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Summary 

The linear cause-consequence relationship linking amyloid-β peptide (Aβ) accumulation to 
neuronal dysfunction in Alzheimer disease (AD) is gradually replaced by the concept that Aβ 
initiates complex inflammatory-like cellular alterations that progressively become Aβ 
independent and lead to brain dyshomeostasis. Little is known about the pathophysiology of 
this cellular phase of AD. We use here two orthogonal technologies, Spatial Transcriptomics 
and in situ sequencing, to analyse the transcriptome changes in cells in the amyloid-β plaque 
niche in a knock-in mouse model for AD. We identify a multicellular co-expressed gene 
network of 57 Plaque-Induced Genes (PIGs) that define a series of co-ordinated and spatially 
restricted microglia, astroglia and oligodendrocyte responses to progressing amyloid plaques 
encompassing complement, oxidative stress and inflammation. A separate oligodendrocyte 
network suggests abnormal myelination. Spatial Transcriptomics provides an unprecedented 
approach to untangle the dysregulated cellular network in the vicinity of pathogenic 
hallmarks of AD and other brain diseases.  
 
Keywords: Alzheimer’s disease, cellular phase, amyloid-β, spatial transcriptomics, in situ 
sequencing, complement cascade, microglia, astroglia, amyloid plaque niche, 
neurodegeneration. 
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Introduction 

Tremendous progress has been made over the last years to define cell states in physiological 
and pathological conditions using next generation sequencing approaches. For example, in 
the Alzheimer’ disease (AD) field, we know now that microglia respond with a stereotypical 
response to amyloid-β (Aβ) plaque formation (Keren-Shaul et al., 2017; Krasemann et al., 
2017; Sala Frigerio et al., 2019; Srinivasan et al., 2019). Less is however known about 
neurons, astrocytes or oligodendrocytes. These cells are much more difficult to isolate than 
microglia, especially from the fragile aging brain. Isolating single nuclei from frozen brain 
might circumvent part of the problems (Mathys et al., 2019), but it remains unclear how well 
all disease relevant transcriptomic changes are covered (Lake et al., 2017). In addition, 
methods to isolate single cells or nuclei induce artificial changes in expression profiles (van 
den Brink et al., 2017). A fundamental problem is the loss of most spatial information 
including the relationship to amyloid plaques. While the Aβ plaque niche has been 
investigated using laser capture microdissection (Rothman et al., 2018; Xiong, Ge and Ma, 
2019), these experiments involved pooling of the micro-dissected samples and information on 
original spatial localization, amyloid density, and cellular composition of the samples was 
lost. In contrast, the use of spatially barcoded arrays allows global unbiased transcriptome 
profiling maintaining the morphology of the tissue and the spatial localization of the 
sequenced molecules (Ståhl et al., 2016; Rodriques et al., 2019, Maniatis et al, 2019, 
Science).  
 
The advent of these new technologies allows tackling in a novel way a central question in AD 
research, i.e., what is the relationship of amyloid plaques to the neurodegenerative process in 
brain? The question is particularly relevant given the emerging insight and worry that 
amyloid lowering therapies show little efficacy with regard to memory improvement  
(Gallardo and Holtzman, 2017; Makin, 2018). Some investigators have suggested that the 
plaques are inert and that soluble oligomeric Aβ drives neurotoxicity (Glabe, 2008; Ono, 
Condron and Teplow, 2009; Mucke and Selkoe, 2012). However, Aβ lowering drugs should 
affect amyloid plaques as well as oligomers and the failed amyloid therapy trials therefore 
suggests that the role of amyloid peptide in AD needs to be reconsidered. We proposed that 
amyloid plaques act as a trigger, not as a driver of the disease (Karran, Mercken and De 
Strooper, 2011) and that accumulation of Aβ in the brain initiates a complex multicellular 
neurodegenerative process that might become autonomous, i.e. independent of the presence 
of plaques (Strooper and Karran, 2016). GWAS studies show in fact that much of the risk of 
sporadic AD is associated with genes expressed in micro- and astroglia (Jansen et al., 2019). 
These genes are strongly up- or downregulated when exposed to amyloid deposition (Salih et 
al., 2018; Sala Frigerio et al., 2019; Sierksma et al., 2019). It is clear that we need more in 
depth study of the protective and harmful cellular reactions that occur in the course of AD. 
The study of this “cellular phase of AD” (Strooper and Karran, 2016) should lead to a 
comprehensive understanding of the complex interactions over time between neurons, glia 
cells and blood vessel cells, that determine the pathogenic outcome triggered by abnormal Aβ 
generation and deposition. 
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We used here “Spatial Transcriptomics” (ST, Figure 1A) (Ståhl et al., 2016), to measure in 
situ, in hundreds of small spots, close to and remote from amyloid plaques, generating 
transcriptome wide analysis in different brain areas. The volume of each small tissue domain 
(8´10-5 mm3) covers dozens of cells and is thus ideal to understand the putative dysfunctional 
intercellular network induced by amyloid-β plaques. We use the human APP knock-in APPNL-

G-F mouse model to understand the transcriptomic alterations through disease progression 
(Saito et al., 2014). We obtained spatially resolved data and integrated all the information into 
one comprehensive analysis. We provide here a first analysis of the data, characterizing the 
molecular alterations in function of plaque load. We identified several gene co-expression 
networks, one involving oligodendrocytes and myelin genes and one identifying 57 amyloid 
Plaque Induced Genes (PIGs), which co-express only in the amyloid-plaque niches but not in 
control tissue domains. To investigate the cellular signature of the 57 PIGs, we performed in 
situ sequencing and in situ hybridization to reveal the spatial localization of PIGs with single 
cell and plaque resolution. Together, the 57 PIGs define a dysfunctional network reflecting 
intercellular crosstalk between plaque-associated microglia and astrocytes. The complement 
cascade appears to be one of the most dysregulated networks in this amyloid-β plaque cellular 
niche. 
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Results  

We obtained three adjacent coronal sections per sample (Figure 1A) by cryo-sectioning frozen 
mouse brains at bregma stage -2.0 to -2.2 from AppNL-G-F and WT control C57Black6J mice at 
3, 6, 12, and 18 months of age (Table S1 and Fig S1A). The two outer sections were used for 
immunostaining and amyloid plaque detection, while the middle section was processed for 
Spatial Transcriptomics (ST, see the Methods) (Ståhl et al., 2016).  
 
We detected on average 31,283 ± 7441 unique molecular identifiers and 6,578 ± 987 unique 
genes per tissue domain defined by the circular spots of capture probes on the cover slip 
(mean ± SD, Figure S1). Every library contains information on >500 individual annotated 
tissue domains adding up to 10,327 tissue domains over 20 libraries. We subdivided the 
coronal sections into 15 anatomical brain regions (Figure 1B) according to the Allen Mouse 
Brain Atlas (Lein et al., 2007) and subsequently assigned each tissue domain to one of the 
brain regions (see the Methods). The number of tissue domains per brain region varies 
between 112 (entorhinal cortex) and 1810 (hypothalamus) (Figure 1B). We finally aligned the 
adjacent (stained) slides with the middle (ST) section to annotate each tissue domain with 
plaque load (as evaluated by mAb 6E10 staining), reactive astrocytes (GFAP), neuron 
quantity (NeuN) and nuclei quantity (DAPI) (see the Methods) (Figure 1A, 2A and S2).  
 
Spatially resolved transcriptomic profiles in adult mouse brain  
We wondered whether the 10,327 transcriptome profiles could be separated in a biological 
meaningful way using t-Distributed Stochastic Neighbor Embedding (t-SNE). Reassuringly, 
the tissue domains clustered according to mouse brain structure with remarkable specificity 
(Figure 1E). To see if ST can distinguish finer regions in the hippocampus, we applied a 
further division of the hippocampal tissue domains into 10 anatomical brain regions (Figure 
1C) (Lein et al., 2007) and re-applied the t-SNE analysis to tissue domains from this region, 
limiting the analysis to WT hippocampus at 3-months of age to exclude genotype and age 
effects (Figure 1D). The 82 tissue domains covering the somatic layers of the hippocampus 
segregated clearly into CA1, CA3, and DG-subregions. Intriguingly, the 198 tissue domains 
of the different hippocampal dendritic layers intermingle with each other, suggesting that the 
basic gene expression in these neuropil layers are similar. We evaluated the expression of 
landmark genes in the hippocampus, and the results (Figure S1F and S1G) demonstrate that 
ST allows the differentiation of tissue domains to precise anatomic regions in the brain. 
 
