance. PLoS ONE, 9(11). doi:10.1371/journal.pone.0112946
969	Indorf, M., Cordero, J., Neuhaus, G., & Rodríguez-Franco, M. (2007). Salt tolerance (STO), a
970	stress-related protein, has a major role in light signalling. <i>Plant Journal</i> , 51(4), 563–574.
971	doi:10.1111/j.1365-313X.2007.03162.x
972	IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II
973	and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate
974	Change. (CoreWritingTeam, R. K. Pachauri, & L. A. Meyer, Eds.), Cambridge
975	University Press (Cambridge). Geneva, Switzerland: IPCC.
976	Javelle, M., Vernoud, V., Rogowsky, P. M., & Ingram, G. C. (2011). Epidermis: The
977	formation and functions of a fundamental plant tissue. New Phytologist, 189(1), 17–39.
978	doi:10.1111/j.1469-8137.2010.03514.x
979	Jombart, T., & Ahmed, I. (2011). adegenet 1 .3-1: new tools for the analysis of genome-wide
980	SNP data. <i>Bioinformatics</i> , 27(21), 3070–3071. doi:10.1093/bioinformatics/btr521
981	Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal
982	components: a new method for the analysis of genetically structured populations. BMC
983	<i>Genetics</i> , 11(1), 94. doi:10.1186/1471-2156-11-94
984	Jung, Y. J., Melencion, S. M. B., Lee, E. S., Park, J. H., Alinapon, C. V., Oh, H. T., Lee, S.
985	Y. (2015). Universal Stress Protein Exhibits a Redox-Dependent Chaperone Function in
986	Arabidopsis and Enhances Plant Tolerance to Heat Shock and Oxidative Stress.
987	<i>Frontiers in Plant Science</i> , 6, 1–11. doi:10.3389/fpls.2015.01141
988	Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: an R package for genetic
989	analysis of populations with clonal, partially clonal, and / or sexual reproduction.
990	<i>PeerJ</i> , 2:e281. doi:10.7717/peerj.281
991	Katagiri, T., Takahashi, S., & Shinozaki, K. (2001). Involvement of a novel <i>Arabidopsis</i>
992	phospholipase D, AtPLDδ, in dehydration-inducible accumulation of phosphatidic
993	acid in stress signalling. <i>Plant Journal</i> , 26(6), 595–605. doi:10.1046/j.1365-
994 005	313X.2001.01060.x
995	Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. <i>Ecology Letters</i> ,
996	7(12), 1225–1241. doi:10.1111/j.1461-0248.2004.00684.x
997	Keller, S. R., Soolanayakanahally, R. Y., Guy, R. D., Silim, S. N., Olson, M. S., & Tiffin, P.

(2011). Climate-driven local adaptation of ecophysiology and phenology in balsam

poplar, Populus balsamifera L. (Salicaceae). American Journal of Botany, 98(1), 99–108.

1000	doi:10.3732/ajb.1000317
1001	Kenkel, C. D., & Matz, M. V. (2016). Gene expression plasticity as a mechanism of coral
1002	adaptation to a variable environment. <i>Nature Ecology & Evolution</i> , 1, 059667.
1003	doi:10.1038/s41559-016-0014
1004	Kitaya, Y., Yabuki, K., Kiyota, M., Tani, A., Hirano, T., & Aiga, I. (2002). Gas exchange and
1005	oxygen concentration in pneumatophores and prop roots of four mangrove species.
1006	Trees, 16, 155–158. doi:10.1007/s00468-002-0167-5
1007	Kozaki, A., & Takeba, G. (1996). Photorespiration protects C3 plants from photooxidation.
1008	Nature, 384, 557–560. doi:10.1038/384557a0
1009	Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. (2009). Ultrafast and memory-efficient
1010	alignment of short DNA sequences to the human genome. Genome Biol., 10(3), R25.
1011	doi:10.1186/gb-2009-10-3-r25
1012	Lara, R. J., & Cohen, M. C. L. (2006). Sediment porewater salinity, inundation frequency and
1013	mangrove vegetation height in Bragança, North Brazil: An ecohydrology-based
1014	empirical model. Wetlands Ecology and Management, 14(4), 349-358.
1015	doi:10.1007/s11273-005-4991-4
1016	Lawlor, D. W. (2002). Limitation to photosynthesis in water-stressed leaves: Stomata vs.
1017	Metabolism and the role of ATP. Annals of Botany, 89(SPEC. ISS.), 871-885.
1018	doi:10.1093/aob/mcf110
1019	Lee, S. B., & Suh, M. C. (2015). Cuticular wax biosynthesis is up-regulated by the MYB94
1020	transcription factor in Arabidopsis. Plant and Cell Physiology, 56(1), 48-60.
1021	doi:10.1093/pcp/pcu142
1022	Lee, S., Lee, D. W., Lee, Y., Mayer, U., Stierhof, YD., Lee, S., Hwang, I. (2009). Heat
1023	Shock Protein Cognate 70-4 and an E3 Ubiquitin Ligase, CHIP, Mediate Plastid-
1024	Destined Precursor Degradation through the Ubiquitin-26S Proteasome System in
1025	Arabidopsis. The Plant Cell, 21(12), 3984–4001. doi:10.1105/tpc.109.071548
1026	Li, CL., Wang, M., Wu, XM., Chen, DH., Lv, HJ., Shen, JL., Zhang, W. (2016).
1027	THI1, a Thiamine Thiazole Synthase, Interacts with Ca^{2+} -Dependent Protein Kinase
1028	CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis.
1029	<i>Plant Physiology</i> , <i>170</i> (2), 1090–1104. doi:10.1104/pp.15.01649
1030	Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets
1031	of protein or nucleotide sequences. <i>Bioinformatics</i> , 22(13), 1658–1659.
1032	doi:10.1093/bioinformatics/btl158
1033	Liepman, A. H., & Olsen, L. J. (2001). Peroxisomal alanine: Glyoxylate aminotransferase
1034	(AGT1) is a photorespiratory enzyme with multiple substrates in <i>Arabidopsis thaliana</i> .
1035	<i>Plant Journal</i> , 25(5), 487–498. doi:10.1046/j.1365-313x.2001.00961.x
1036	Lim, C. J., Yang, K. A., Hong, J. K., Yun, J. S. C. • DJ., Hong, J. C., Chung, W. S., Lim,
1037	C. O. (2006). Gene expression profiles during heat acclimation in <i>Arabidopsis thaliana</i>
1038	suspension-culture cells. Journal of Plant Research, 119, 373–383. doi:10.1007/s10265-
1039	006-0285-z
1040	Lin, G., & Sternberg, L. da S. L. (1992). Comparative study of water uptake and
1041	photosynthetic gas exchange between scrub and fringe red mangroves, Rhizophora
1042	mangle L. <i>Oecologia</i> , 90(3), 399–403. doi:10.1007/BF00317697
1043	Liu, D., Gong, Q., Ma, Y., Li, P., Li, J., Yang, S., Wang, N. N. (2010). CpSecA, a
1044 1045	thylakoid protein translocase subunit, is essential for photosynthetic development in
1045	Arabidopsis. Journal of Experimental Botany, 61(6), 1655–1669.

1010	
1046	doi:10.1093/jxb/erq033
1047	Lorenzo, L. de, Merchan, F., Laporte, P., Thompson, R., Clarke, J., Sousa, C., & Crespi, M.
1048	(2009). A Novel Plant Leucine-Rich Repeat Receptor Kinase Regulates the Response of
1049	Medicago truncatula Roots to Salt Stress. <i>The Plant Cell</i> , 21(1), 668–680.
1050	doi:10.1105/tpc.108.059576
1051	Lotterhos, K. E., & Whitlock, M. C. (2015). The relative power of genome scans to detect
1052	local adaptation depends on sampling design and statistical method. <i>Molecular Ecology</i> ,
1053	24(5), 1031–1046. doi:10.1111/mec.13100
1054	Luu, K., Bazin, E., & Blum, M. G. B. (2016). pcadapt: An R package to perform genome
1055	scans for selection based on principal component analysis. <i>Molecular Ecology</i>
1056	<i>Resources</i> , <i>33</i> , 67–77. doi:10.1111/1755-0998.12592
1057	Manfield, I. W., Devlin, P. F., Jen, CH., Westhead, D. R., & Gilmartin, P. M. (2006).
1058	Conservation, Convergence, and Divergence of Light-Responsive, Circadian-Regulated,
1059	and Tissue-Specific Expression Patterns during Evolution of the <i>Arabidopsis</i> GATA
1060	Gene Family. <i>Plant Physiology</i> , <i>143</i> (2), 941–958. doi:10.1104/pp.106.090761
1061	Marri, L., Zaffagnini, M., Collin, V., Issakidis-Bourguet, E., Lemaire, S. D., Pupillo, P.,
1062	Trost, P. (2009). Prompt and easy activation by specific thioredoxins of calvin cycle
1063	enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular
1064	complex. <i>Molecular Plant</i> , 2(2), 259–269. doi:10.1093/mp/ssn061
1065	Mayr, S., Schmid, P., Laur, J., Rosner, S., Charra-vaskou, K., Dämon, B., & Hacke, U. G.
1066	(2014). Uptake of Water via Branches Helps Timberline Conifers Refill Embolized
1067	Xylem in Late Winter. <i>Plant Physiology</i> , 164(4), 1731–1740.
1068	doi:10.1104/pp.114.236646
1069	McAdam, S. A. M., & Brodribb, T. J. (2015). The Evolution of Mechanisms Driving the
1070	Stomatal Response to Vapor Pressure Deficit. <i>Plant Physiology</i> , 167(3), 833–843.
1071	doi:10.1104/pp.114.252940
1072	McDonough, M. A., Kadirvelraj, R., Harris, P., Poulsen, J. C. N., & Larsen, S. (2004).
1073	Rhamnogalacturonan lyase reveals a unique three-domain modular structure for
1074	polysaccharide lyase family 4. <i>FEBS Letters</i> , 565(1–3), 188–194.
1075	doi:10.1016/j.febslet.2004.03.094
1076	McDowell, N. G., & Allen, C. D. (2015). Darcy's law predicts widespread forest mortality
1077	under climate warming. <i>Nature Climate Change</i> , 5(7), 669–672.
1078	doi:10.1038/nclimate2641
1079	McRae, G. J. (1980). A Simple Procedure for Calculating Atmospheric Water Vapor
1080	Concentration. <i>Journal of the Air Pollution Control Association</i> , <i>30</i> (4), 394–394. doi:10.1080/00022470.1980.10464362
1081	
1082	Meiri, D., & Breiman, A. (2009). <i>Arabidopsis</i> ROF1 (FKBP62) modulates thermotolerance
1083	by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs.
1084	<i>Plant Journal</i> , 59(3), 387–399. doi:10.1111/j.1365-313X.2009.03878.x
1085	Meiri, D., Tazat, K., Cohen-Peer, R., Farchi-Pisanty, O., Aviezer-Hagai, K., Avni, A., &
1086	Breiman, A. (2010). Involvement of <i>Arabidopsis</i> ROF2 (FKBP65) in thermotolerance.
1087	<i>Plant Molecular Biology</i> , 72(1–2), 191–203. doi:10.1007/s11103-009-9561-3
1088	Menezes, M. P. M. de, Berger, U., & Mehlig, U. (2008). Mangrove vegetation in Amazonia: a
1089	review of studies from the coast of Pará and Maranhão States, north Brazil. Acta
1090	<i>Amazonica</i> , 38(3), 403–420. doi:10.1590/S0044-59672008000300004
1091	Moazzam-Jazi, M., Ghasemi, S., Seyedi, S. M., & Niknam, V. (2018). COP1 plays a
1092	prominent role in drought stress tolerance in <i>Arabidopsis</i> and Pea. <i>Plant Physiology and</i> <i>Biochemistry</i> , 120(July), 678, 601, doi:10.1016/j.planby.2018.08.015
1093	Biochemistry, 130(July), 678-691. doi:10.1016/j.plaphy.2018.08.015