When considering tissue domains of brain slices from mice of different age or genotype, 
again good separation was observed (Figure 1F). The spots of wild-type mice of 12 and 18 
months of age overlap (purple and red in Figure 1F), suggesting that the wild-type brain 
transcriptome does not change much anymore between these two time points. The AppNL-G-F 
transcriptional profile in contrast still changes between 12 and 18 months, in concordance 
with the progression of pathology over this period. 
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Linking gene expression alterations to amyloid plaque load 
Amyloid deposition in AppNL-G-F mice starts around 3 months, as shown by immunostaining 
with anti-Aβ1-16 antibody (6E10, Figure 2A). These plaques are largely ‘diffuse’. Thioflavin-S 
starts to appear in the amyloid core of 6E10-positive plaques from 6 months on (Figure S2D). 
On average, 1,565 ±167 plaques with an estimated diameter >10 µm (derived from a 
measured surface >78.5 µm2) are detected per coronal section of AppNL-G-F mouse at 18-
months of age. Of these plaques, 98% have a diameter <50 µm (<1963 µm2 surface), which 
aligns well with previous measurements by others (Kuo et al., 2001). The diameter of a tissue 
domain is 100 µm and the thickness of a single section is 10 µm (Figure 1A). Therefore, 
when we detect amyloid plaques in one of the two outer adjacent sections, it is reasonable to 
assume that adjacent cells in the central section were exposed to this amyloid plaque as well. 
We used the standard deviation of fluorescence intensity of pixels in a tissue domain, 
averaged between the two adjacent slides, as the plaque index for each tissue domain (see the 
Methods). The plaque index was used to quantify the amyloid propagation per region in the 
AppNL-G-F mice (Figure 2C), illustrating its stereotypically progression from the dorsal cortex 
towards ventral cortex, thalamus, and hippocampus (Figures 2A and 2C). Astrogliosis (Gfap 
staining) is selectively increased in the stratum lacunosum moleculare (CA_slm) of the 
hippocampus during normal aging, while it spreads all over the brain but especially towards 
the cortical regions during diseased aging (Figures S2).   
 
To understand changes in gene expression we performed two differential expression analyses. 
The first model compares AppNL-G-F to WT (disease model), the second one models the effect 
of plaque load on gene expression (plaque model, see the Methods). We validated the model 
using single molecule fluorescence in situ hybridization (smFISH, RNAscope, Figure 2D and 
2E) of six genes that accordingly to the plaque model were significantly dysregulated in 
AppNL-G-F at 18-months of age over a range of changes (Cst7 (Log Fold-Changes (LFC): 
1.91), Cd68 (LFC: 1.70), C1qa (LFC: 1.04), Slc1a3 (LFC: 0.57), Clu (LFC: 0.41), and Mbp 
(LFC: -0.37)). We measured the mean intensity of the hybridization per cell in the plaque 
niches (cells within 10 µm of the 6E10-positive areas) compared to that in tissue far from 
plaques (operationally defined as three expansions of 65 pixels or >64.6 µm). As shown in 
Figure 2D, the ST data highly correlates with the RNAscope data (Pearson correlation = 0.92, 
p-value = 0.009, see also Methods).  
 
We compared both models by plotting LFC by genotype (the disease axis) against LFC by 
amyloid plaque exposure (the plaque axis). We observe major gene expression alterations 
according to genotype, amyloid plaque deposition and age (Figures 3A and 3B). Much can be 
learned from individual inspection of these genes. For example, Sez6 (seizure-related gene 6), 
a physiological BACE1 substrate (Pigoni et al., 2016; Zhu et al., 2018) required for the 
appropriate development of neuronal dendrites and excitatory postsynaptic responses 
(Gunnersen et al., 2007), is significantly down-regulated in the disease-axis (LFC: -3, False 
Discovery Rates (FDR) ⋍ 0) but not in the plaque-axis (LFC: 0.20, FDR = 0.415) at 3-month 
of age. This suggests that this early change is driven by the mutated APP but not by visible 
early plaque deposition. The cellular signatures of the top 50 plaque reactive genes sorted by 
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FDR at 3-month or at 18-month of age are summarized in Figures S3A and S3B. In the early 
stage (3-month of age), several oligodendrocyte-expressing genes are up-regulated (eg. Plp1, 
Mobp, Mal, Cnp, Mbp, Mag, Apod), while interneuron-expressing genes (eg. Bex2, Scg2, 
Nap1l5, Resp18, Gprasp2) are down-regulated in the plaque-axis (Figure S3A). In addition, 
Il1a (Interleukin 1 Alpha) with the ability to drive expression of proinflammatory tumor 
necrosis factor alpha (TNFa), interleukin-6 (Il-6), and complement components (Gerritsma et 
al., 1996; Basu, Krady and Levison, 2004; Berge, Johnson and Berge, 2009), is significantly 
upregulated early in the plaque-axis. In contrast, many of the genes changed at 18 months are 
upregulated in function of combined disease- and plaque-axis, including those belonging to 
the well-known inflammatory signature of AD (Figure S3B). At this late stage, an 
oligodendroglial marker, Plp1, is significantly down-regulated in the plaque niches (LFC: -
0.70, FDR: 2.03e-14, Figure S3B) but not in the disease-axis. 
 
We employed GORilla (Ashburner et al., 2000; Eden et al., 2009; Carbon et al., 2019), and 
identified 13 functional super categories (Figure S4A, Table S2, see the Methods), including 
antigen processing, chemotaxis, lysosomal degradation and inflammation that are altered 
along both the plaque- and the disease-axis at 18 months. Confirming the observations 
discussed above, we find a clear switch in the sign of a myelin category, which is up at 3 
months and down at 18 months along the plaque-axis (Figure S4A) but not in the disease-axis.  
 
Multicellular gene co-expressing networks around the amyloid plaques 
Genes with similar expression patterns (co-expression) are likely to have similar functions, 
and can be grouped into modules by “Weighted Gene Co-expression Network Analysis 
(WGCNA)” (Zhang and Horvath, 2005). We investigated the 50% most variable genes across 
the 4 available time-points, over both genotypes and over all detectable brain regions and 
grouped highly co-fluctuating genes associated with amyloid plaques versus non-plaque 
environments. In total, we identified 12 modules (Table S3), and extracted the hypothetical 
biological functions (Table S3), the relation to amyloid plaque exposure, the disease window 
(Figure S4B), the cellular composition (Figure S4C), and the affected brain regions  (see the 
Methods). 
 
We focus here on the WGCNA modules that were most responsive to the amyloid plaques, 
which are the “red” and “purple” modules. The red module (Figures 3 and S4B) represents 
mature myelinating oligodendrocytes (Mbp, Mobp, Mog, and Plp1), but also oligodendrocyte 
precursor cells (Cnp, Sox10, Gpr37, Olig1, and Olig2). We refer to this module as “the 
oligodendrocyte (OL) module”. Agreeing with the initial ontology analysis above, this 
module goes up in early and down in late phase along the plaque-axis, while it has a trend to 
go up along the disease-axis. The result shows that oligodendroglial genes are initially 
upregulated especially in the vicinity of amyloid plaques, but become eventually depleted in 
the plaque niche while they remain relatively high far from plaques in the diseased brain. 
Interestingly, when considering the plaque-axis, we see a strong effect in the hippocampal-
entorhinal neuronal circuit, where the OL module is already strongly down-regulated at 3 
months of disease (Figure 3C lower panel, last two pictures). This might reflect specific 
cellular vulnerabilities in different brain regions. 
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The “purple” module, to which we will refer as the Plaque-Induced Genes (PIG) module, 
contains 57 genes. This module is the most reactive module up in both the plaque- and 
disease-axis at 18-months of age, while displaying minor dysregulation at 3-months of age 
(Figures 3, and S4B). The module represents a rather homogeneous, brain-wide response, 
showing little regional variation in contrast to the oligodendrocyte module (Figure 3C). The 
module starts to be up-regulated from 6-month of age in AppNL-G-F mice (Figure 4C) when the 
plaques become Thioflavin-S positive (Figure S2D) and increases exponentially between 6 
and 12 months to stabilize broadly over the brain thereafter (Figure 3C). We identify a 
moderate but significant correlation between the amyloid accumulation and the PIG module 
expression among all tissue domains in AD mice at 18-month of age (Pearson correlation = 
0.39, p-value ⋍ 0) (Figure 4D).  
 
We investigated the cellular signatures of the PIG module (Zeisel et al., 2015). The top 
plaque-reactive PIGs were mainly expressed by microglia, while astroglia are clearly also part 
of the module response (Figure 4E, rows 16-17). Both microglia and astrocytes undergo 
pronounced transformation after brain injury and disease (Zamanian et al., 2012; Keren-Shaul 
et al., 2017; Sala Frigerio et al., 2019). We therefore further checked the 57 PIGs against the 
profiles (Figures 4A and 4B) of activated astrocytes and microglia. We selected the top 50 
changes in LPS-induced inflammatory astrocytes (A1) (Zamanian et al., 2012), and the top 61 
changed genes in the overlap of the ARM and DAM genes in microglia (Sala Frigerio et al., 
2019; Keren-Shaul et al., 2017). The 57 PIGs are among the strongly reactive (up-regulated) 
genes along either the plaque- or the disease-axis compared to most of the ARM/DAM- and 
A1-genes (Figure 4A). Five PIGs overlap with A1 markers and 18 PIGs with ARM/DAM 
genes (Figure 4B). Most interestingly there are 36 PIGs not known as disease-associated glia 
genes (Figure 4B). Based on GO term analysis (Figure 4E), we conclude that the PIGs 
module is involved in the activation of the classical complement cascade, endocytosis, 
lysosomal degradation, antigen processing and presentation, immune response and oxidation-
reduction processes. One dominant group are known initiators of the classical complement 
cascade (e.g. C1qa, C1qb, C1qc, C4a). 
 
The PIGs module reflects micro- and astroglial crosstalk in the plaque niche 
To evaluate directly with an independent approach which cell types contribute to the PIGs 
response in the plaque niches, we applied an in situ sequencing (ISS) method (Ke et al., 2013) 
(see the Methods, Figures 5 and S5). We used customized probes to map the gene expression 
of PIGs together with cell type markers (Itgam for microglia, Slc1a3 for astrocytes, Syp for 
neurons, and Plp1 for oligodendrocytes). We generated two ISS libraries, one for each 
genotype, at 18-months of age (Figure 5). We quantified gene expression as number of 
fluorescent spots per gene per cell. We applied standard watershed segmentation to estimate 
cell borders and expanded the boundary by 10 µm (Figure 5D). After removal of low 
expressing cells (< 5 molecules per cell), we investigated the gene expression from 127,694 
cells over the two coronal sections, detecting on average 13 ± 0.6 unique molecules per cell. 
We grouped the genes in 5 concentric rings around plaques. The first ring (ring1, the plaque 
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niche) extends 10 µm around each plaque and consecutive rings expand with 18.2 µm (65 
pixels) (Figure 5E).  
 
Many genes show differential expression only in ring 1, instead of more gradual alterations 
across multiple rings (Figure 5F). We applied logistic regression for each gene which shows 
that of the 53 detected PIGs, 36 are significantly enriched in ring 1 (odds ratio>1, padj <0.05, 
see the Methods, Figure 5H), including 12 ARM/DAM microglial markers, 4 A1-astroglial 
markers and 21 other PIGs (Figure 5H, row3) while Laptm5 was significantly depleted in 
ring 1 (odds ratio <1, padj < 0.05, Figures 5F and 5H). The result confirms that the detected 
gene expression alterations in ST are unique to the microenvironment of plaques. The data 
from the ISS (gene enrichment in the plaque niche) correlate well (cor = 0.6, p-value = 
2.659e-09) with the plaque model derived from ST data (Figure 5G). An independent second 
run of ISS confirms the results. 
 
We further analyzed which cell types contribute to the PIGs expression in the plaque niche 
(see Methods, Figure S5), which confirmed PIGs expressing in microglia and astrocytes 
(Figure 5H, row 4-7). In addition, oligodendrocytes express complement C4 and lysosomal 
genes Man2b1 and Laptm5 (odds ratio >1, padj<0.05). Dysregulation of neuronal lysosomes 
in the plaque niches was also suggested (odds ratio >1, padj<0.05), including changes in Gns 
(catabolism of heparin and heparan sulfate), Hexa (degradation of ganglioside GM2 and 
hexosamines) and Lgmn and Ctsb (proteolysis). We finally validated the cellular signature of 
PIGs involved in the complement cascade, using RNAscope in situ hybridization on 3 
different mice per genotype at 18-month of age. We confirmed that C1qa was specifically 
expressed by Itgam-positive microglia close to amyloid plaques (Figure 6B); C4 was 
expressed by Slc1a3-positive astrocytes and Mbp-positive oligodendrocytes, while Clu was 
expressed by Slc1a3-positive astrocytes close to amyloid plaques in APPNL-G-F at 18-month of 
age (Figures 6).  
 
Astroglial PIGs and microglial PIGs are co-expressed exclusively in the amyloid plaque 
niches 
A final question is to what extent the PIG response is a coordinated multi-cellular response to 
the amyloid plaques. We therefore recalculated co-expression matrix of the PIGs in different 
quartiles of plaque exposure by splitting the full database into one WT and four AD sets 
(Figure 7B). In WGCNA, the connectivity measures how strongly expression of a gene 
correlates with all other network genes of tissue domains from the same quartile (or WT). 
These results are visualized here by Circos plots in Figure 7A. The depth of color indicates 
the level of correlation between each two genes in a subset of tissue domains. In WT mice, 
the overall connectivity of the PIGs is relatively low and the PIGs split into 3 sub-networks, 
an astroglial (green), a microglial (blue) and finally a third group of genes that do not cluster 
nor co-express with other genes (grey) (Figures 7A and S6A). Subsequently, in the AD mice, 
we see a dose-dependent effect of plaque load on the strength of connectivity between the 
PIGs. In quartile 1 (Q1), calculated from the 25% tissue domains with the lowest amyloid 
exposure, the 3 sub-groups identified above appear somewhat co-expressed but the 
connectivity remains relatively weak. In Q4, with tissue domains exposed to the highest 
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amyloid burden, a very strong co-expression pattern across almost all PIGs can be observed 
(Figures 7A and S6B). The PIGs in astrocytes and microglia thus only co-express in the tissue 
domains that encompass the amyloid plaques. 
 
Discussion  
 
The current work provides an extensive documentation of the gene expression alterations 
during the cellular phase of AD in a knock-in mouse model for amyloid plaques. The most 
striking finding is the gradual establishment of a multicellular co-expressed gene expression 
response towards amyloid plaques propagated by the different cell types in the amyloid 
plaque niche (Figure 7B). We identified 57 Plaque Induced Genes or PIGs that characterize 
this pathway and that are expressed in microglia, astroglia and oligodendrocytes (Figures 4 to 
7). Furthermore, we found an unexpected response of the oligodendrocytes, separate from the 
PIGs response, that is characterized by an early increased expression of myelination genes at 
3 months (Figure 3A) and a decreased expression at 18 months in the plaque niches (Figure 
3B). The later response is already pronounced in hippocampus and entorhinal cortex in the 
early stage (Figure 3C), suggesting aspects of regional vulnerability, or at least brain region 
specific responses, to amyloid plaques.     
 
Spatial transcriptomics to probe the multicellular environment of the amyloid plaques 
The data supporting our conclusions are derived from the spatial transcriptomics (ST) 
analysis of 10 control and 10 diseased coronal slices of different mice at different ages, 
encompassing >10.000 small brain volumes (8x10-5 mm3) covering whole coronal sections 
between bregma -2.0 to -2.2. As discussed in the result section, such volumes are ideally 
suited to probe the changes in gene expression in the cellular microenvironment of the 
amyloid plaques (the so-called amyloid plaque niches). To increase cellular resolution, we 
combined this unbiased approach with additional single molecule approaches, i.e. classical in 
situ hybridization using RNAscope and independent multi-molecule in situ sequencing 
experiments (Ke et al., 2013). We notice the remarkable congruency of the data: the single 
molecule approaches confirm in general very well the predictions based on the unbiased 
spatial transcriptomic approach (Figures 2D and 5G). Thus, our experiments provide a strong 
validation of the ST technology as an excellent approach to evaluate gene expression changes 
in brain. In contrast to single nuclei (Mathys et al., 2019) or single cell approaches (Zeisel et 
al., 2015; Keren-Shaul et al., 2017), ST does not require harsh dissociation procedures, 
maintains the spatial resolution of the data, and includes cytoplasmic, axonal or dendritic 
RNA. ST should be considered as the first choice for further systematic in depth analysis of 
the cellular phase in human AD samples. The major limitation of the technique at this 
moment, i.e. 100 µm resolution, is rapidly overcome by recent technical improvements such 
as Slide-seq (Rodriques et al., 2019) or higher resolution arrays (Vickovic et al., 2019). 
 