1094	Moran, E. V., Hartig, F., & Bell, D. M. (2016). Intraspecific trait variation across scales:
1095	Implications for understanding global change responses. <i>Global Change Biology</i> , 22(1),
1096	137–150. doi:10.1111/gcb.13000
1097	Mori, G. M., Zucchi, M. I., Sampaio, I., & Souza, A. P. (2015). Species distribution and
1098	introgressive hybridization of two Avicennia species from the Western Hemisphere
1099	unveiled by phylogeographic patterns. BMC Evolutionary Biology, 15(1), 1–15.
1100	doi:10.1186/s12862-015-0343-z
1101	Mori, G. M., Zucchi, M. I., & Souza, A. P. (2015). Multiple-geographic-scale genetic
1102	structure of two mangrove tree species: the roles of mating system, hybridization, limited
1103	dispersal and extrinsic factors. Plos One, 10, e0118710.
1104	doi:10.1371/journal.pone.0118710
1105	Moritz, C. (1999). Conservation units and translocations: Strategies for conserving
1106	evolutionary processes. <i>Hereditas</i> , 130(3), 217–228. doi:10.1111/j.1601-
1107	5223.1999.00217.x
1108	Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., & Kanehisa, M. (2007). KAAS: An
1109	automatic genome annotation and pathway reconstruction server. Nucleic Acids
1110	Research, 35, 182–185. doi:10.1093/nar/gkm321
1111	Müller, M., Kunz, H. H., Schroeder, J. I., Kemp, G., Young, H. S., & Ekkehard Neuhaus, H.
1112	(2014). Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs
1113	salt tolerance, photosynthesis and plant performance. <i>Plant Journal</i> , 78(4), 646–658.
1114	doi:10.1111/tpj.12501
1115	Murata, Y., Mori, I. C., & Munemasa, S. (2015). Diverse Stomatal Signaling and the Signal
1116	Integration Mechanism. Annual Review of Plant Biology, 66(1), 369–392.
1117	doi:10.1146/annurev-arplant-043014-114707
1118	Myouga, F., Motohashi, R., Kuromori, T., Nagata, N., & Shinozaki, K. (2006). An
1119	Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in
1120	chloroplast development as well as heat-stress response. Plant Journal, 48(2), 249–260.
1121	doi:10.1111/j.1365-313X.2006.02873.x
1122	Naidoo, G. (2006). Factors contributing to dwarfing in the mangrove Avicennia marina.
1123	Annals of Botany, 97, 1095–1101. doi:10.1093/aob/mcl064
1124	Narum, S. R., & Hess, J. E. (2011). Comparison of FST outlier tests for SNP loci under
1125	selection. Molecular Ecology Resources, 11(SUPPL. 1), 184–194. doi:10.1111/j.1755-
1126	0998.2011.02987.x
1127	Nascimento Jr., W. R., Souza-Filho, P. W. M., Proisy, C., Lucas, R. M., & Rosenqvist, A.
1128	(2013). Mapping changes in the largest continuous Amazonian mangrove belt using
1129	object-based classification of multisensor satellite imagery. Estuarine, Coastal and Shelf
1130	Science, 117, 83–93. doi:10.1016/j.ecss.2012.10.005
1131	Nguyen, H. T., Meir, P., Sack, L., Evans, J. R., Oliveira, R. S., & Ball, M. C. (2017). Leaf
1132	water storage increases with salinity and aridity in the mangrove Avicennia marina:
1133	integration of leaf structure, osmotic adjustment and access to multiple water sources.
1134	Plant, Cell and Environment, 40(8), 1576–1591. doi:10.1111/pce.12962
1135	Nishizawa, A., Yabuta, Y., & Shigeoka, S. (2008). Galactinol and Raffinose Constitute a
1136	Novel Function to Protect Plants from Oxidative Damage. Plant Physiology, 147(3),
1137	1251–1263. doi:10.1104/pp.108.122465
1138	Nishizawa, Ayako, Yabuta, Y., Yoshida, E., Maruta, T., Yoshimura, K., & Shigeoka, S.
1139	(2006). Arabidopsis heat shock transcription factor A2 as a key regulator in response to
1140	several types of environmental stress. Plant Journal, 48(4), 535-547.
1141	doi:10.1111/j.1365-313X.2006.02889.x

1142	Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C.,
1143	Phillips, R. P. (2016). The increasing importance of atmospheric demand for ecosystem
1144	water and carbon fluxes. <i>Nature Climate Change</i> , 6(11), 1023–1027.
1145	doi:10.1038/nclimate3114
1146	O'Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R., Pruitt,
1147	K. D. (2016). Reference sequence (RefSeq) database at NCBI: Current status, taxonomic
1148	expansion, and functional annotation. Nucleic Acids Research, 44, D733–D745.
1149	doi:10.1093/nar/gkv1189
1150	Oh, S. E., Yeung, C., Babaei-Rad, R., & Zhao, R. (2014). Cosuppression of the chloroplast
1151	localized molecular chaperone HSP90.5 impairs plant development and chloroplast
1152	biogenesis in Arabidopsis. BMC Research Notes, 7(1), 1-15. doi:10.1186/1756-0500-7-
1153	643
1154	Ohgishi, M., Saji, K., Okada, K., & Sakai, T. (2004). Functional analysis of each blue light
1155	receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in
1156	Arabidopsis. Proceedings of the National Academy of Sciences, 101(8), 2223–2228.
1157	doi:10.1073/pnas.0305984101
1158	Oliveira, R. R., Viana, A. J. C., Reátegui, A. C. E., & Vincentz, M. G. A. (2015). An efficient
1159	method for simultaneous extraction of high-quality RNA and DNA from various plant
1160	tissues. Genetics and Molecular Research, 14(4), 18828–18838.
1161	doi:10.4238/2015.December.28.32
1162	Osland, M. J., Gabler, C. A., Grace, J. B., Day, R. H., Mccoy, M. L., Mcleod, J. L.,
1163	Hartley, S. B. (2018). Climate and plant controls on soil organic matter in coastal
1164	wetlands. Global Change Biology, (February). doi:10.1111/gcb.14376
1165	Pacín, M., Semmoloni, M., Legris, M., Finlayson, S. A., & Casal, J. J. (2016). Convergence
1166	of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME
1167	INTERACTING FACTOR signalling during shade avoidance. New Phytologist, 211(3),
1168	967–979. doi:10.1111/nph.13965
1169	Pagnussat, G. C., Yu, HJ., Ngo, Q. A., Rajani, S., Mayalagu, S., Johnson, C. S.,
1170	Sundaresan, V. (2005). Genetic and molecular identification of genes required for female
1171	gametophyte development and function in Arabidopsis. Development, 132(3), 603–614.
1172	doi:10.1242/dev.01595
1173	Panikashvili, D., Savaldi-Goldstein, S., Mandel, T., Yifhar, T., Franke, R. B., Hofer, R.,
1174	Aharoni, A. (2007). The Arabidopsis DESPERADO/AtWBC11 transporter is required
1175	for cutin and wax secretion. <i>Plant Physiology</i> , 145(4), 1345–1360.
1176	doi:10.1104/pp.107.105676
1177	Park, H. Y., Seok, H. Y., Park, B. K., Kim, S. H., Goh, C. H., Lee, B. ha, Moon, Y. H.
1178	(2008). Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress.
1179	Biochemical and Biophysical Research Communications, 375(1), 80–85.
1180	doi:10.1016/j.bbrc.2008.07.128
1181	Patel, R. K., & Jain, M. (2012). NGS QC toolkit: A toolkit for quality control of next
1182	generation sequencing data. <i>PLoS ONE</i> , 7(2), e30619.
1183	doi:10.1371/journal.pone.0030619
1184	Pavey, S. A., Nosil, P., & Rogers, S. M. (2010). The role of gene expression in ecological
1185	speciation. Annals of the New York Academy of Sciences, 1206, 110–129.
1186	doi:10.1111/j.1749-6632.2010.05765.x
1187	Pedmale, U. V., Huang, S. S. C., Zander, M., Cole, B. J., Hetzel, J., Ljung, K., Chory, J.
1188	(2016). Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting
1189	Blue Light. <i>Cell</i> , 164(1–2), 233–245. doi:10.1016/j.cell.2015.12.018
/	

1190	Pesquet, E., Korolev, A. V., Calder, G., & Lloyd, C. W. (2010). The microtubule-associated
1191	protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells.
1192	<i>Current Biology</i> , 20(8), 744–749. doi:10.1016/j.cub.2010.02.057
1193	Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G.,
1194	Vargas, P. N. (2009). Drought Sensitivity of the Amazon Rainforest. Science,
1195	323(5919), 1344–1347. doi:10.1126/science.1164033
1196	Phillips, O. L., Heijden, G. van der, Lewis, S. L., López-González, G., Aragão, L. E. O. C.,
1197	Lloyd, J., Vilanova, E. (2010). Drought–mortality relationships for tropical forests.
1198	New Phytologist, 187, 631–646. doi:10.1111/j.1469-8137.2010.03359.x Key
1199	Pieslinger, A. M., Hoepflinger, M. C., & Tenhaken, R. (2010). Cloning of glucuronokinase
1200	from Arabidopsis thaliana, the last missing enzyme of the myo-inositol oxygenase
1201	pathway to nucleotide sugars. Journal of Biological Chemistry, 285(5), 2902–2910.
1202	doi:10.1074/jbc.M109.069369
1203	Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. C.,
1204	Yong, J. W. H. (2010). The loss of species: Mangrove extinction risk and geographic
1205	areas of global concern. PLoS ONE, 5(4), e10095. doi:10.1371/journal.pone.0010095
1206	Powell, T. L., Wheeler, J. K., de Oliveira, A. A. R., da Costa, A. C. L., Saleska, S. R., Meir,
1207	P., & Moorcroft, P. R. (2017). Differences in xylem and leaf hydraulic traits explain
1208	differences in drought tolerance among mature Amazon rainforest trees. Global Change
1209	<i>Biology</i> , 23(10), 4280–4293. doi:10.1111/gcb.13731
1210	Pranchai, A., Jenke, M., Vogt, J., Grueters, U., Yue, L., Mehlig, U., Berger, U. (2017).
1211	Density-dependent shift from facilitation to competition in a dwarf Avicennia germinans
1212	forest. Wetlands Ecology and Management, 1-12. doi:10.1007/s11273-017-9561-z
1213	Privat, I., Hakimi, M. A., Buhot, L., Favory, J. J., & Lerbs-Mache, S. (2003). Characterization
1214	of Arabidopsis plastid sigma-like transcription factors SIG1, SIG2 and SIG3. Plant
1215	Molecular Biology, 51(3), 385–399. doi:10.1023/A:1022095017355
1216	Queitsch, C., Hong, SW., Vierling, E., & Lindquist, S. (2000). Heat Shock Protein 101 Plays
1217	a Crucial Role in Thermotolerance in Arabidopsis. Plant Cell, 12(4), 479-492.
1218	doi:10.1105/tpc.12.4.479
1219	Ramírez-Valiente, J. A., Deacon, N. J., Etterson, J., Center, A., Sparks, J. P., Sparks, K. L.,
1220	Cavender-Bares, J. (2018). Natural selection and neutral evolutionary processes
1221	contribute to genetic divergence in leaf traits across a precipitation gradient in the
1222	tropical oak Quercus oleoides. Molecular Ecology, 27, 2176–2192.
1223	doi:10.1111/mec.14566
1224	Reef, R., & Lovelock, C. E. (2015). Regulation of water balance in Mangroves. Annals of
1225	Botany, 115(3), 385–395. doi:10.1093/aob/mcu174
1226	Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package
1227	for differential expression analysis of digital gene expression data. <i>Bioinformatics</i> , 26(1),
1228	139–140. doi:10.1093/bioinformatics/btp616
1229	Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W.,
1230	& Lo, M. H. (2018). Emerging trends in global freshwater availability. <i>Nature</i> ,
1231	557(7707), 651–659. doi:10.1038/s41586-018-0123-1
1232	Rowland, L., Da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks, O. J., Oliveira, A. A.
1233	R., Meir, P. (2015). Death from drought in tropical forests is triggered by hydraulics
1234	not carbon starvation. Nature, 528(7580), 119-122. doi:10.1038/nature15539
1235	Russello, M. A., Waterhouse, M. D., Etter, P. D., & Johnson, E. A. (2015). From promise to
1236	practice: pairing non-invasive sampling with genomics in conservation. PeerJ, 3, e1106.
1237	doi:10.7717/peerj.1106