Complement as an important part of the intercellular crosstalk in the amyloid plaque 
niche   
The 57 PIGs identified here reflect part of a multicellular response induced by the presence of 
amyloid plaques and involve parts of already known cellular reactions such as the activated 
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astroglia (A1, Figure 4B) and microglia (DAM/ARM, Figure 4B). In addition, 36 PIGs are 
not known as part of the signature of disease-associated glia (Figure 4B). Based on the 
enrichment of GO terms in the PIGs module (Figure 4E), we conclude that the module is 
involved in the activation of the classical complement cascade (GO:0006956, e.g. C1qa, 
C1qb, C1qc, C4a, C4b), but also in effector mechanisms triggered by the complement 
cascade (Schmidt and Gessner, 2005; Thielens et al., 2017) such as endocytosis 
(GO:0045807, e.g. Fcer1g, Fcgr3, B2m, Cd63, Cyba, Apoe, Clu, Axl), lysosomal degradation 
(GO:0005764, eg. Hexa, Hexb, Ctsa, Ctsb, Ctsd, Ctsh, Ctsl, Ctss, Ctsz, Laptm5, Man2b1, 
Cd63, Gusb, Lgmn, Npc2, Grn, Gns, Prdx6, Cst3), antigen processing and presentation 
(GO:0002474, e.g. Fcer1g, Fcgr3, B2m, H2-D1, H2-K1), immune response (GO:0002376, 
e.g. Csf1r, Cx3cr1, Ly86, Trem2, Tyrobp, Vsir), and oxidation-reduction processes 
(GO:0055114, e.g. Cyba, Prdx6, Gpx4). In addition, also some microglial PIGs are in fact 
homeostatic markers (e.g. Cx3cr1, Olfml3, Csf1r), confirming increased numbers of 
microglia in the plaque niche (Figure S5D). We propose that the network of 57 PIGs 
constitutes an intercellular crosstalk genetic network between astrocytes and microglia which 
results, among others, in the inappropriate control of the classical complement cascade.  
 
Inappropriate control of the classical complement cascade causes unresolvable inflammation 
and disease (Hong et al., 2016; Hansen, Hanson and Sheng, 2018; Morgan, 2018). The 
classical complement cascade is triggered by C1q-complex, and C1q is mostly expressed by 
microglia in the first cellular envelope around amyloid plaque, as shown in Figure 6 
(Eikelenboom et al., 1988; McGeer et al., 1989). The release of C1q from microglia is 
necessary to induce neurotoxic, inflammatory astrocytes (A1) (Liddelow et al., 2017), which 
also strongly upregulates genes involved in classical complement activation such C4 (Figure 
6) (Zamanian et al., 2012). An exciting finding is illustrated in Figure 7, demonstrating how 
the overall connectivity between the PIGs is low in the wild type brains and increases with 
amyloid plaque load in the AppNL-G-F brains. In the 25% spots with the highest amyloid 
burden, almost all PIGs show strong correlation of expression. We found that genes 
associated with risk of AD as defined by GWAS studies were significantly enriched in this 
PIG module (odds ratio: 8.26, p-value = 0.009, Figure S4C, see the Methods). The PIGs thus 
show specific co-expression with GWAS hits such as Apoe, Trem2 and Clu in the amyloid 
plaque niches (Figure 7), suggesting the interplay of ApoE-Trem2 (Krasemann et al., 2017; 
Parhizkar et al., 2019) with the complement pathway (Yin et al., 2019).  
 
Oligodendrocytes and neurons are part of the cellular phase in the amyloid plaque 
niche  
The oligodendrocyte co-expressed network response (OL) to amyloid plaques is of high 
interest. This OL appears to be upregulated in the early phase and downregulated in the later 
phase of the disease. Oligodendrocytes and myelin have received little attention in the field of 
AD research (Braak and Braak, 1996; Ettle, Schlachetzki and Winkler, 2016). Recently, 
Zhang et al. suggested that oligodendrocyte precursor cells (OPCs) surrounding amyloid 
plaques undergo senescence and stop differentiating into myelin-repairing oligodendrocytes. 
Instead, they release inflammatory molecules into the plaque environment (Zhang et al., 
2019), which may trigger or enhance the local activation of microglia and production of 
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proinflammatory cytokines. In the current study, we confirm the depletion of myelin 
transcripts but also increased expression of complement C4 by Mbp-positive 
oligodendrocytes in the amyloid plaque niches at 18 months of disease. In contrast, we find 
increased myelin transcripts in the amyloid plaque niches at 3 months. We speculate that an 
initial remyelination reaction around the amyloid plaques could be part of a homeostatic 
response to keep the brain functional in the early phase of disease. When aging, OPC 
senescence induced by the amyloid plaques and dysregulated microglia phenotypes may stop 
remyelination directly or indirectly via inducing inflammation. Together with activated 
astrocytes and microglia, oligodendrocytes are thus clearly involved in the dysregulated 
environment of the amyloid plaque niches. 
 
Space constraints do not allow us to discuss in much depth other salient features of the 
cellular response but we would like to highlight a few observations we made. For instance, 
we identified three neuronal networks by WGCNA (Figure S4: magenta, brown and pink). 
The interneuron module “pink” (136 genes including Gabrg1, Baiap3, Glra3, Ahi1, Cartpt, 
Calb2, Camk2d, Camk2n2, Crebl2) is down-regulated along the plaque-axis at 3-month of 
age, indicating the early vulnerability of interneurons in the amyloid plaque niches (Figure 
S4B). We also identified an astroglial-vascular module (black, 150 genes including mt-Co1, 
mt-Nd1, Hba-a1, Hbb-bs, Aldoc, Slc7a10, Figure S4, Table S4), mostly enriched in the 
CA_slm layers and up-regulated in the AD mice with aging, indicating the dysregulation of 
metabolism in the diseased aging hippocampus.   
 
Some current limitations of the approach 
The current dataset is limited to the AppNL-G-F model. Although this is probably the best model 
for Aβ pathology at the moment, it comes short with regard to the development of 
neurofibrillary tangles, neurodegeneration, and memory deficits. The AppNL-G-F amyloid 
model is however excellent to study brain-inflammatory alterations as recently demonstrated 
in a study comparing human and mouse brain (Castillo et al., 2017). Methodological 
limitations should be taken into account when analyzing these data. Notable is the fact that the 
number of reads captured per ST tissue domain is lower than in bulk RNA sequencing, and 
more on par with single cell transcriptomics. The available ST technology does also not reach 
“single-cell” level. This is complemented by in-situ sequencing experiments which 
strengthened the conclusions drawn from the ST analysis, but were impeded by low coverage 
per cell and the challenge to define cell identity and boundary. We observed for instance that 
there is only 22% overlap between Cx3cr1-positive microglia and Csf1r-positive microglia, 
and that 16% of Slc1a3-positive astrocytes express Plp1. Zeisel et al. have suggested that 3 
marker genes are needed for a reliable cell type estimation (Zeisel et al., 2018). However, 
increasing the number of targets for in situ requires higher magnification imaging to avoid 
optical crowding, at the expense of speed and throughput. Further improvement of cell type 
identification is however crucial.    
 