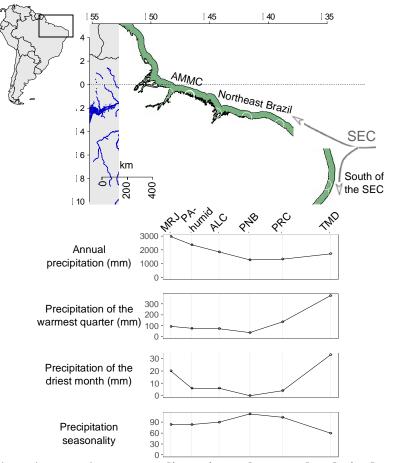
1238	Samol, I., Shapiguzov, A., Ingelsson, B., Fucile, G., Crèvecoeur, M., Vener, A. V.,
1239	Goldschmidt-Clermont, M. (2012). Identification of a Photosystem II Phosphatase
1240	Involved in Light Acclimation in Arabidopsis. The Plant Cell, 24(6), 2596–2609.
1241	doi:10.1105/tpc.112.095703
1242	Sbrocco, E. J., & Barber, P. H. (2013). MARSPEC: ocean climate layers for marine spatial
1243	ecology. Ecology, 94(4), 979–979. doi:10.1890/12-1358.1
1244	Schaeffer-Novelli, Y., Cintrón-Molero, G., Adaime, R. R., & de Camargo, T. M. (1990).
1245	Variability of mangrove ecosystems along the Brazilian coast. Estuaries, 13(2), 204-
1246	218. doi:10.1007/BF02689854
1247	Schoener, T. W. (2011). The Newest Synthesis: Understanding the Interplay of Evolutionary
1248	and Ecological Dynamics. Science, 331(6016), 426–429. doi:10.1126/science.1193954
1249	Shirano, Y., Shimada, H., Kanamaru, K., Fujiwara, M., Tanaka, K., Takahashi, H.,
1250	Shibata, D. (2000). Chloroplast development in Arabidopsis thaliana requires the
1251	nuclear-encoded transcription factor Sigma B. FEBS Letters, 485(2-3), 178-182.
1252	doi:10.1016/S0014-5793(00)02216-X
1253	Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015).
1254	BUSCO: Assessing genome assembly and annotation completeness with single-copy
1255	orthologs. Bioinformatics, 31(19), 3210-3212. doi:10.1093/bioinformatics/btv351
1256	Steppe, K., Vandegehuchte, M. W., Van de Wal, B. A. E., Hoste, P., Guyot, A., Lovelock, C.
1257	E., & Lockington, D. A. (2018). Direct uptake of canopy rainwater causes turgor-driven
1258	growth spurts in the mangrove Avicennia marina. Tree Physiology, 38(7), 979–991.
1259	doi:10.1093/treephys/tpy024
1260	Stone, S. L., Williams, L. A., Farmer, L. M., Vierstra, R. D., & Callis, J. (2006). KEEP ON
1261	GOING, a RING E3 Ligase Essential for Arabidopsis Growth and Development, Is
1262	Involved in Abscisic Acid Signaling. Plant Cell Online, 18(12), 3415–3428.
1263	doi:10.1105/tpc.106.046532
1264	Stuart, S. A., Choat, B., Martin, K. C., Holbrook, N. M., & Ball, M. C. (2007). The role of
1265	freezing in setting the latitudinal limits of mangrove forests. New Phytologist, 173(3),
1266	576–583. doi:10.1111/j.1469-8137.2006.01938.x
1267	Suetsugu, N., Kagawa, T., Wada, M., & Corporation, T. (2005). An Auxilin-Like J-Domain
1268	Protein, JAC1, Regulates Phototropin-Mediated Chloroplast Movement. Plant
1269	<i>Physiology</i> , 139(September), 151–162. doi:10.1104/pp.105.067371.flowering
1270	Sun, W., Bernard, C., Cotte, B. van de, Montagu, M. Van, & Verbruggen, N. (2001). At-
1271	HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance
1272	osmotolerance upon overexpression. <i>The Plant Journal</i> , 27(5), 407–415.
1273	doi:10.1046/j.1365-313X.2001.01107.x
1274	Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Shinozaki, K.
1275	(2002). Important roles of drought- and cold-inducible genes for galactinol synthase in
1276	stress tolerance in Arabidopsis thaliana. Plant Journal, 29(4), 417–426.
1277	doi:10.1046/j.0960-7412.2001.01227.x
1278	Takase, M., Mizoguchi, T., Kozuka, T., & Tsukaya, H. (2013). The unique function of the
1279	Arabidopsis circadian clock gene PRR5 in the regulation of shade avoidance response.
1280	Plant Signaling and Behavior, 8(4). doi:10.4161/psb.23534
1281	Takayama, K., Tateishi, Y., Murata, J., & Kajita, T. (2008). Gene flow and population
1282	subdivision in a pantropical plant with sea-drifted seeds <i>Hibiscus tiliaceus</i> and its allied
1283	species: Evidence from microsatellite analyses. <i>Molecular Ecology</i> , 17(11), 2730–2742.
1284	doi:10.1111/j.1365-294X.2008.03799.x
1285	Teige, M., Scheikl, E., Eulgem, T., Dóczi, R., Ichimura, K., Shinozaki, K., Hirt, H. (2004).

1286	The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular
1287	Cell, 15(1), 141–152. doi:10.1016/j.molcel.2004.06.023
1288	ten Hove, C. A., Bochdanovits, Z., Jansweijer, V. M. A., Koning, F. G., Berke, L., Sanchez-
1289	Perez, G. F., Heidstra, R. (2011). Probing the roles of LRR RLK genes in Arabidopsis
1290	thaliana roots using a custom T-DNA insertion set. Plant Molecular Biology, 76(1–2),
1291	69–83. doi:10.1007/s11103-011-9769-x
1292	Tomlinson, P. B. (1986). The Botany of Mangroves. New York: Cambridge University Press.
1293	Tyree, M. T., & Sperry, J. S. (1989). Vulnerability of Xylem to Cavitation and Embolism.
1294	Annual Review of Plant Physiology and Molecular Biology, 19–38.
1295	doi:10.1146/annurev.pp.40.060189.000315
1296	Uraji, M., Katagiri, T., Okuma, E., Ye, W., Hossain, M. A., Masuda, C., Murata, Y.
1297	(2012). Cooperative Function of PLD and PLD 1 in Abscisic Acid-Induced Stomatal
1298	Closure in Arabidopsis. Plant Physiology, 159(1), 450-460. doi:10.1104/pp.112.195578
1299	Van der Does, D., Boutrot, F., Engelsdorf, T., Rhodes, J., McKenna, J. F., Vernhettes, S.,
1300	Zipfel, C. (2017). The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS
1301	connects cell wall integrity sensing, root growth and response to abiotic and biotic
1302	stresses. PLoS Genetics, 13(6), 1–27. doi:10.1371/journal.pgen.1006832
1303	Vogt, J., Lin, Y., Pranchai, A., Frohberg, P., Mehlig, U., & Berger, U. (2014). The importance
1304	of conspecific facilitation during recruitment and regeneration: A case study in degraded
1305	mangroves. Basic and Applied Ecology, 15(8), 651–660. doi:10.1016/j.baae.2014.09.005
1306	Walsh, B., & Blows, M. W. (2009). Abundant Genetic Variation + Strong Selection =
1307	Multivariate Genetic Constraints: A Geometric View of Adaptation. Annual Review of
1308	Ecology, Evolution, and Systematics, 40(1), 41–59.
1309	doi:10.1146/annurev.ecolsys.110308.120242
1310	Walsh, P., Bursać, D., Law, Y. C., Cyr, D., & Lithgow, T. (2004). The J-protein family:
1311	Modulating protein assembly, disassembly and translocation. EMBO Reports, 5(6), 567–
1312	571. doi:10.1038/sj.embor.7400172
1313	Wang, P., Li, Z., Wei, J., Zhao, Z., Sun, D., & Cui, S. (2012). A Na ⁺ /Ca ²⁺ exchanger-like
1314	protein (AtNCL) involved in salt stress in Arabidopsis. Journal of Biological Chemistry,
1315	287(53), 44062–44070. doi:10.1074/jbc.M112.351643
1316	Wang, Q., Sullivan, R. W., Kight, A., Henry, R. L., Huang, J., Jones, A. M., & Korth, K. L.
1317	(2004). Deletion of the Chloroplast-Localized Thylakoid Formation 1 Gene Product in
1318	Arabidopsis Leads to Deficient Thylakoid Formation and Variegated Leaves. Plant
1319	Physiology, 136(3), 3594–3604. doi:10.1104/pp.104.049841
1320	Wang, S., Chang, Y., & Ellis, B. (2016). Overview of OVATE FAMILY PROTEINS, A
1321	Novel Class of Plant-Specific Growth Regulators. Frontiers in Plant Science, 7(March),
1322	1–8. doi:10.3389/fpls.2016.00417
1323	Wang, S., Chang, Y., Guo, J., & Chen, J. G. (2007). Arabidopsis Ovate Family Protein 1 is a
1324	transcriptional repressor that suppresses cell elongation. <i>Plant Journal</i> , 50(5), 858–872.
1325	doi:10.1111/j.1365-313X.2007.03096.x
1326	Wehmeyer, N., Hernandez, L. D., Finkelstein, R. R., & Vierling, E. (1996). Synthesis of
1327	Small Heat-Shock Proteins Is Part of the Developmental Program of Late Seed
1328	Maturation. Plant Physiology, 112(2), 747–757. doi:10.1104/pp.112.2.747
1329	Wingler, A., Lea, P. J., Quick, W. P., & Leegood, R. C. (2000). Photorespiration: metabolic
1330	pathways and their role in stress protection. Philosophical Transactions of the Royal
1331	Society B: Biological Sciences, 355, 1517–1529. doi:10.1098/rstb.2000.0712
1332	Wolf, J. B. W., Lindell, J., & Backstrom, N. (2010). Speciation genetics: current status and
1333	evolving approaches. Philosophical Transactions of the Royal Society B: Biological

44

1334 1335	<i>Sciences</i> , <i>365</i> (1547), 1717–1733. doi:10.1098/rstb.2010.0023 Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Gene ontology analysis
1336	for RNA-seq: accounting for selection bias. <i>Genome Biology</i> , 11(2), R14.
1337	doi:10.1186/gb-2010-11-2-r14
1338	Zhang, A., Ren, HM., Tan, YQ., Qi, GN., Yao, FY., Wu, GL., Wang, YF. (2016).
1339	S-Type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators
1340	of Inward K ⁺ Channels and Stomatal Opening in Arabidopsis. The Plant Cell, 28(4),
1341	949–965. doi:10.1105/tpc.15.01050
1342	Zhang, C., Zhang, L., Zhang, S., Zhu, S., Wu, P., Chen, Y., Wu, G. (2015). Global
1343	analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed
1344	to drought stress. BMC Plant Biology, 15(1), 1–14. doi:10.1186/s12870-014-0397-x
1345	Zhong, R., Lee, C., Zhou, J., McCarthy, R. L., & Ye, ZH. (2008). A Battery of Transcription
1346	Factors Involved in the Regulation of Secondary Cell Wall Biosynthesis in Arabidopsis.
1347	<i>The Plant Cell Online</i> , 20(10), 2763–2782. doi:10.1105/tpc.108.061325
1348	
1349	
1350	Data accessibility
1351	• Gene expression data and transcriptome sequences that support conclusions have been
1352	deposited in GenBank with the accession code GSE123659;
1332	deposited in GenBank with the accession code GSE123039,
1353	• SNP genotypes are available at Dryad doi:10.5061/dryad.h11t255 (M. V. Cruz et al.,
1254	2010)
1354	2019).
1355	Author contributions

1356 A.P.S., G.M.M. and M.V.C. designed the study. M.V.C. and G.M.M. conducted


1357 fieldwork, prepared samples for sequencing and wrote the manuscript. M.V.C., G.M.M.,

1358 R.S.O., M.D. and D.H.O. analyzed the RNA-Seq and nextRAD results. A.P.S, M.I.Z.,

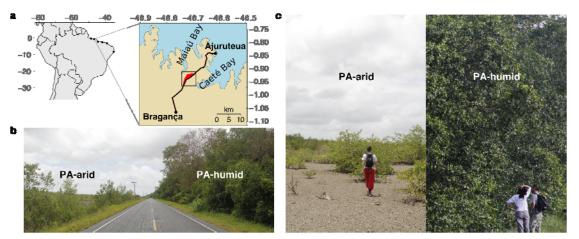
1359 G.M.M. contributed material/reagents/analytical tools. All authors discussed the results and

1360 contributed to the manuscript.