Conclusion  
We present here a brain disease oriented application of the recently developed Spatial 
Transcriptomics technology (Ståhl et al., 2016), demonstrating its strengths and limitations to 
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study with unprecedented depth diverse cellular reactions triggered by the amyloid plaques. 
The data unequivocally demonstrate that amyloid plaques are not innocent bystanders of the 
disease as has been sometimes suggested (Robakis, 2010; Kametani and Hasegawa, 2018), 
but are in fact inducing strong and coordinated responses of all cells in the amyloid plaque 
niche. We also demonstrate that the action radius is limited to 10-20 µm from the plaque. 
Further work is needed to understand whether and when removal of amyloid plaques by for 
instance immunisation (Gallardo and Holtzman, 2017) is sufficient to reverse these ongoing 
cellular processes. It is tempting to speculate that antibody binding to amyloid plaques on its 
own would already influence these glia responses, which might be beneficial but also harmful 
for the progression of the disease.  
This work is a first step into the direction of the human brain Alzheimer atlas (De Strooper 
and Karran, 2016), which should describe the different stages of the disease at the multi-
omics level. Such resource would accelerate research into this dreadful disease significantly. 
Obviously, this will require the collaboration of several research groups and open access and 
data sharing will be essential to achieve this ultimate goal. 
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Figure Legends 

Figure 1. Spatially resolved transcriptomic profiles in adult brain. (A) Sequential 10 µm coronal 
sections (bregma -2.0 to -2.2) of AppNL-G-F and WT brain were collected at 3-, 6-, 12-, and 18-months 
of age. The middle section was used for spatial RNAseq and the two adjacent sections for 
immunostaining. (B-C) Total number of tissue domains per brain region (B) and in hippocampus (C) 
based on Allen Brain Atlas. (D) t-distributed stochastic neighbour embedding (t-SNE) plot visualizing 
355 transcriptomic profiles in WT hippocampus at 3-months of age. Tissue domains cluster according 
to somatic layers CA1, CA3, and DG. (E and F) t-SNE plots visualizing the 10,327 transcriptomic 
profiles. Tissue domains were coloured according to brain region (E) or to genotype and age (F). 
Abbreviations: somatic layers (sp), stratum oriens (so), stratum radiatum (sr), stratum lacunosum-
moleculare (slm), molecular layer (mo), polymorph layer (po), thalamus (TH), hypothalamus (HY), 
fiber tract (FB), dendritic layers of hippocampus (HPd), cerebral nuclei (CNU), cortical subplate 
(CTXsp), olfactory areas (OLF), entorhinal area (ENTI), temporal association area, ectorhinal area, 
and perirhinal area (TEP), auditory areas (AUD), primary somatosensory area (SSp), posterior parietal 
association areas (PLT), retrosplenial area (RSP). 
 
Figure 2. Linking gene expression alterations to amyloid plaque load. (A) Immunofluorescent 
staining of amyloid plaques (mAb 6E10, white), astrocytes (Gfap, green), neurons (NeuN, red), and 
nuclei (DAPI, blue) at the indicated ages. Scale bar: 500 µm. Bottom: zoom-ins of tissue domains 
(yellow circle: 100 µm in diameter) in the primary somatosensory area of the cortex. Scale bar: 25 
µm. (B) Computerized pictures of amyloid plaques quantified with Image-J. Yellow circles indicate 
the associated tissue domains. From the five computed parameters, standard deviation of pixel 
intensities was found to have the highest correlation with independent expert analysis. This is used as 
amyloid plaque index of a tissue domain. (C) The mean of the amyloid plaque index per brain region 
is plotted at four time points. (D) Pearson correlation of ST and RNAscope analysis (as shown in 
panel E) of 6 selected transcripts at 18-month of age. Scatter plot shows the LFC of each target as 
detected via ST (y-axis) or RNAscope (x-axis). (E) RNAscope experiment shows the expression of 
the indicated genes (red or green). Plaques are immunostained with mAb 6E10 (white). Nuclei were 
visualized by DAPI (blue). Scale bar: 50 µm. 
 
Figure 3. Multicellular gene co-expressing networks around amyloid plaques. (A and B) Scatter 
plots showing the plaque effect (y-axis) and the genotype effect (x-axis) on differential gene 
expression at 3- (A) and 18- (B) months of age. The y-axis (plaque-axis) represents the LFC of gene 
expression in the tissue domains in function of amyloid plaque index. The x-axis represents the LFC 
of gene expression in AD versus WT at 3 and 18 months of age. The 100 most significantly (FDR) 
differentially expressed genes are represented by enlarged spots. Individual genes of the 
OLigodendrocyte (OL module) (red spots) and the Plaque-Induced Gene (PIG) module (purple spots) 
are indicated. Notice strong upregulation of OL genes at 3 months and downregulation at 18 months 
while PIGs are relatively unchanged at 3 months but become very dominant at 18 months. (C) 
Regional plots of average differential expression changes along plaque- or genotype-axis for the PIG 
and the OL module over time. Each region is coloured according to the mean of the observed LFCs 
(see color bar) of the module across different brain regions.  
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Figure 4. Characterization of the 57 Plaque-Induced Genes (PIGs). (A) Differential expression of 
57 PIGs (red spots), 61 ARM/DAM microglia markers (blue spots) and 50 A1-astroglial markers 
(green spots) in the plaque-disease interaction plot at 18-month of age. (B) Venn diagram highlights 
the overlap of the PIGs with ARM/DAM microglia and A1-astrocytes, and 36 PIGs have not been 
associated with either phenotype before. The 61 activated microglial markers were the overlap 
between top 120 ARM genes and top 120 DAM genes sorted by FDR. (C) LFCs of 57 PIGs in the 
genotype model at the indicated age. (D) For every tissue domain the mean z-score of 57 PIGs (y-
axis) is positively correlated with the mean of the log-transformed plaque index (x-axis). (E) PIGs are 
ranked from left to right according to their LFC in the plaque-axis at 18-month of age. Heatmap 
squares (top 2 rows) show LFCs of the genotype and the plaque effect at 3- (left bottom triangle) and 
18- (right top triangle) months of age. The third row indicates the -log10 transformed GWAS AD risk 
p-values (see the Methods). ARM/DAM or A1 are highlighted in triangles (4th row). Genes in the 
significantly enriched GO terms are highlighted in green spots (row 5-12). Expression level of each 
gene in the indicated cell type calculated from single cell RNAseq data (Zeisel et al., 2015) (row-13-
17). Zeisel et al. defined (color background) / predicted cell type (grey background) genes are 
highlighted in the last row. 
 
Figure 5. Validation of Spatial Transcriptomics analysis by in situ sequencing. (A, B) 
Distribution of 84 genes in the coronal section (A) and zoom into the hippocampus (B) of AppNL-G-F 
mice at 18-month of age demonstrated by in situ sequencing (ISS). Red neuronal (eg. Syp, Neurod6, 
Grin3a); yellow microglial (eg. Itgam, Cx3cr1, Csf1r); green astroglial (eg. Slc1a3, Gfap, Serpina3n) 
and blue oligodendroglial transcripts (eg. Plp1, Laptm5) are indicated and displayed in (C). (D) 
Cellular segmentation using watershed method based on DAPI-positive nuclei shown in hippocampus 
(DG_po). Color dots follow the same color code as in (C). Amyloid plaques are white while nuclei are 
blue. (E) Rings circumscribing amyloid plaques from R1 (ring 1, the most inner ring) to R5 (ring 5, 
the most outer ring). Scale bars: 800 µm (A), 400 µm (B), 20 µm (D), and 50 µm (E). (F) Circular 
heatmap shows gene expression in the indicated rings (inner circle: ring 1; most outer circle: ring 5). 
(G) Scatter plot shows the LFC of each target according to the plaque index as detected via ST (y-
axis) or the expression of each target in ring 1 (the plaque niche) in ISS (x-axis) at 18-month of age. 
(H) Cellular signature of the 84 genes. PIGs (1st row) and complement components (2nd row) are 
highlighted. The significant odds ratio of an indicated gene being in plaque niches (ring 1) is 
displayed in row 3, and in the significant odds ratio of being in a selective cell type within the plaque 
niches (ring1) of the ISS result is displayed in row 4-7, non-significant odds are colored by grey. 
Zeisel et al. defined (color background) / predicted cell type (grey background) genes are highlighted 
in the last row. 
 