1361 **Tables and Figures**

1362 1363

Figure 1. Avicennia germinans sampling sites along a low-latitude salinity and 1364 precipitation gradient. Black points represent sampling sites, green area represents the 1365 occurrence of the species, and blue areas represent ponds and rivers. Top: Geographical 1366 location of the study area and sampling sites. Bottom: Environmental variation across the 1367 sampling sites (source: WorldClim). AMMC: Amazon Macrotidal Mangrove Coast. SEC: 1368 South Equatorial Current.



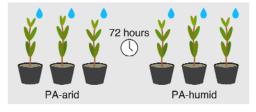
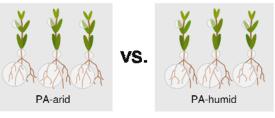
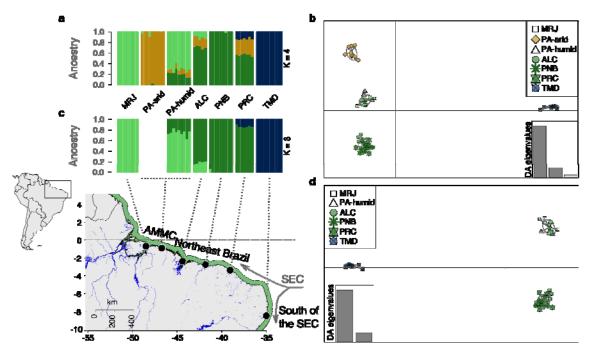


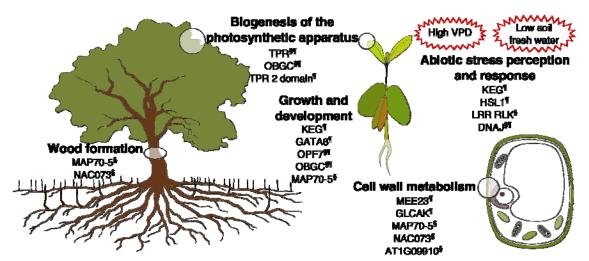
Figure 2. PA-arid and PA-humid sampling sites. (a) Geographical location of sites,
highlighted by a square (red colored area: PA-arid); (b) photograph of a section of the
Bragança-Ajuruteua road (Pará, Brazil) along which severe changes in hydrology altered the
mangrove community and tree morphology; (c) detailed photographs of the PA-arid and PAhumid sites. *Photographs authors:* G.M. Mori and M.V. Cruz.

Collection of similarly sized seedlings in contrasting field conditions

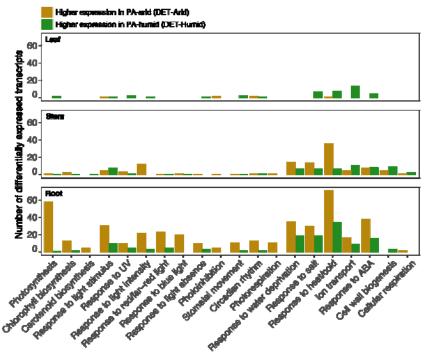
Transplant into pots and acclimation in open air under shaded, well-watered conditions for three days

Plant material harvested for RNA-sequencing followed by analyses of tissue-specific differential transcript expression levels


Figure 3. RNA sequencing experimental design. Similarly sized Avicennia germinans
seedlings naturally grown under adjacent, but contrasting field conditions were collected and
transplanted into pots, where they acclimated for 72 hours under homogenous treatment.
RNA was extracted from leaves, stems and roots for transcriptome sequencing. The

1382 transcriptome was *de novo* assembled and used as a reference for differential transcript 1383 expression analyses.


1385

1386 Figure 4. Genetic structure inferred from genome-wide single nucleotide polymorphism (SNP) detected in Avicennia germinans. (a) Attribution of ancestry implemented in the 1387 1388 program Admixture 1.3.0 for all sampled individuals; stacked bars represent individuals, and 1389 each color represents one ancestral cluster (K=4). (b) Scatterplot of the first two principal 1390 components of the multivariate discriminant analysis of principal components (DAPC) of 1391 total genetic variance; all sampled individuals are represented as points; distinct symbols 1392 indicate sampling sites. (c) Attribution of ancestry (using Admixture 1.3.0) for all sampled 1393 individuals, excluding PA-arid samples; stacked bars represent individuals, and each color 1394 represents one ancestral cluster (K=3). (d) Scatterplot of the first two principal components of 1395 the DAPC of total genetic variance; sampled individuals, except for individuals sampled in 1396 the PA-arid site, are represented as points; distinct symbols indicate sampling sites.

1398Figure 5. Schematic representation of key biological processes related to physiological1399drought-tolerance or response associated with candidate loci for selection in Avicennia1400germinans samples along tropical mangrove forests of the north-northeastern Brazilian1401coast. Candidate loci were detected from two datasets: (1) all sampled individuals, using F_{ST}1402outlier tests (marked with §) and (2) a subset of individuals, without samples from the PA-1403arid site, combining genetic-environmental association tests and F_{ST} outlier approaches1404(marked with ¶).

1405

Figure 6. Functional categories of differentially expressed transcripts (DETs) identified
between samples grown in the PA-arid and PA-humid sampling sites. Categories were
selected based on biological processes previously identified to be involved in the response,
acclimation or resistance to water stress in model plants.

Comulia o sito ID	Climate	Latituda. Lanaituda	Number of samples		
Sampling site ID	classification [†] Latitude; Longitude		nextRAD	RNA-Seq	
MRJ	Am	00.72 S; 48.49 W	8	-	
PA-arid‡	Am	00.90 S; 46.69 W	9	3	
PA-humid	Am	00.94 S; 46.72 W	9	3	
ALC	Aw	02.41 S; 44.41 W	5	-	
PNB	Aw	02.78 S; 41.82 W	9	-	
PRC	Aw	03.41 S; 39.06 W	7	-	
TMD	As	08.53 S; 35.01 W	10	-	

Table 1. Characterization and geographic location of *Avicennia germinans* sampling sites.

1412 †Köppen-Geiger climate classification system (Alvares, Stape, Sentelhas, Gonçalves, & 1413 Sparovek, 2013). *Am*: Tropical monsoon climate; *Aw*: Tropical wet savanna climate; *As*:

1414 Tropical dry savanna climate.

1415 ‡Samples from a forest flooded exclusively during spring tides (Lara & Cohen, 2006).