Figure 6. Microglia, astrocytes and oligodendrocytes are involved in the activation of the 
complement cascade around amyloid plaques (A) Combined RNAscope and immunofluorescence 
analysis of complement components (C1qa, C4 or Clu probes in green) expression by microglia 
(Itgam, red), oligodendrocytes (Mbp, red), astrocytes (Slc1a3, red), and neurons (Syp, red) in the 
vicinity of amyloid plaque (6E10, white) in the hippocampus of AppNL-G-F mice at 18-month of age. 
Nuclei are blue (DAPI). Scale bar: 25 µm. (B) Quantification of C1qa, C4 and Clu staining intensity 
per cell, classified based on cell type and distance from a plaque. Measurements were made from 
>2900 single cells for each condition from 3 AppNL-G-F mice. Expression of C1qa in microglia, of C4 
in oligodendrocytes, and Clu in astrocytes were increased in the plaque niches. * p < 0.05, ** p < 
0.005, *** p < 0.0005, Mann Whitney U test compared to the 5th ring. 
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Figure 7. Astroglial PIGs and microglial PIGs are co-expressed in the plaque niches but not in 
the control tissue domains. (A) Circos plot: connectivity map derived from the pairwise correlation 
score derived from WGCNA adjacency matrix of PIGs in different subgroups. Notice the segregation 
into 3 subgroups (blue, green, and grey) in WT. Cell types are indicated using either average z-score 
from single-cell sequencing data (outer ring)(Zeisel et al., 2015) or the odd ratios of the ISS results 
(inner ring) in the plaque niches. The strength of correlation of a gene expression with the plaque load 
across all AD tissue domains is indicated in the orange ring. The odd ratio of a gene presenting in 
ring1 is indicated in the most inner ring. The green lines indicate the strength of connectivity score 
between genes. Notice the dose sensitive increase in connection of the genes with increasing amyloid 
index from Q1 to Q4 with Q1 <25% lowest and Q4 >75% highest exposed tissue domains. (B) 
Quantile selection of AD tissue domains (x-axis: tissue domains sorted by plaque index) according to 
the plaque load (y-axis: plaque index). (C) The mean of the connectivity score of PIGs in the 
indicated tissue domains. The color depths of green curve in panel A is indicated.  
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CONTACT FOR REAGENT AND RESOURCE SHARING  
Further information and requests for reagents may be directed to, and will be fulfilled by the 
corresponding author Bart De Strooper (bart.destrooper@kuleuven.vib.be) 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS  
 
Mice 
All animal experiments were conducted according to protocols approved by the local Ethical 
Committee of Laboratory Animals of the KU Leuven (governmental license LA1210591, 
ECD project number P056-2016) following governmental and EU guidelines. APPNL-G-F 
knock-in (Saito et al., 2014) mice express Swedish (KM670/671NL), Beyreuther/Iberian 
(I716F), and Arctic (E693G) mutations in the APP gene under the endogenous promoter on 
the C57BL/6J background. APPNL-G-F mice were backcrossed for at least 2 generations with 
C57BL/6J mice in the De Strooper lab.  
 
Male mice (APPNL-G-F KI and C57BL/6J controls) were sacrificed at 3.5 months (106 days), 6 
months (average 183.5 days), 12 months (average, 367 days), or 18 months (average 551 
days) of age, giving rise to 8 experimental groups (n=2 per group for 3.5- and 18-months of 
age; n=1 per group for 6- and 12-months of age; n=12 for total): WT_03, WT_06, WT_12, 
WT_18, AD_03, AD_06, AD_12, AD_18. Following cervical dislocation, left and right 
hemispheres were embedded in cold OCT separately and snap-frozen in liquid nitrogen. 
Samples were stored at -80˚C. 
  
METHOD DETAILS 
 
Tissue collection for Spatial Transcriptomics  
OCT-embedded hemispheres were cryosectioned coronally to a thickness of 10 µm (bregma: 
-2.0 to -2.2) using a CryoStar NX70 cryostat (ThermoFisher). We layered tissue sections onto 
a spatially barcoded array to collect in situ 2D-RNAseq of Spatial Transcriptomics 
(Lot#10001, Spatial Transcriptomics, Stockholm, Sweden) or to a regular glass slide for 
immunohistochemistry. Each spatially barcoded array has 1007 tissue domains, with a 
diameter of 100 µm and a center-to-center distance of 200 µm, over an area of 6.2 mm by 6.6 
mm. One coronal section normally covers the area of 500 to 600 spots on the array, each 
defining on tissue domain. Each spot contains approximately 200 million barcoded reverse-
transcription oligo(dT) primers allowing to get a global transcriptomic profile of a tissue 
domain with a volume of 0.00008 mm3. After cryosection, all sections were stored at -80˚C 
before proceeding with experiments.  
 
We collected one right and one left hemisphere for each experimental group at 3.5- and 18-
months of age, and one right hemisphere for each experimental group at 6- and 12-months of 
age. We performed experiments of AppNL-G-F KI mice and C57BL/6J at the same age at the 
same time. RNA quality was checked by RNeasy Micro Kit (Qiagen, Hilden, Germany) and 
Agilent 2100 Bioanalyzer with RNA nano chips (Agilent Technologies, Inc., Santa Clara, 
CA, USA). RIN values of the tissues were between 8.6 to 9.45. Details of sample quality is 
described in Table S1. 
 
In situ 2D-RNAseq via Spatial Transcriptomics  
Spatial Transcriptomics experiments were performed following the Library Preparation 
Manual (Spatial Transcriptomics, Stockholm, Sweden) (Ståhl et al., 2016). Briefly, 
cryosectioned tissues were fixed on a spatially barcoded array by 3.7% formaldehyde 
solution at room temperature for 10 min, and stained by hematoxylin for 7 min, bluing buffer 
for 2 min, and eosin for 20 sec at room temperature. We acquired HE images by Zeiss Axio 
Scan.Z1 slidescanner (Carl Zeiss AG, Oberkochen, Germany). After imaging, tissues were 
immediately permeabilized by collagenase in HBSS-BSA buffer for 20 min and 0.1% pepsin 
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in 0.1M HCl for 6 min at 37˚C, and followed by in situ reverse transcription by adding cDNA 
synthesis master mix at 42˚C for 18-20 hours to get the stable cDNA attached on the array. 
Tissues on the array were then removed by the incubation in 2.5 mg/ml proteinase K in PDK 
buffer at 56˚C for 1h with interval shaking (300 rpm, 15s shake, 15s rest), which left cDNA 
coupled to the arrayed oligonucleotides on the slide. We collected the cDNA probes by probe 
cleavage using 100U/ml USER enzyme in 1X second strand buffer with dNTP and BSA. 
Library preparation of the released cDNA probes was performed in the laboratory of our 
collaborato led by Prof. Joakim Lundeberg at KTH Royal Institute of Technology, Sweden, 
including second strand synthesis, in vitro transcription, adapter ligation, second cDNA 
synthesis, qPCR quantification, and PCR amplification. The number of cycles to amplify the 
final libraries is between 8-11 cycles. Library quality was checked on an Agilent BioAnalyser 
DNA High Sensitivity chip. We selected two out of six libraries per mouse according to 
lower amplification cycles, better tissue morphology, higher RIN value, and similar length of 
cDNA to perform paired end sequencing on an Illumina NextSeq500 sequencer at the VIB 
Nucleomics Core (Leuven, Belgium). To determine the exact localization and quality of each 
of the 1007 tissue domains on the array, a fluorescent Cyanine-3 probe was hybridized to the 
remaining DNA capture probes and the arrays were scanned at 548 nm by Zeiss Axio 
Scan.Z1 slidescanner (Carl Zeiss AG, Oberkochen, Germany). The image was used together 
with the HE-image to annotate the spatial localization of each tissue domain using the Allan 
Brain atlas as reference.     
 
Immunohistochemistry of Spatial Transcriptomics 
Immunohistochemistry was performed on the two adjacent sections to the one used for 
sequencing. After fixation in 4% ice-cold paraformaldehyde (PFA) for 20 min and a wash 
with PBS, we performed antigen retrieval by microwave boiling the tissue 3 times in 10 mM 
sodium citrate at pH 6.0 to expose antigenic sites. After cooling down to room temperature 
for 20 min, brain tissues were washed and blocked in TBS-buffer solution containing 0.5% 
Triton X-100 and 5% normal goat serum for 2h. The serum-blocked tissues were then stained 
with mouse Alexa Fluor 488 anti-Aβ1-16 antibody, 6E10 (803013, BioLegend) at 4˚C 
overnight, and guinea pig anti-NeuN antibody (266004, Millipore) and rabbit anti-Gfap 
antibody (Z0334, DAKO) in blocking buffer at 4˚C overnight. The immuno-stained tissues 
were then incubated with goat Alexa 594 anti-guinea pig IgG (H+L) antibody (106-585-003, 
Jackson Immunolabs) and goat Alexa 647 anti-rabbit IgG (H+L) antibody (A21245, 
Invitrogen) for 1.5 h at RT. After incubation with DAPI and mounting with glycerol, imaging 
was carried out on Zeiss Axio Scan.Z1 slidescanner (Carl Zeiss AG, Oberkochen, Germany) 
using a 20X objective. Volume images were acquired with 16-bit depth to allow a broad 
range of intensity values and rendered using Fiji (Schindelin et al., 2012).  
 
In situ sequencing by CARTANA 
OCT-embedded hemispheres of mice at 18-month of age were cryosectioned coronally into 
14 µm (bregma -2.0 to -2.2) and layered onto SuperFrost Plus glass slides (ThermoFisher) 
and further stored at -80˚C before experiments. Samples were shipped on dry ice to 
CARTANA (Solna, Sweden) for tissue fixation, reverse transcription, probe ligation, rolling 
cycle amplification with reagents and according to the procedures supplied in the Neurokit 
(1010-01, CARTANA, Sweden), followed by fluorescence labeling, and sequencing by 
sequential images at 20X objective (Ke et al., 2013). Five probes were designed for each 
gene, except Itgam, which has 10 customized probes to increase the detection sensitivity. We 
included probes for 7 additional genes that do not belong to the PIG module but which 
significantly react to the presence of amyloid plaques at 18-months of age in the ST analysis: 
Cst7, Cd68, Ccl6, Prox1, Hcrt, Pmch, and C1ql2 (LFC: 1.91, 1.70, 1.69, -1.42, -1.72, -1.83, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2019. ; https://doi.org/10.1101/719930doi: bioRxiv preprint 

https://doi.org/10.1101/719930


 

 21 

and -2.01, respectively). We removed afterwards probes H2-D1, Cd63-ps and RP23-
269H21.1 because of design issues and renamed the probes C4a, C4b, Serpina3n, Lyz2 as C4, 
Serpina3 and Lyz because they cross react with related genes. To reduce lipofuscin 
autofluorescence, 1X TrueBlack (Biotium, Fremont, CA) was applied for 30 sec before 
fluorescence labeling. The result table of the spatial coordinates of each molecule of 84 
targets together with the reference DAPI image per sample were provided by CARTANA. 
After in situ sequencing, samples were shipped back to the lead laboratory in Leuven for 
further immunostaining of amyloid plaques on the same tissue. Briefly, after removing 
coverslips, the brain tissues were washed and blocked in TBS-buffer solution containing 
0.5% Triton X-100 and 5% normal goat serum for 2h. The serum-blocked tissues were then 
stained with mouse Alexa Fluor 488 anti-Aβ1-16 antibody, 6E10 (803013, BioLegend) at 4˚C 
overnight. After immunostaining, sections were then incubated in 1X TrueBlack (Biotium, 
Fremont, CA) solution for 30 sec to reduce lipofuscin autofluorescence. After staining with 
DAPI (Sigma-Aldrich) and mounting with FluorSave Reagent (Merck Millipore, Burlington, 
MA). Imaging was carried out on MÄRZHÄUSER SlideExpress 2 with 20X objective and 
Hamamatsu ORCA Flash4.0 camera. Volume images were acquired with 16-bit depth to 
allow for a broad range of intensity values and rendered using Fiji.  
 
Multiplexing RNAscope and immunohistochemistry 
OCT-embedded hemispheres of mice were cryosectioned coronally into 14 µm (bregma -2.0 
to -2.2) and layered onto SuperFrost Plus glass slides (ThermoFisher) and further stored at -
80˚C before experiments. RNAscope experiments were performed using the Manual 
Fluorescent Multiplex kit v1 (Advanced Cell Diagnostics, Newark, CA) following 
manufacturer’s recommendations with minor adjustments. Briefly, after fixation and protease 
digestion, probe hybridization was carried out at 40°C for 2 h with the indicated probe sets. 
Probes were all from Advanced Cell Diagnostics: Mm-Cst7 (498711), Mm-Cd68-C3 
(316611-C3), Mm-C4 (445161), Mm-C1qa (44221), Mm-Clu (427891), Mm-Syp-C3 
(426521-C3), Mm-Mbp-C3 (451491-C3), Mm-Slc1a3-C3 (430781-C3), and Mm-Itgam-C2 
(311491-C2). After amplification steps to obtain the RNAscope signals, we immediately 
performed immunohistochemistry to acquire the immunofluorescence picture of amyloid-beta 
plaques in the tissues. Briefly, the sections were blocked for 1 hour at RT in PBS containing 
0.3% Triton X-100 and 5% normal goat serum and immunostained with the anti-Aβ1-16 
primary antibody (6E10, BioLegend, San Diego, CA) at 4°C overnight and then with an Atto-
488-conjugated goat anti-mouse secondary antibody (Sigma- Aldrich, Saint Louis, MO) at 
RT for 1h. After immunostaining, sections were incubated in 1X TrueBlack (Biotium, 
Fremont, CA) solution for 30 sec to reduce lipofuscin autofluorescence. After staining with 
DAPI (Sigma-Aldrich) and mounting with FluorSave Reagent (Merck Millipore, Burlington, 
MA), sections were imaged via a Leica TCS SP8 X confocal microscope (Leica 
Microsystems, Wetzlar, Germany) using a 40X objective. 
 
QUANTIFICATION AND STATISTICAL ANALYSIS  
 
Image analysis 
 
Metadata of Spatial Transcriptomics 
HE and Cy3-spot images were acquired from the middle ST sections. Fluorescent amyloid-
beta, astrocyte, neuron, and nuclei images were acquired from the two adjacent sections 
stained by 6E10, anti-Gfap antibody, anti-NeuN antibody, and DAPI. Manually aligned HE 
and Cy3-spot images were used to bridge the transcriptomics picture with the 
immunostaining pictures. To de-barcode the spatial localization of each transcriptomic 
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profile, we converted the pixel coordinates of the 1007 tissue domains on the Cy3-spot image 
into the theoretical coordinates described in the ID-file of the spatially barcoded array. To 
acquire the spatially corresponding amyloid and cellular information per tissue domain, we 
manually aligned and transformed fluorescence images into the corresponding HE images. To 
annotate the anatomic brain regions, we manually aligned and transformed the reference atlas 
from Allen Brain Institute into the corresponding HE images. More details of the reference 
atlas for each sample are described in Table S1. Image alignment was processed using the Fiji 
plugin “Landmark correspondences” (Legland, Arganda-Carreras and Andrey, 2016) and the 
precision of all aligned images were checked before analysis. 
 
We developed a Fiji groovy script package to automate the image processing and analysis. 
Quality of the image has been checked before computation. We annotated the unreliable areas 
(eg. damaged tissue, out of focus, or dirt on the image) by manual assignment of region of 
interest (ROI) by Fiji. For each tissue domain, the package computed the percentage of 
damaged area, coverage area of tissue, coverage area of Cy3-detectable spot, and the 
coverage area of individual brain region according to the Allan Brain atlas images. We 
filtered the spots by the coverage area of tissue > 90%, damaged area of tissue <30%, and the 
coverage area of Cy3-detectable spot >90%. This results in 500-600 useful tissue domains for 
each sample.  
 
To measure the immunostainings, our home-derived package also computed 5 parameters for 
the Aβ, the Gfap, the NeuN and the DAPI staining within each tissue domain: (1) mean pixel 
intensity, (2) median pixel intensity, (3) sum of pixel intensity, (4) standard deviation of pixel 
intensity, and (5) percentage of area of the computed positive signals per tissue domain. 
Together, the package generated the metadata with 146 observations for each tissue domain.  
  