1416

1417 **Table 2.** Genetic diversity statistics, based on analyses of 2,297 genome-wide polymorphic 1418 loci detected in 57 individuals sampled in seven sampling sites along the equatorial Atlantic 1419 coastline of South America. π : Nucleotide diversity; H_E: expected heterozygosity; H₀: 1420 observed heterozygosity; pA: private alleles; %Poly: percentage of polymorphic loci; F_{IS}: 1421 inbreeding coefficient.

Sampling site	π (mean)	π (s.e.)	$H_{\rm E}$	Ho	pA	%Poly	F _{IS}	Low Level (95% c.i.)	High Level (95% c.i.)
MRJ	0.264	0.206	0.244	0.292	1	72.70	-0.136	-0.154	-0.102
PA-arid	0.317	0.189	0.295	0.326	1	83.76	-0.050	-0.067	-0.022
PA- humid	0.301	0.186	0.280	0.328	0	84.46	-0.113	-0.132	-0.084
ALC	0.282	0.214	0.249	0.269	0	69.83	0.030	0.009	0.070
PNB	0.208	0.210	0.195	0.234	0	58.21	-0.154	-0.180	-0.111
PRC	0.323	0.193	0.296	0.327	1	82.15	-0.035	-0.053	-0.002
TMD	0.123	0.192	0.130	0.168	46	34.52	-0.426	-0.452	-0.376

¹⁴²²

1423

1424Table 3. Annotation of candidate SNP loci putatively under selection, associated with1425tolerance of or response to physiological drought. Candidate loci were detected from two1426datasets: (1) all sampled individuals, including PA-arid samples, using F_{ST} outlier approaches1427and (2) a subset of samples, excluding individuals from the PA-arid site, combining genetic-1428environmental association tests and F_{ST} outlier tests.

Dataset	Transcript ID	Similar to†	Environmental association (FDR)‡	Putative function			
1	Ag_23357	AT4G28500, NAC073, NAC domain containing protein 73	NA	Regulation of the biosynthesis of cellulose and hemicellulose in wood fibers and the expression of lignin-polymerizing and signaling genes (Hussey et al., 2011; Zhong, Lee, Zhou, McCarthy, & Ye, 2008)			

1	Ag_47094	AT4G17220, MAP70-5, microtubule- associated proteins 70-5	NA	Fundamental for the development of secondary cell wall band patterning in xylem tracheids and for wood formation, playing a role in the anisotropic expansion of cells (Pesquet, Korolev, Calder, & Lloyd, 2010)
1	Ag_26495	AT5G67200, Leucine-rich repeat protein kinase (LRR- RLK) family protein	NA	May play a role in hormones and abiotic stress sensing and signaling (ten Hove et al., 2011; Van der Does et al., 2017) and in regulating adaptation to salt stress (Lorenzo et al., 2009)
1	Ag_4919	AT1G09910, Rhamnogalactu- ronate lyase family protein	NA	Associated with the degradation of the cell wall polysaccharides, and pectin (McDonough, Kadirvelraj, Harris, Poulsen, & Larsen, 2004)
1 and 2	Ag_20543	AT5G18950, Tetratricopeptide repeat (TPR)-like superfamily protein	PWQ (0.00018)	Associated with photosynthetic machinery biogenesis, stabilization and repair (Bohne, Schwenkert, Grimm, & Nickelsen, 2016)
1 and 2	Ag_5627	PREDICTED: GTP-binding protein OBGC, chloroplastic [Sesamum indicum]	PWQ (8.31e-05)	Associated with the thylakoid membrane biogenesis and chloroplast protein synthesis and essential for early embryogenesis in response to light stimulus (Bang et al., 2009)
1 and 2	Ag_29619	AT2G18500, OFP7, ovate family protein 7	PWQ (0.00019)	May be involved in various aspects of plant growth and participate in suppressing cell elongation (S. Wang, Chang, & Ellis, 2016; S. Wang, Chang, Guo, & Chen, 2007)
1 and 2	Ag_38780	AT2G24395, chaperone protein DNAJ-related	PWQ (8.31e-05)	Regulation of the activity of Hsp70 chaperones (P. Walsh, Bursać, Law, Cyr, & Lithgow, 2004) and protein protection from stress-induced denaturation (Frydman, 2001)
2	Ag_12760	AT3G54810, GATA8, Plant- specific GATA- type zinc finger transcription factor family protein	PWQ (0.00363); PSEASON (0.00529); PDM (0.01916)	Associated with the control of plant growth and development (Manfield, Devlin, Jen, Westhead, & Gilmartin, 2006)
2	Ag_135	AT1G28440, HSL1, HAESA- like 1	PWQ (9.09e-05)	The Ag_135 transcript has a kinase domain and is associated with growth and abiotic stress signaling (ten Hove et al., 2011)
2	Ag_15249	AT2G34790, MEE23, FAD- binding Berberine family protein	PWQ (8.31e-05)	Involved in the lignification of the cell wall; mediates the oxidation of monolignols (Daniel et al., 2015) and is required for endosperm development (Pagnussat et al., 2005)
2	Ag_10980	AT5G13530, KEG, keep on going	PWQ (0.00041); PDM (0.02034)	Associated with the control of plant growth and development and critical for seedling regulation of abscisic acid perception and signaling (Stone, Williams, Farmer, Vierstra, & Callis, 2006)

2	Ag_26982	AT3G01640, GLCAK, glucuronokinase G	PWQ (0.00011)	Involved in the biosynthesis of UDP-glucuronic acid, providing nucleotide sugars for the polymerization of cell wall compounds (Pieslinger, Hoepflinger, & Tenhaken, 2010)
2	Ag_11269	AT2G25730, unknown protein	PWQ (0,00016)	The Ag_11269 transcript has a TPR2 domain and, thus, may be involved in photosynthetic machinery biogenesis, stabilization and repair (Bohne et al., 2016)

1429 *†Blastx hit to Arabidopsis thaliana or Sesamum indicum* [when indicated] gene models.

1430 ‡(*FDR*): False discovery rate values (Benjamini-Hochberg procedure) for genetic1431 environment association tests; *NA*: genetic-environment association tests were not available
1432 for dataset (1) due to unavailability of environmental data for the PA-arid sites in public
1433 databases; *PWQ*: Precipitation of the warmest quarter; *PSEASON*: Precipitation seasonality;
1434 *PDM*: Precipitation of the driest month.