Quantification of immunostainings 
To assign a single measure to a tissue domain for each of the immunostainings, we computed 
5 statistics for each tissue domain and staining (Aβ, Gfap, NeuN and DAPI): (1) mean pixel 
intensity, (2) median pixel intensity, (3) sum of pixel intensity, (4) standard deviation of pixel 
intensity, and (5) percentage of area of the computed positive signals per tissue domain. To 
select the most representative statistics, a group of 8 experts were employed in a random 
ranking approach. In this exercise, two images of random tissue domains (showing the same 
staining) were shown side by side, and we asked the experts to identify the tissue domain 
image which, according to their best estimate, contains the highest amount of stained 
material. For each staining we scored a large number of pairs (Aβ: 1672, DAPI: 1685, NeuN: 
1464, Gfap: 2271). Subsequently, we calculated for every scored pair and for each calculated 
parameter, the difference between the two tissue domains. We then used the Mann Whitney 
U test (MWU, p-value) to identify which parameter has the best power to distinguish between 
the two tissue domains, and, which parameter is most often in concordance with the expert. 
Based on this approach, we picked the percentage of area of the computed positive signals for 
Gfap (80.14% correct, MWU p=10-297), DAPI (79.35% correct, MWU p=10-167) and NeuN 
(72.13% correct, MWU p=10-121). Remarkably, the standard deviation of pixel intensity 
worked best for the Aβ (66.51%, correct, MWU p=10-92). We experimented with 
normalization per slide, but this did not improve the predictive power, so we proceeded 
without normalization. The final score taken per staining/tissue domain is the mean of the 
corresponding spot in the two adjacent slides. 
 
Metadata of in situ sequencing 
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We developed a Fiji groovy script package to automate the metadata of in situ sequencing, 
including number of signals per targeted gene and spatial distance to amyloid plaque. To get 
the single cell resolution, we performed a white top-hat filtering followed by a Gaussian 
filtering and converted the DAPI signals into binary masks by using a histogram-derived 
threshold method, Triangle, in Fiji. Watershed segmentation on the DAPI staining was 
performed to separate the binary mask of DAPI. The segmented single cell/nucleus was 
expanded by 10 µm to identify the cytoplasm (Qian et al., 2018; Sala Frigerio et al., 2019). 
Within each ROI per cell, we computed the number of each target gene based on their spatial 
coordinates per molecule provided by CARTANA. To get the spatial relevance to amyloid 
plaque, we first manually aligned the amyloid immunostaining with the DAPI reference. As 
in situ sequencing and immunostaining were carried out on the same tissue, the precision of 
alignment is very high and has been checked before analysis. We converted the amyloid-
positive signals into binary masks by using a histogram-derived threshold method, Triangle, 
in Image-J. The ROI of the plaque niche (ring 1) is based on the area mask with boundary 
expansion by 10 µm. We compute 5 co-centroid circles (donuts) from the ROI of ring1 in the 
plaque niche to the ROI of ring5 far from plaque with 18.2 µm extension per ring without 
overlap between plaques. The assignment of the spatial distance to plaque per cell is based on 
this classification of 5 rings. The metadata generated by this image analysis was further 
applied in the data analysis of the in situ sequencing experiment. We applied QuPath to 
overlay the spatial images of multiple targets, immunostainings, DAPI staining, and ROIs of 
cells and plaques, and to generate the representative images shown in the figures (Bankhead 
et al., 2017). 
 
RNAscope quantification 
Three male AppNL-G-F KI mice at 18 month of age per experimental condition were used for 
quantification. For each mouse, 6 images of the hippocampus (two of CA1, two of CA3, and 
two of DG) were acquired and stacked in Fiji. NIS-elements software (Nikon, Amsterdam, 
Netherlands) was used to detect nuclei, microglia, astrocyte, neuron, oligodendrocyte, and 
plaque using a custom-made protocol (Sala Frigerio et al., 2019). Nuclei and cell body 
perimeter were established using the DAPI signal; microglia, astrocytes, neurons, and 
oligodendrocytes were identified by RNAscope puncta from the Itgam, Slc1a3, Syp, and Mbp 
probes, respectively. All parameters were kept constant between images to allow unbiased 
detection. Around each plaque, five concentric circles were drawn, for each circle we counted 
microglia, astrocytes, neurons, and oligodendrocytes, and for each cell we measured the 
intensity of the signal (eg. Cst7, Cd68, C1qa, C4). To quantify the degree of change around 
amyloid plaques, we first log transformed the target intensity per cell, and classified their 
expression level per cell to the distance to amyloid plaques (ring). 
 
Sequencing Data Analysis 
  
Generation of raw counts, cpm counts 
Sequencing data were pre-processed with the ST pipeline (Navarro et al., 2017), which 
filtered low quality bases, mapped against the mouse genome (Ensembl 88), and generated a 
count matrix. The count matrix was further filtered by removing spots with tissue coverage 
less than 30% in the HE image. The EdgeR “cpm” function was used for library size 
normalization and the output log-cpm matrix was used for the rest of the analyses.  
 
Differential expression analysis 
DE analysis was conducted by fitting two separate GLM models using plaque intensity and 
genotype information respectively. Each GLM model was tested for differential expression 
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by using EdgeR quasi-likelihood F-test which accounts for the uncertainty in dispersion 
estimation at the age of 3 months and 18 months, separately. The plaque model represents 
transcriptional changes in the vicinity of amyloid plaques, which models the log transformed 
plaque index as a continuous variable, and its LFC indicates the changes in gene expression 
per unit change in plaque index. For a more straightforward interpretation, we multiply all 
LFC by a constant 4.59 (the difference between the maximum observed plaques and the 
minimum observed plaque index across the database). The corrected LFC represents the 
amount of changes in gene expression from the minimum to the maximum observed plaque 
load, and is used throughout the paper. The genotype model assesses transcriptional changes 
between WT and TG mice.  
 
WGCNA 
WGCNA package in R (Zhang and Horvath, 2005) was used to build signed co-expression 
networks. The set of genes with the highest 50% standard deviation was selected using the 
“varFilter” package from the Bioconductor (Huber et al., 2015). Soft power 14 was chosen 
by WGCNA’s “pickSoftThreshold” function to calculate the adjacency matrix, and the 
module identification was performed by the “cutreeDynamic” function by selecting deepSplit 
=4. The adjacency matrix is calculated using the “adjacency.fromsimilary” function using the 
signed network and soft thresholding power 14. The mean of the connectivity score of a 
given module is calculated by first taking the row sum of the adjacency matrix as the intra 
modular connectivity score per gene, and then the average of the intra modular connective 
score of all genes in the given module was calculated. 
  
Functional Enrichment 
Functional annotation of the DE analysis was performed by GOrilla using the “Single ranked 
list of genes” model. For each DE analysis, two ranks are generated using LFCs, one from the 
most negative to most positive, and vice versa. The software will search for GO terms that are 
enriched in the top of the list compared to the rest of the list using the mHG statistics. Total 
of 8 GOrilla analyses were performed for each age group (3 months and 8 months) and 
Genotype and Plaque, respectively. Bonferroni correction was performed on all Gorilla 
analyses based on the total number of comparisons (21825 GO terms * 8 ranks = 174600). 
 
Functional annotation of each module was performed by GOrilla using the “Two unranked 
lists of genes” model. Each module is used as the target list and the total of 36715 genes 
expressed in our dataset were used as the background set. The software searches for GO 
terms that are enriched in the target set compared to the background set using the standard 
Hypergeometric statistics. 
 
To merge similar GO terms into cluster, we first generated a similarity matrix between all 
significantly enriched GO terms based on the number of the genes overlapping between two 
GO terms. Next, we performed hierarchical clustering using the complete linkage method, 
with tree height 3.3 which grouped all significant GO terms into 12 clusters.  
 
Logistic regression 
Logistic regression was used to predict plaque niche enrichment and cell type enrichment of 
the in situ sequencing data. For plaque niche enrichment, each gene is fitted as a continuous 
explanatory variable in a single logistic regression, with the proportion of cells in ring 1 over 
cells in non-ring 1 used as the logit response variable. An odd ratio is calculated by taking the 
exponential of the coefficient calculated from each regression, which indicates the ratio of the 
probability of a given gene in ring1 (plaque niche) and the probability in non-ring 1. For cell 
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type enrichment, each gene is used as explanatory variable the same way as the plaque niche 
enrichment, but the logit is calculated as the log of the proportion of cells expressing at least 
1 copy of a given cell type marker over cells that do not express that cell type marker. The p-
values from each regression model were corrected using Bonferroni correction. 
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